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intensity in a picture are places at which complex exponentials at different frequencies are
in phase. Therefore, it seems plausible to expect the phase of the Fourier transform of a
picture to contain much of the information in the picture, and in particular, the phase should
capture the information about the edges. To substantiate this expectation, in Figure 6.2(a)
we have repeated the picture shown in Figure 1.4. In Figure 6.2(b) we have depicted the
magnitude of the two-dimensional Fourier transform of the image in Figure 6.2(a), where
in this image the horizontal axis is w |, the vertical is w», and the brightness of the image
at the point (w;, >) is proportional to the magnitude of the transform X(jw,, jw>) of the
image in Figure 6.2(a). Similarly, the phase of this transform is depicted in Figure 6.2(c).
Figure 6.2(d) is the result of setting the phase [Figure 6.2(c)] of X(jw,, jw>) to zero (with-
out changing its magnitude) and inverse transforming. In Figure 6.2(¢) the magnitude of
X(jw, jwy) was set equal to 1, but the phase was kept unchanged from what it was in
Figure 6.2(c). Finally, in Figure 6.2(f) we have depicted the image obtained by inverse
transforming the function obtained by using the phase in Figure 6.2(c) and the magnitude
of the transform of a completely different image—the picture shown in Figure 6.2(g)!
These figures clearly illustrate the importance of phase in representing images.
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Figure 6.2 (a) The image shown in Figure 1.4;
(b) magnitude of the two-dimensional Fourier
transform of (a); (c) phase of the Fourier trans-
form of (a); (d) picture whose Fourier transform
has magnitude as in (b) and phase equal to zero:
(e) picture whose Fourier transform has magnitude
equal to 1 and phase as in (c); () picture whose
Fourier transform has phase as in (c) and magni-
tude equal to that of the transform of the picture
shown in (g).

6.2 THE MAGNITUDE-PHASE REPRESENTATION
OF THE FREQUENCY RESPONSE OF LTI SYSTEMS

From the convolution property for continuous-time Fourier transforms, the transform
Y(jw) of the output of an LTI system is related to the transform X(jw) of the input to the
system by the equation

Y(jw) = H(jw)X(jw),

where H(jw) is the frequency response of the system—i.e., the Fourier transform of the
system’s impulse response. Similarly, in discrete time, the Fourier transforms of the input
X(e’”) and ouput Y(e/®) of an LTI system with frequency response H(e/*) are related by

Y(e/) = H(e/)X(e/®). (6.4)

Thus, the effect that an LTI system has on the input is to change the complex ampli-
tude of each of the frequency components of the signal. By looking at this effect in terms
of the magnitude-phase representation, we can understand the nature of the effect in more
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of a particular response curve doesn’t change if the frequency is scaled. (See Problem
6.30.) Furthermore for continuous-time LTI systems described by differential equations,
an approximate sketch of the log magnitude vs. log frequency can often be easily obtained
through the use of asymptotes. In Section 6.5, we will illustrate this by developing sim-
ple piecewise-linear approximate Bode plots for first- and second-order continuous-time
systems.

In discrete time, the magnitudes of Fourier transforms and frequency responses are
often displayed in dB for the same reasons that they are in continuous time. However,
in discrete time a logarithmic frequency scale is not typically used, since the range of
frequencies to be considered is always limited and the advantage found for differential
equations (i.e., linear asymptotes) does not apply to difference equations. Typical graphi-
cal representations of the magnitude and phase of a discrete-time frequency response are
shown in Figure 6.9. Here, we have plotted <H(e/®) in radians and |[H(e/?)| in decibels
[i.e., 20 log,y |H(e/®)[] as functions of w. Note that for A[n real, we act eed plot

H(e/?) only for0 = w = m, b in this case the symmetry property of the Fourier
mﬁlam H(e/®) for =m = @ = 0 using the relations
H(e/®)| = (HSe“f‘”) and {Hse'f‘“! = '{HS& Furthermore, we need not consider
values of jw| greater than ar, because of the periodicity of H(e/).
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Figure 6.9 Typical graphical representations of the magnitude and phase of
a discrete-time frequency response H(e').

As emphasized in this section, a logarithmic amplitude scale is often useful and
important. However, there are many situations in which it is convenient to use a linear
amplitude scale. For example, in discussing ideal filters for which the magnitude of the
frequency response is a nonzero constant over some frequency bands and zero over others,
a linear amplitude scale is more appropriate. Thus, we have introduced both linear and
logarithmic graphical representations for the magnitude of the Fourier transform and will
use each as appropriate.

6.3 TIME-DOMAIN PROPERTIES OF IDEAL FREQUENCY-SELECTIVE FILTERS

In Chapter 3, we introduced the class of frequency-selective filters, i.e., LTI systems with
frequency responses chosen so as to pass one or several bands of frequencies with little or
no attenuation and to stop or significantly attenuate frequencies outside those bands. As
we discussed in Chapters 3, 4, and 5, there are a number of issues of importance that arise
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Figure 6.13 Impulse response of an ideal lowpass filter with magnitude
and phase shown in Figure 6.11,
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The step responses s(¢) and s[n] of the ideal lowpass filters in continuous time and
discrete time are displayed in Figure 6.14. In both cases, we note that the step responses
exhibit several characteristics that may not be desirable. In particular, for these filters,
the step responses overshoot their long-term final values and exhibit oscillatory behavior,
frequently referred to as ringing. Also, recall that the step response is the running integral

or sum of the impulse response —i.e.,

t
s(1) :J h(T)dr,

sfnl = > himl.

m= —ow

s(t)

Faping

iy
=
m i
—— /\\ufc/ |
Mon-cavsal_ s, Mz Aome t
(a)

4.-='=-o!o._'=nl!o.“_-ff!' 'I

I3
902 - “‘(.rq/k

(b)

Figure 6.14 (a) Step response of a continuous-time ideal lowpass filter;
(b) step response of a discrete-time ideal lowpass filter.
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Since the impulse responses for the ideal filters have main lobes extending from —/w,
to +7/w,, the step responses undergo their most significant change in value over this

time interval. That is, the so-called rise time of the step response, a rough measure of the

response time of the filter, is also inversely related to the bandwidth of the filter.

istics of ideal filters are not always desirable in practice. For example, in
many filtering contexts, the signals to be separated do not always lie in totally disjoint

frequenc¥ bands. A typical situation might be that depicted in Figure 6.15, where the

arc attenuated. er wit
referable when filtering the

a gradual transition from passband to stopband 18 generally
superposition of signals with overlapping spectra.
e e

X(jw)
Xo(jw)

\ .

X ()

Figure 6.15 Two spectra that are
\/ w  slightly overlapping.

Anotherconsideration is suggested by examining the step responses of ideal lowpass
filters, shown in Figure 6.14. For beth continucus time and discrete time, the step response
asymptotically approaches a constant equal to the value of the step. In the vicinity of the
discontinuity, however, it overshoots this valug and exhibits rineine. In some si._al
this time-domain behavior may be undesira

T e, CVCh 11l Cascs where the 1aeal frequency-selective characteristics are de-

sirable, they may not be attainable. For example, from eqs. (6.18) and (6.19) and Fig-
ure 6.12, it is evident that the ideal lowpass filter is noncausal. When filtering is to be

Spectra of two signals overlap slightly. In such a case, we may wish {0 tradg off the fi- _
delity with which the filter preserves one of these signals—say, x(#)—against the level

urther consideration that

selective filter, the more complicated or costly the implementation becomes, whether in
terms of components such as resistors, capacitors, and operational amplifiers in continn-
ous time or in terms of memory registers, multipliers, and adders in discrete time. In manv
contexts, a precise filter characteristic may not be essential and a simrie tilter will suffice.
For all of these reasons, nonideal filters are ol ot considerable prac™cimmper wiice.
and the characteristics of such filters arc frequently specified or guantivics in te, s of
several parameters in both the frequency and time domain. F-st, becau..c the mag-itude
characteristics of the ideal frequency-selective filter may be unachieva"le or undes; able.

motivates providing some flexibility in the filter characteristics is ease of implementation.
In general, the more precisely we try to approximate or implement an ideal frequency-

R
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it is preferable to allow some flexibility in the behavior of the filter in the passband and
in the stopband, as well as to permit a more gradual transition between the passband and
stopband, as opposed to the abrupt transition characteristic of ideal filters. For example,
in the case of lowpass filters, the specifications may allow some deviation from unity gain
in the passband and from zero gain in the stopband, as well as including both a passband
edge and stopband edge with a transition band between them. Thus, specifications for a
continuous-time lowpass filter are often stated to require the magnitude of the frequency
response of the filter to be restricted to the nonshaded area indicated in Figure 6.16. In
this figure, a deviation from unity of plus and minus &, is allowed in the passband, and a
deviation of 6, from zero is allowed in the stopband. The amount by which the frequency
response differs from unity in the passband is referred to as the passband ripple, and the
amount by which it deviates from zero in the stopband is referred to as the stopband ripple.
The frequency w, is referred to as the passhand edge and w; as the stopband edge. The
frequency range from w, to w; is provided for the transition from passband to stopband
and is referred to as the transition band. Similar definitions apply to discrete-time lowpass
filters, as well as to other continuous- and discrete-time frequency-selective filters.

IH(jo)| p.u'?'n -S}ccyf«f'cb‘a an fﬂ-if o/cz‘m‘l-)n

+ 8, s
- 61 F _’ > 1
A
o \ Figure 6.16 Tolerances for the
Passband | Transition | Stopband magnitude characteristic of a lowpass
: oo filter. The allowable passhand ripple
! N is 8 and stopband ripple is &,. The
9 + | Are dashed curve illustrates one possible
g w‘p U;S”* ~=STSmm—-esZiEE o frequency response that stays within

the tolerable limits.

In addition to the specification of magnitude characteristics in the frequency domain,
in some cases the specification of phase characteristics is also important. In particular, a
linear or nearly linear phase characteristic over the passband of the filter is frequently
desirable. for Me é‘)‘}Okic‘c’n

To control the time-domain behavior, specifications are frequently imposed on the
step response of a filter. As illustrated in Figure 6.17, one quantity often of interest is the
rise time #, of the step response—i.e., the interval over which the step response rises toward
its final value. In addition, the presence or absence of oscillatory behavior, or ringing, in the
step response is often of importance. If such ringing is present, then there are three other
quantities that are often used to characterize the nature of these oscillations: the overshoot
A of the final value of the step response, the ringing frequency w,, and the settling time
t,—i.e., the time required for the step response to settle to within a specified tolerance of
its final value.

For nonideal lowpass filters, a trade-off may be observed between the width of the
transition band (a frequency-domain characteristic) and the settling time of the step re-
sponse (a time-domain characteristic). The following example illustrates this trade-off.
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Figure 6.17  Step response of a continuous-time lowpass filter, indicating
the rise time f;, overshoot A, ringing frequency w,, and settling time t,—i.e.,
the time at which the step response settles to within +§ of its final value.

Example 6.3

Let us consider two specific lowpass filters designed to have a cutoff frequency of 500
Hz. Each filter has a fifth-order rational frequency response and a real-valued impulse
response. The two filters are of specific types, one referred to as Butterworth filters
and the other as elliptic filters. Both of these classes of filters are frequently used in
practice,

The magnitudes of the frequency responses of the two filters are plotted (versus
frequency measured in Hertz) in Figure 6.18(a). We take the transition band of each
filter as the region around the cutoff frequency (500 Hz) where the frequency response
magnitude is neither within .05 of unity magnitude (the passband ripple) nor within .05
of zero magnitude (the stopband ripple). From Figure 6.18(a), it can be seen that the
transition band of the Butterworth filter is wider than the transition band of the elliptic
filter.

The price paid for the narrower transition band of the elliptic filter may be observed
in Figure 6.18(b), in which the step responses of both filters are displayed. We see that
the ringing in the elliptic filter’s step response is more prominent than for the Butterworth
step response. In particular, the settling time for the step response is longer in the case
of the elliptic filter.

The consideration of the trade-offs between time-domain and frequency-domain
characteristics and of other issues such as the complexity and cost of filters forms the
core of the important field of filter design. In the next few sections, and in several of the
problems at the end of the chapter, we provide additional examples of LTI systems and
filters and their time- and frequency-domain characteristics.
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Example of a fifth-order Butterworth filter and a fifth-order

elliptic filter designed to have the same passband and stopband ripple and
the same cutoff frequency: (a) magnitudes of the frequency responses plotted

versus frequency measured in Hertz; (b) step responses.
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then [except for a scale factor of k on x(r)] the equation of motion for the system of Figure
6.21 reduces to eq. (6.31).
The frequency response for the second-order system of eq. (6.31) is

a
Con "

He) = =2 H(jw) - z . 6.33)
S*e tya,rt &) (9) = GV + Hw,Go) + o} (
The denominator of H(jw) can be factored to yield
2
w
Hejo) =2 - :
(J (Jo — c1)(jow — ¢2)
where
) = ﬁgwn 2z wn\“f' =, (634)

ST =2 = 1.

For { # 1, ¢; and ¢, are unequal, and we can perform a partial-fraction expansion of the
form

e i M 635)

jo—c¢  jo—c

where

wy
o =

=1
From eq. (6.35), the corresponding impulse response for the system is

h(r) - M[F(-H s e(-zl]u(”. ( I?/)

(6.36)

om‘/ ‘\?Z;;J

If{ = 1,thenc; = ¢2 = —w,, and
g2
H(jw) = ————. 6.38
e (jo + w,)? L
From Table 4.2, we find that in this case the impulse response is CMJA,CA} J,\?eq(
h(t) = wite™ "' u(r). ()'-_-./) (6.39)

Note from egs. (6.37) and (6.39), that h(1)/w, is a function of w,. Furthermore,
eq. (6.33) can be rewritten as

) e o, Lt # &H(jw) = . 1

(jwlw,) + 2 (jwlw,) + 1

from which we see that the frequency response is a function of w/w,. Thus, changing w,
is essentially identical to a time and frequency scaling.

The parameter  is referred to as the damping ratio and the parameter w,, as the
undamped natural frequency. The motivation for this terminology becomes clear when

Bk » :
Ah "= Ga) s ayGar+y

and XCat) «—>
XGs/a)/1a)
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we take a more detailed look at the impulse response and the step response of a second- ‘
order system. First, from eq. (6.35), we see that for 0 < ¢ < 1, ¢ and ¢ are complex, and

we can rewrite the imeulse Iesponse in eq. (6.37) in the form

(6.40)

< Cr - "3“*}4};;‘)*(") = {exp J(@n /1 = 2211 = expl= j(wu/T = 22)Tu(r) (0 < ?C l )

G =-Yha, 5! G ’3 G in@) /1= T

/1-.:63-3_},))?;; =

Thus, for . < |. the second-order system has an impulse response that has
- v - . - . T —
damped oscillatory behavior, and in this case the system is referred to as being under-

m—eéaf If Lozl both ¢ and c; are real and negative, and the impulse response 1s the
ifference between two decaying exponentials. In this case, the system is"g' verdamged.,The

case of £ =1 when ¢; = ¢, is called thecritically damped case. The impulse responses
zmulhpiled‘by l/w,) for second-order systems wuif ﬂléerent values of { are plotted in

Figure 6.22(a).
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Figure 6.23 Bode plots for second-order systems with several different
values of damping ratio ¢£.

Therefore, the low-frequency asymptote of the log magnitude is the 0-dB line, while the
high-frequency asymptote [given by eq. (6.44)] has a slope of =40 dB per decade; i.e.,
|H(jw)| decreases by 40 dB for every increase in w of a factor of 10. Also, note that the
two straight-line asymptotes meet at the point w = w,. Thus, we obtain a straight-line
approximation to the log magnitude by using the approximation given in eq. (6.44) for
w = w,. For this reason, w, is referred to as the break frequency of the second-order
svstem. This approximation is also plotted (as a dashed line) in Figure 6.23.

We can, in addition, obtain a straight-line approximation to <H (jw), whose exact
expression can be cbtained from eq. (6.33):

‘*‘-",.( ! LH(jw) = —tan”' (I :2_‘.‘:((2';(2;:1))1) s
' @J D ? W<, ( (J‘
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Figure 6.25 Bode plot for system function in Example 6.5: (a) magnitude:
(b) phase.
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