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n=-—w

For z = e/® with  real (i.e., with |z| = 1), the summation in eq. (10.2) corresponds to
the discrete-time Fourier transform of A[n]. More generally, when |z is not restricted to
unity, the summation is referred to as the z-transform of h[n].

The z-transform of a general discrete-time signal x[n] is defined as'

+oo

X@ 2 >l (10.3)

n=—c

where z is a complex variable. For convenience, the z-transform of x[r] will sometimes
be denoted as Z{x[n]} and the relationship between x[n] and its z-transform indicated as

sl s S (10.4)

In Chapter 9, we considered a number of important relationships between the
Laplace transform and the Fourier transform for continuous-time signals. In a similar, but
not identical, way, there are a number of important relationships between the z-transform
and the discrete-time Fourier transform. To explore these relationships, we express the
complex variable z in polar form as

z = rel®, (10.5)
with r as the magnitude of z and w as the angle of z. In terms of ¥ and w, eq. (10.3) becomes
X(rel®) = i x[n](re/)™",

or equivalently, #
X(re/®) = f: {alnly e 20, (10.6)

From eq. (10.6), we see that X(re/?) is the Fourier transform of the sequence x[n]
multiplied by a real exponential r~"; that is,

X(re/®) = F{x[nlr™"}. (10.7)

The exponential weighting r~" may be decaying or growing with increasing n, depending
on whether r is greater than or less than unity. We note in particular that, for r = 1, or

'The z-transform defined in eq. (10.3) is often referred to as the bilateral z-transform, to distinguish
it from the unilateral z-transform, which we develop in Section 10.9. The bilateral z-transform involves a
summation from — to 42, while the unilateral transform has a form similar to eq. (10.3), but with summation
limits from O to +=. Since we are mostly concerned with the bilateral z-transform, we will refer to X(z) as
defined in eq. (10.3) simply as the z-transform, except in Section 10.9, in which we use the words “unilateral”
and “bilateral” to avoid ambiguity.
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Heaca ‘&Hf by
£ equivalently, |z| = 1, eq. (10.3) reduces to ourier transform; that is,
Z ~Fransform &
m.n FTITRY S
7}“' ;b‘.;é The relationship between the z-transform and Fourier transform for discrete-time
als parallels closely the corresponding discussion in Section 9.1 for continuous-time
signals, but with some important differences. In the continuous-time case, the Laplace
transform reduces to the Fourier transform when the real part of the transform variable is
zero. Interpreted in terms of the s-plane, this means that the Laplace transform reduces to
the Fourier transform on the imaginary axis (i.e., for s = jw). In contrast, the z-transform
reduces to the Fourier transform when the magnitude of the transform variable z is unity
(i.e, for z = €/¢). Thus, the z-transform reduces to the Fourier transform on the contour
in the complex z-plane corresponding to a circle with a radius of unity, as indicated in
Figure 10.1. This circle in the z-plane is referred to as the unit circle and plays a role in
the discussion of the z-transform similar to the role of the imaginary axis in the s-plane for

the Laplace transform. oe

Rog & {2 e’“ed : 3 X(e"") 'éwxfm‘l e.—'m” Ch;)]‘
Sfor F—;’hyj’” Im i :

X@| = X@*) = Falnl} (10.8)

Unit circler
K Figure 10.1  Complex z-plane. The
z-transform reduces to the Fourier
teo transform for values of z on the unit
4 o 4a circle.
= i Z € é : dX@ =2 3 xmiz-? (,,,,3)
N=-00

J(o)- zZ- }7’” h From eq. (10.7), we see that, for convergence of the z-transform, we require that the
Fourier transform of x[n]r~" converge. For any specific sequence x[n], we would expect
this convergence for some values of r and not for others. In general, the z-transform of a
sequence has associated with it a range of values of z for which X(z) converges. As with
the Laplace transform, this range of values is referred to as the region of convergence
1 (ROC). If the ROC includes the unit circle, then the Fourier transform also converges. To
illustrate the z-transform and the associated region of convergence, let us consider several
examples.

Example 10.1
Consider the signal x[n] = a"u[n]. Then, from eq. (10.3),
4 -3
X(Z) - z anu[n]zﬂe - Z(azfl)n‘
n=-—m n=0

For convergence of X(z), we require that > |az™'|” < =, Consequently, the region
of convergence isthe range of values of z for which jaz"!| < 1, orequivalently, |z| > |al.

MM—/( J[f‘ cad Lo _r‘,.u'n c(;,‘ay /M/Mﬂ ,-.n§ /0 2 )b‘q#‘ ‘

)

Roé¢ = Roq 2 (2Z=re®cd : S b1 K <o J o))

N=-—00
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Then
- = =" n 1 Z
(Cf) *Exmﬂe 5.1 X@ = DY = —— = =, 4>l (10.9)
n=0 L z—a
X ¢ (J‘”) - , Thus, the z-transform for this signal is well-defined for any value of a, with an ROC
- determined by the magnitude of a according to eq. (10.9). For example, for a = 1, x[n]
/- a £ is the unit step sequence with z-transform

1
X(z) = =0 ] > 1.

We see that the z-transform in eq. (10.9) is a rational function. Consequently, just
as with rational Laplace transforms, the z-transform can be characterized by its zeros (the
roots of the numerator polynomial) and its poles (the roots of the denominator polyno-
mial). For this example, there is one zero, at z = 0, and one pole, at z = a. The pole-zero
plot and the region of convergence for Example 10.1 are shown in Figure 10.2 for a value
of a between 0 and 1. For |a| > 1, the ROC does not include the unit circle, consistent
with the fact that, for these values of a, the Fourier transform of a”u[n] does not converge.

I9m

/ Unit Circle

z-plane

Rod = §zed : 121>141}

Re

Figure 10.2  Pole-zero plot and region of convergence for Example 10.1 for
0<a<1.

Example 10.2

Now let x[n] = —a"u[—n — 1]. Then

-1
X(2) = — Z a'u[-n—1]z7" = — Z ok o

= e (10.10)

_ _Za—nzn = I*Z(G_IZ)”.
n=1 n=0

If |a 'z < 1, or equivalently, |z| < |a/, the sum in eq. (10.10) converges and

1 1 z
- = |z < |al. (10.11)

l—alz 1 —az’! 7—

X(z) = 1

The pole-zero plot and region of convergence for this example are shown in Fig-
ure 10.3 for a value of a between 0 and 1.
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Im

Unit Circle

z-plane

fzed il2l<ral}

Figure 10.3 Pole-zero plot and region of convergence for Example 10.2 for
0<a<.

Comparing eqs. (10.9) and (10.11), and Figures 10.2 and 10.3, we see that the al-

gebraic expression for X(z) and the corresponding pole-zero plot are identical in Exam-

ples 10.1 and 10.2, and the z-transforms differ only in their regions of convergence. Thus,
as with the Laplace transform, specification of the z-transform requires both the algebraic
expression and the region of convergence. Also, in both examples, the sequences were
exponentials and the resulting z-transforms were rational. In fact, as further suggested by
the following examples, X(z) will be rational whenever x[#] is a linear combination of real

or complex exponentials:

Example 10.3

Let us consider a signal that is the sum of two real exponentials:
1Y 1Y
x[n] = 7(5) uln] — 6 (2) ufnl. (10.12)

The z-transform is then

X(2) i [7(%) uln] — 6(%) u[n]} z

n=-m

) =7 i (%) ulnlz "~ 6 Z ( ) unlz™

h=—w n=—0w

1 B n +o0 1 _ n
(§z ‘) ~6;0(2z 1) (10.13)

Il
1
a
uMs
(=]

7 6 1 — %Z_l
B P = U T W e (10.14)
3 3 5 :
2z —2)
) m (10.15)

For convergence of X(z), both sums in eq. (10.13) must converge, which requires
- that both [(1/3)z7 1] < 1and |(1/2)z7!| < 1, or equivalently, |z| > 1/3 and |¢] > 1/2. Thus,
the region of convergence is |z| > 1/2.
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when appropriate, we will use that form in our discussion. However, reference to the poles
and zeros is always in terms of the roots of the numerator and denominator expressed as
polynomials in z. Also, it is sometimes convenient to refer to X(z), written as a ratio of
polynomials in z, as having poles at infinity if the degree of the numerator exceeds the
degree of the denominator or zeros at infinity if the numerator is of smaller degree than
the denominator.

10.2 THE REGION OF CONVERGENCE FOR THE z-TRANSFORM

In Chapter 9, we saw that there were specific properties of the region of convergence
of the Laplace transform for different classes of signals and that understanding these
properties led to further insights about the transform. In a similar manner, we explore
a number of properties of the region of convergence for the z-transform. Each of the
following properties and its justification closely parallel the corresponding property in
Section 9.2.

(7 ) Property 1: The ROC of X(z) consists of a ring in the z-plane centered about the
origin.

Pra f > Farsk, preve fmrq‘* es. &4, 8. Then, his 4o Obiious. .
. This property is illustrated in Figure 10.6 and follows from the fact that the ROC

Wk i consists of those values of z = re/® for which x[n]r~" has a Fourier transform that con-

Hf!—‘- verges. That is, the ROC of the z-transform of x[n] consists of the values of z for which

e l’)' x[n]r~" is absolutely summable:*

i [x[n]lr™ <. (10.21)
| Ay 17 ; od = Rod
Prepsriy | /}m d
g G Pewar B ORD.

1 A

~ —t @, Figure 10.6 ROC as aring in the
b ' & J z-plane. In some cases, the inner
\ AR ! boundary can extend inward to the ori-
i gin, in which case the ROC becomes a
S o disc. In other cases, the outer bound-

ary can extend outward to infinity.

2For a thorough treatment of the mathematical properties of z-transforms, see R.V. Churchill and J.W.
Brown, Complex Variables and Applications (5th ed.) (New York: McGraw-Hill, 1990), and E. I. Jury, Theory
and Application of the z-Transform Method (Malabar, FL: R. E. Krieger Pub. Co., 1982).
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/ ﬂ R=32| Property 5: If x[n] is a left-sided sequence, and if the circle |z| = rg is in the ROC,
- then all values of z for which 0 < |z| < rq will also be in the ROC. >
-k \ % ;

Again, this property closely parallels the corresponding property for Laplace trans-
forms, and the proof of it and its basis in intuition are similar to the proof and intuition
for Property 4. In general, for left-sided sequences, from eq. (10.3), the summation for the
z-transform will be of the form

Ny

X(2)= > xlnc™", (10.27)

n=-—o0

where N, may be positive or negative. If N; is positive, then eq. (10.27) includes negative
powers of z, which become unbounded as |z| — 0. Consequently, for left-sided sequences,
the ROC will not in general include z = 0. However, if N; = 0 (so that x[»] = 0 for all

n > 0), the ROC will include z = 0.
P.q.laa. iy L ¢ rod

Property 6: If x[n] is two sided, and if the circle |z|_ ro 1s in the ROC, then the
ROC will consist of a ring in the z-plane that includes the circle [z] = ro. X
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Thus, convergence is dependent only on r = || and not on w. Consequently, if a
specific value of z is in the ROC, then all values of z on the same circle (i.e., with the
same magnitude) will be in the ROC. This by itself guarantees that the ROC will con-
sist of concentric rings. As we will see when we discuss Property 6, the ROC must in
fact consist of only a single ring. In some cases the inner boundary of the ROC may ex-
tend inward to the origin, and in some cases the outer boundary may extend outward to

infinity.

Property 2: The ROC does not contain any poles.

As with the Laplace transform, this property is simply a consequence of the fact that
at a pole X(z) is infinite and therefore, by definition, does not converge.

Property 3: If x[n] is of finite duration, then the ROC is the entire z-plane, except
possibly z = 0 and/or z = .

A finite-duration sequence has only a finite number of nonzero values, extending,
say, fromn = N, to n = N, where N; and N, are finite. Thus, the z-transform is the sum

of a finite number of terms; that is,

Ny
X@@) = > xnlz " (10.22)

n=N;

For z not equal to zero or infinity, each term in the sum will be finite, and conse-
quently, X(z) will converge. If N; is negative and N, positive, so that x[n] has nonzero
values both for n < 0 and n > 0, then the summation includes terms with both positive
powers of z and negative powers of z. As |z] — 0, terms involving negative powers of
z become unbounded, and as |z| — o, terms involving positive powers of z become un-
bounded. Consequently, for Ny negative and N positive, the ROC does not include z = 0
or z = o, If Nj is zero or positive, there are only negative powers of z in eq. (10.22), and
consequently, the ROC includes z = . If N, is zero or negative, there are only positive
powers of z in eq. (10.22), and consequently, the ROC includes z = 0.

Example 10.5
Consider the unit impulse signal 8[#]. Its z-transform is given by

8lnl < > slnl " = 1, (10.23)

n=-x

with an ROC consisting of the entire z-plane, including z = 0 and z = . On the other
hand, consider the delayed unit impulse 8[n — 1], for which

[n71]<——>'>_16n71] -l (10.24)
~ " . R = J-l d‘i—
FR Y /Ah-J lxu/uﬁ
Stm+1) — 2
v welf - /[no-/ for aff

_fdop‘)& W‘J‘
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Since x[n]is of finite length, it follows from Property 3 that the ROC includes the entire z-

plane except possibly the origin and/or infinity. In fact, from our discussion of Property 3,

since x[n] is zero for n < 0, the ROC will extend to infinity. However, since x[n] is

nonzero for some positive values of n, the ROC will not include the origin. This is evident

from eq. (10.28), from which we see that there is a pole of order N —1latz = 0. The N
A roots of the numerator polynomial are at

- 9 ”

(P‘Q) )=« = 2% = aef@ M | =0,1,...,N-1 (10.29)
The root for k = 0 cancels the pole at z = a. Consequently, there are no poles other than
at the origin. The remaining zeros are at

2 o PN, = N =L (10.30)
The pole-zero pattern is shown in Figure 10.9.
Im
z-plane
(N-1)st order pole Unit circle
Re
a
Figure 10.9  Pole-zero pattern for Example 10.6 with ¥ = 16 and
0 < a < 1. The region of convergence for this example consists of all
values of z except z = 0.
Example 10.7
Let
x[n] = b, b>0. (10.31)
This two-sided sequence is illustrated in Figure 10.10, for both b < 1 and b > L. The
z-transform for the sequence can be obtained by expressing it as the sum of a right-sided
and a left-sided sequence. We have
x[n] = b"u[n] + b "u[—n —1]. (10.32)
From Example 10.1,
Z 1
bn“[n] — =52 1 |Z| > b, (10.33)
and from Example 10.2,
_" 2 -1 1
b "u[-n—1] «— g fz|<5. (10.34)
) /
> xXe@re L i /
4 . el - o z P
_ (_bz[ I_'L’z' " II<‘
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In discussing the Laplace transform in Chapter 9, we remarked that for a rational
Laplace transform, the ROC is always bounded by poles or infinity. We observe that in
the foregoing examples a similar statement applies to the z-transform, and in fact, this is
always true:

Property 7: If the z-transform X(z) of x[n] is rational, then its ROC is bounded by
poles or extends to infinity.

Combining Property 7 with Properties 4 and 5, we have

Property 8: If the z-transform X(z) of x[r] is rational, and if x[#] is right sided, then
the ROC is the region in the z-plane outside the outermost pole—i.e., outside the circle
of radius equal to the largest magnitude of the poles of X(z). Furthermore, if x[n] is
causal (i.e., if it is right sided and equal to 0 for n < (), then the ROC also includes
7 =,

Thus, for right-sided sequences with rational transforms, the poles are all closer to
the origin than is any point in the ROC.

Property 9: If the z-transform X(z) of x[n] is rational, and if x[n] is left sided, then
the ROC is the region in the z-plane inside the innermost nonzero pole—i.e., inside the
circle of radius equal to the smallest magnitude of the poles of X(z) other than any at
z = 0 and extending inward to and possibly including z = 0. In particular, if x[n] is
anticausal (i.e., if it is left sided and equal to 0 for n > 0), then the ROC also includes
z=0.

Thus, for left-sided sequences, the poles of X(z) other than any at z = 0 are farther
from the origin than is any point in the ROC.

For a given pole-zero pattern, or equivalently, a given rational algebraic expression
X(z), there are a limited number of different ROCs that are consistent with the preceding
properties. To illustrate how different ROCs can be associated with the same pole-zero
pattern, we present the following example, which closely parallels Example 9.8.

Example 10.8
Let us consider all of the possible ROCs that can be connected with the function

1

fe 2 X@ =g P (10.37)
2

The associated pole-zero pattern is shown in Figure 10.12(a). Based on our discussion
in this section, there are three possible ROCs that can be associated with this algebraic
expression for the z-transform. These ROCs are indicated in Fi, o :
corresponds to a different sequence. Figure 10.12(b) is associ TUO ;:"' JeJ \f€$.
sequence, Figure 10.12(c) with a left-sided sequence, and Figure 10.12(d) o T &
sided sequence. Since Figure 10J12(@ is the only one for which the ROC.is
unit circle, the sequence corregsonding to this choice of ROC is the on
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fojxd_- Sraction Expangion

this example, the partial-frdction expansion, expressed in polynomials in z~ L is
1 2
X(z) = + ; 10.43
i o A A ;‘3’>% (1049

Thus, x[n] is the sum of two terms, one with z-transform 1/[1 — (1/4)z7"] and the
other with z-transform 2/[1 — (1/3)z™']. In order to determine the inverse z-transform of
each of these individual terms, we must specify the ROC associated with each. Since
the ROC for X(2) is outside the outermost pole, the ROC for each individual term in
eq. (10.43) must also be outside the pole associated with that term. That is, the ROC
for each term consists of all points with magnitude greater than the magnitude of the

corresponding pole. Thus,

x[n] = xi[n] + xz[n], (10.44)
where
z 1 !
xi[n] «— e |z] > i (10.45)
z 2 I
i) <= el >3- (10.46)
3

From Example 10.1, we can identify by inspection that

xin] = (%) uln] (1047)
and
x[n] = 2(%) uln], (10.48)
and thus,
1 n 1 n
x[n] = (4) uln] + 2(5) u[nl. (10.49)

Example 10.10

Now let us consider the same algebraic expression for X(z) as in eq. (10.42), but with
the ROC for X(z) as 1/4 < |z| < 1/3. Equation (10.43) is still a valid partial-fraction ex-
pansion of the algebraic expression for X(z), but the ROC associated with the individual
terms will change. In particular, since the ROC for X(z) is outside the pole at z = 1/4,
the ROC corresponding to this term in eq. (10.43) is also outside the pole and consists of
all points with magnitude greater than 1/4, as it did in the previous example. However,
since in this example the ROC for X(z) is inside the pole at z = 1/3, that is, since the
points in the ROC all have magnitude less than 1/3, the ROC corresponding to this term
must also lie inside this pole. Thus, the z-transform pairs for the individual components

in eq. (10.44) are

b 1 |
xi[n] «<— =g (10.50)

— 11
42
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and

2

1 — 1z

|4 < 3. (10.51)

X2[n] «—
The signal x,[#] remains as in eq. (10.47), while from Example 10.2, we can identify

x[n] = —2(%)” uf=n =1 (10.52)

so that

x[n] = (1) uln] — 2(;) == 1]. (10.53)

5

Example 10.11

Finally, consider X(z) as in eq. (10.42), but now with the ROC |z| < 1/4. In this case the
ROC is inside both poles, i.e., the points in the ROC all have magnitude smaller than
either of the poles at z = 1/3 or z = 1/4. Consequently the ROC for each term in the
partial-fraction expansion in eq. (10.43) must also lie inside the corresponding pole. As
a result, the z-transform pair for x,[n] is given by
z
xi[n] «— 1_1%21, 7| < %,

(10.54)

while the z-transform pair for x;[n] is given by eq. (10.51). Applying the result of Ex-
ample 10.2 to eq. (10.54), we find that

xi[n] = —(i) u[—n— 1]’,

x[n] = —G)”u[—n =i} =~ 2(%) ul—n—1].

The foregoing examples illustrate the basic procedure of using partial-fraction ex-
pansions to determine inverse z-transforms. As with the corresponding method for the
Laplace transform, the procedure relies on expressing the z-transform as a linear com-
bination of simpler terms. The inverse transform of each term can then be obtained by
inspection. In particular, suppose that the partial-fraction expansion of X(z) is of the form

so that

X@) = > - (10.55)

T
: ll a;z

so that the inverse transform of X(z) equals the sum of the inverse transforms of the individ-
ual terms in the equation. If the ROC of X(z) is outside the pole at z = a;, the inverse trans-
form of the corresponding term in eq. (10.55) is A;a’u[n]. On the other hand, if the ROC
of X(z) is inside the pole at z = q;, the inverse transform of this term is —A;alu[—n — 1].
In general, the partial-fraction expansion of a rational transform may include terms in
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0!

T

1

= = I e ati ot (10.58)

The series expansion of eq. (10.58) converges, since |z| > |a], or equivalently, [az '| < 1.
Comparing this equation with the definition of the z-transform in equation (10.3), we see,
by matching terms in powers of z, that x[n] = 0, n < 0; x[0] = 1; x[1] = a; x[2] = a%;
and in general, x[n] = a"u[n], which is consistent with Example 10.1.

If, instead, the ROC of X(z) is specified as |z| < |a| or, equivalently, |az~!| > 1,

Z @ z"'” then the power-series expansion for 1/(1 — az~') in eq. (10.58) does not converge. How-

- g

ever, we can obtain a convergent power series by long division again:

*Q_EZ*G_ZZZ_"'

—az ' +1) 1
1— a'z ’
a'z
or
1

e el (10.59)

1—-az!
In this case, then, x[n] = 0, n = 0; and x[—1] = —a™!, x[-2] = —a”2 ... that s,
x[n] = —a"u[—n — 1]. This is consistent with Example 10.2.

The power-series expansion method for obtaining the inverse z-transform is particu-
larly useful for nonrational z-transforms, which we illustrate with the following example:

Example 10.14

Consider the z-transform
X(z) = log(1 + az’"), |z > |al (10.60)

With |z| > |al, or, equivalently, |[az™!| < 1, eq. (10.60) can be expanded in a power series
using the Taylor’s series expansion

® (_1ytlyn
log(1 +v) = > (1)% <L (10.61)

n=|

Applying this to eq. (10.60), we have

e _ 1\t qno-n
K= 5 (ﬁl)—n‘i (10.62)

n=1

from which we can identify

v

" a”
A = CD™H =, n (10.63)

1
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Figure 10.13 (a) Pole and zero
vectors for the geometric determina-
tion of the frequency response for a
first-order system for a value of a be-
twaen 0 and 1; (b) magnitude of the
—n/e frequency response for a = 0.95 and
= 0.5; (c) phase of the frequency
{© I‘BprﬂSE fora = 0.95 and a = 0.5.

the zero at the origin to the unit circle has a constant length of unity and thus has no
effect on the magnitude of H(el®). The phase contributed to (7 by the zero is the
.an"l of thc Zero vector. with respect t to the real axis, which we see is equal to @ of -
0+ ;ﬂhe pole th:c_:tor  has minimum length at w = 0 and mb?%’tomcally inc gt
lcngth as @ increases from zero to 7. “Thus, the magnitude of dxe frequency response Will
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culation of the frequency responses for

a second-order system; (b) magnitude

of the frequency response correspond- -

ing to the reciprocal of the product

of the lengths of the pole vectors for

—T/2 - r =095 and r = 0.75; (c) phase of
the frequency response for r = 0.95
)] and r = 0.75.

along the unit circle fromw = 0 towardw = 7, the length of the vector v, first decreases
and then increases, with a minimum length in the vicinity of the pole location. at w = 0.
This is consistent with the fact that the magnitude of the frequency responsc peaks for@
near 6 when the length of the vector v is small. Based on the behavior of the pole vectors,
it is also evident that as r increases toward unity, the minimum length of the pole vectors
will decrease, causing the frequency response Lo peak more sharply with increasing I'

Also for r.near umty, the anﬁlc. of the vector v, changes sharply for w in the vicinity Of_
i 1 S ind F1gurc 6.29] o
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N
That is, y[#] is the first difference of the séequen?:; x[n]. Since the first-difference opera-
tion is commonly thought of as a discrete-time counterpart to differentiation, eq. (10.83)
can be thought of as the z-transform counterpart of the Laplace transform differentiation
property presented in Section 9.5.7.

Example 10.16

7 Suppose we now consider the inverse of first differencing, namely, accumulation or sum-
X n ]-— oo U E‘n'] mation. Specifically, let w[r] be the running sum of x[n]:

I Z wln] = Z x[k] = uf[n] * x[n]. (10.85)
k=—w
X@) = 12( > a

- a z—l’ - Then, using eq. (10.81) together with the z-transform of the unit step in Example 10.1,
we see that

win) = > x[k] < I_IZ]X(z),] (10.86)

k=—w

with ROC including at least the intersection of R with |z| > 1. Eq. (10.86) is the discrete-
time z-transform counterpart of the integration property in Section 9.5.9.

10.5.8 Differentiation in the z-Domain
If

Z
x[n] «— X(z), with ROC = R,
then

nxfn] <o —222,  with ROC = R (10.87)

This property follows in a straightforward manner by differentiating both sides of the
expression for the z-transform given in eq. (10.3). As an example of the use of this property,
let us apply it to determining the inverse z-transform considered in Example 10.14.

Example 10.17

If
X(z) = log(1 +az™"), |z| > |al, (10.88)
then
_X@ _ _a ' (10.89)
nx[n] 7 o lz| > |a).

By differentiating, we have converted the z-transform to a rational expression. The
inverse z-transform of the right-hand side of eq. (10.89) can be obtained by using Exam-
ple 10.1 together with the time-shifting property, eq. (10.72), set forth in Section 10.5.2.

</”hoJ °f(/o-. F9) 2 X2 = f x[»] z"' vV 2€ R
N=-00
= %— Z: nxfal g™ , ¥V 2eR (fc?i“**ﬂh:e:)

N0
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Specifically, from Example 10.1 and the linearity property,

a(—a)"uln] s |z] > |a]. (10.90)

1+az7!’

Combining this with the time-shifting property yields

n—1 Z az-i
a(—a)" uln—1] «— Tra® 2| > |al.
Consequently,
xinl = L un - 13, (101)

n

Example 10.18

As another example of the use of the differentiation property, consider determining the
inverse z-transform for

az”!

N 10.92)
X(@) 1 —az 2 |z| > la]. (
From Example 10.1,
d'uln] <> — 4> la) (10.93)
1 —az
and hence,
. z d 1 _ az”!
na"uln] <— 2 (1 p——-— ) = A—a lz| > |al. (10.94)
10.5.9 The Initial-Value Theorem
If x[n] = 0, n <0, then
x[0] = wIim X(2). (10.95)

This property follows by considering the limit of each term individually in the ex-
pression for the z-transform, with x[r] zero for n < 0. With this constraint,

o

X(z) = > xnlz™"

n=0

Asz —> o,z " — 0forn >0, whereas forn = 0, z " = 1. Thus, eq. (10.95) follows.
As one consequence of the initial-value theorem, for a causal sequence, if x[0] is
finite, then lim. . X(z) is finite. Consequently, with X(z) expressed as a ratio of polyno-
mials in z, the order of the numerator polynomial cannot be g ~ater than the order of the
denominator polynomial; or, equivalently, the number of finite zeros of X(z) cannot be

1059 The Final Valte Theaem
If xIn] ia causal, and oM foﬂu of G-27) X(2) s inside

(2141, Hhen L‘h xn] = /q“' (/-z')X(Z) Q".ﬂ‘), .
2>/
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