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10.8.1 System Functions for Interconnections of LTI Systems

The system function algebra for analyzing discrete-time block diagrams such as series,
parallel, and feedback interconnections is exactly the same as that for the corresponding
continuous-time systems in Section 9.8.1. For example, the system function for the cascade
of two discrete-time LTI systems is the product of the system functions for the individual
systems in the cascade. Also, consider the feedback interconnection of two systems, as
shown in Figure 10.17. It is relatively involved to determine the difference equation or im-
pulse response for the overall system working directly in the time domain. However, with
the systems and sequences expressed in terms of their z-transforms, the analysis involves
only algebraic equations. The specific equations for the interconnection of Figure 10.17
exactly parallel egs. (9.159)—(9.163), with the final result that the overall system function
for the feedback system of Figure 10.17 is

Y@ =H @E@) Yo _, . H
. = H(z) = : (10.115)
{ E(@)= X(2) —H.(ZJY(z):; X@) 1+ Hi(2)Hx(2)

e[n]
x[n] — O ::[(rf]} » y[n]

PR
N
A

ho[n] Figure 10.17 Feedback intercon-
nection of two systems.

10.8.2 Block Diagram Representations for Causal LTI Systems
Described by Difference Equations and Rational
System Functions

Example 10.29

Suppose we now consider the causal LTI system with system function

1_2:-1 1 gk VG) | (z)
H(z)zlﬁ 7‘]=(1_lzl)(12z ).—"—é) P2y

1
1<

As eq. (10.117) suggests, we can think of this system as the cascade of a system with
system function 1/[1 — (1/4)z7'] and one with system function 1 — 2z~ '. We have il-
lustrated the cascade in Figure 10.19(a), in which we have used the block diagram in
Figure 10.18(a) to represent 1/[1 — (1/4)z"']. We have also represented 1 — 2z ' using
a unit delay, an adder, and a coefficient multiplier. Using the time-shifting property, we
then see that the input v[n] and output v[n] of the system with system function 1 — 2z

{4[‘».‘1— ;fé [»-1] = XIn]
4 7(4!7 > 4[] -24[n-11
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are related by
yln] = v[a] = 2v[n - 1].

While the block diagram in Figure 10.19(a) is certainly a valid representation of
the system ineq. (10.117), it has an inefficiency whose elimination leads to an alternative
block-diagram representation. To see this, note that the input to both unit delay elements
in Figure 10.19(a) is v[n], so that the outputs of these elements are identical; i.e.,

wln] = s[n] = v[n - 1].

Consequently, we need not keep both of these delay elements, and we can simply use
the output of one of them as the signal to be fed to both coefficient multipliers. The result
is the block diagram representation in Figure 10.19(b). Since each unit delay element
requires a memory register to store the preceding value of its input, the representation in
Figure 10.19(b) requires less memory than that in Figure 10.19(a).

x[n]

x[n]

(b)

Figure 10.19  (a) Block-diagram representations for the system in Exam-
ple 10.29; (b) equivalent block-diagram representation using only one unit de-
lay element.

Example 10.30

Next, consider the second-order system function

Y¢)
= =">'<"'c;§10.118)

1 1
1

B3 = =
o (1+ 32701 - {z7") S

oo —
&3

which is also described by the difference equation

1 1
yvin] + Z-"![n = ||| = §_\-[n = 7))} = sk (10.119)
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*

Using the same ideas as in Example 10.28, we obtain the block-diagram representation
for this system shown in Figure 10.20(a). Specifically, since the two system function
blocks in this figure with system function z ' are unit delays, we have

fln] = yln—1],
e[n] = fln—1] = y[n - 2],

so that eq. (10.119) can be rewritten as

il = = 2yln =11+ gy~ 21 + xln),

4
x[n] > @ > y[n]
A
=
<+)4——} < fin] = Yra-4l
A A 2
2—1

[

Figure 10.20 Block-diagram representations for the system in Exam-
ple 10.30: (a) direct form; (b) cascade form; (c) parallel form.
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z <@

x[n] =i=®
) X

block diagrams. Specifically, each block-diagram re resentation of a system can be trans-
lated directl ; Qe mpiementation of the svstem. However,
ength of a computer necessitates quantizing the coefficients in the
llagram and because there 1s numerical roundolt as the algorithm operates, each o
these representations Wil 1ead to an a gorithm that only approximates the penavior of the
original system. Moreover, the errors in each of thmns will be somewhat
different. Because of these differences, considerable effort has been put into examining
the relative merits of the various block-diagram re resentations in terms of their accurac

and sensitivity to guantization effects. FOr d1Scussions of this cu ject. the reader may turn
{0 TNC Tererences on algltal signal processing in the bibliography at the end of the book.

10.9 THE UNILATERAL z-TRANSFORM

(ef) Tl bikatanst

The form of the z-transform considered thus far in this chapter is often referred to as the
bilateral z-transform. As was the case with the Laplace transform, there is an alterna-
tive form, referred to as the unilateral I-transform, that is particularly useful in analyzing
causal systems specified by linear constant-coefficient difference equations WIth nonze
mn‘ i jxslems that are not initially at rest). In this section. we ntroduce
the unilateral z-transform and illustrate Some or 1t properties and uses, paralleling our
discussion of the unilateral Laplace transform in Section 9.9

Sod e ssludis (o
buid “J'%/ Jw gc“-n/aﬁy
Aha .t;)’:d&-_ Awp By PEN PrponsA
Jyfixns. |
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42 ollAfuJ au.? onsa.)

pia Amscferfanfion o
% m&u‘fii



XCw+/3

— gX(z) =>

790 The z-Transform Chap. 10

The unilateral z-transform of a sequence x[n] is defined as

oo

X(z) = > xfn)z™. (10.125)

n=0

As in previous chapters, we adopt a convenient shorthand notation for a signal and its
unilateral z-transform:

xln] <5 X(2) = U2 xfnl). (10.126)

The unilateral z-transform differs from the bilateral transform in that the summation is
carried out only over nonnegative values of 1, whether or not x[n] is zero for n < 0. Thus
the unilateral z-transform of x[n] can be thought of as the bilateral transform of x[n]u[n]
(i.e., x[n] multiplied by a unit step). In particular, then, for any sequence that is zero for
n < 0, the unilateral and bilateral z-transforms will be identical. Referring to the discussion
of regions of convergence in Section 10.2, we also see that, since x[n]u[n] is always a
right-sided sequence, the region of convergence of X(z) is always the exterior of a circle.

Because of the close connection between bilateral and unilateral z-transforms, the
calculation of unilateral transforms proceeds much as for bilateral transforms, with the
caveat that we must take care to limit the range of summation in the transform to n = (.
Similarly, the calculation of inverse unilateral transforms s basically the same as for bilat-
eral transforms, once we take into account the fact that the ROC for a unilateral transform
is always the exterior of a circle.

10.9.1 Examples of Unilateral z-Transforms and Inverse Transforms

Example 10.32

Consider the signal
x[n] = a"u[n]. (10.127)

Since x[n] = 0, n < 0, the unilateral and bilateral transforms are equal for this example,
and thus, in particular,

1

1 —az V

X(z) = lz| > |al. (10.128)

Example 10.33
Let
x[n] = a"'un + 1]. (10.129)

In this case the unilateral and bilateral transforms are nor equalsitee =11 =1 =10i
The bilateral transform js obtained from Example 10.1 and the time-shifting property set
forth in Section 10.5.2. Specifically,

Z X(z) = # |z] > |al. (10.130)
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In contrast, the unilateral transform is

@

X(z) = > xlnlz”™"

iy i an+| Z*n,
n=0

or

X(z) = |lz| > |al. (10.131)

1—az7 !’
Example 10.34

Consider the unilateral z-transform

9 =l
5 o

e 32Y)

X(2) = ( (10.132)

In Example 10.9, we considered the inverse transform for a bilateral z-transform X (2)
of the same form as in eq. (10.132) and for several different ROCs. In the case of the
unilateral transform, the ROC must be the exterior of the circle of radius equal to the
largest magnitude of the poles of 9(z)—in this instance, all points z with [z] > 1/3. We
can then invert the unilateral transform exactly as in Example 10.9, yielding

5/(0. /.?J‘), x[n] = (l)nu[n] +2(1)nu[n] for n=0. (10.133)

4 3

% Ineq. (10.133), we have emphasized the fact that inverse unilateral z-transforms provide
us with information about x[n] only forn = 0.

Another approach to inverse transforms introduced in Section 10.3, namely, iden-
tifying the inverse transforms from the coefficients in the power-series expansion of the
z-transform, also can be used for unilateral transforms. However, in the unilateral case, a
constraint which must be satisfied is that, as a consequence of eq. (10.125), the power-
series expansion for the transform cannot contain terms with positive powers of z. For
instance, in Example 10.13 we performed long division on the bilateral transform

X(z) = (10.134)

I=az!
in two ways, corresponding to the two possible ROCs for X(z). Only one of these choices,

namely, that corresponding to the ROC |z| > |al, led to a series expansion without positive
powers of z, 1.e.,

(10.135)
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and this is the only choice for the expansion if eq. (10.134) represents a unilateral trans-
form.

Note that the requirement that &(z) have a power-series expansion with no terms
with positive powers of z implies that not every function of z can be a unilateral z-transform.
In particular, if we consider a rational function of z written as a ratio of polynomials in z
(notin z7 1), i.e.,

xml: causal .J‘a';mtﬂ X@)= Z%, (10.136)

N then for this to be a unilateral transform (with the appropriately chosen ROC as the ex-
terior of a circle), the degree of the numerator must be no bigger than the degree of the
denominator.

Example 10.35

A simple example illustrating the preceding point is given by the rational function in
eq. (10.130), which we can write as a ratio of polynomials in z:

Wx[)= -a urn-ay Z
5‘-{ 12) < |« ety e (10.137)

: ™! There two possible bilateral transforms that can be associated with this function,
(N() xM]=a v [+ namely those corresponding to the two possible ROCs, |z| < |a| and |z| > |a|. The choice
' |z| > |af corresponds to a right-sided sequence, but nor to a signal that is zero for all n < 0,

“ ' 2| > ’K' since its inverse transform, which is given by eq. (10.129), is nonzero for n = —1.
More generally, if we associate eq. (10.136) with the bilateral transform with the
ROC that is the exterior of the circle with radius given by the magnitude of the largest
root of g(z), then the inverse transform will certainly be right sided. However, for it to

be zero for all n < 0, it must also be the case that degree(p(z)) = degree(g(z)).

10.9.2 Properties of the Unilateral z-Transform

The unilateral z-transform has many important properties, some of which are identical to
their bilateral counterparts and several of which differ in significant ways. Table 10.3 sum-
marizes these properties. Note that we have not included a column explicitly identifying
the ROC for the unilateral z-transform for each signal, since the ROC of any unilateral z-
transform is always the exterior of a circle. For example, the ROC for a rational unilateral
z-transform is always outside the outermost pole.

By contrasting this table with the corresponding Table 10.1 for bilateral z-transforms,
we can gain considerable insight into the nature of the unilateral transform. In particular,
several properties—namely, linearity, scaling in the z-domain, time expansion, conjuga-
tion, and differentiation in the z-domain—are identical to their bilateral counterparts, as
is the initial-value theorem stated in Section 10.5.9, which is fundamentally a unilateral
transform property, since it requires x[n] = 0 for n < 0. One bilateral property, namely,
the time-reversal property set forth in Section 10.5.4, obviously has no meaningful coun-
terpart for the unilateral transform, while the remaining properties differ in important ways
between the bilateral and unilateral cases.
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TABLE 10.3 PROPERTIES OF THE UNILATERAL z-TRANSFORM

Property Signal Unilateral z-Transform
— x[n] X(2)
—_ X [ﬂ] SII (Z)
== x[n] Xs(z)
Linearity ax,[n] + bx,[n) adl(z) + bAs(2)
Time delay x[n—1] 27 '@ + 2[-1]
Time advance x[n+ 1] 2X0(2) — zx[0]
Scaling in the z-domain el x[n) A(edong)
zpx[n] X(/zp)
a"x[n] A(a'z)
Time expansion [n] el il S Az
x[n] =
P ’ 0, n # mk forany m .
Conjugation x'[n] Xz
Convolution (assuming xi[n] * x;[n] X1(2)A5(2)
that x,[n] and x,[n]
are identically zero for
n<0)
First difference x[n] — x[n — 1] (1-zH%() - x[-1]
. - 1
Accumulation % x[k] T X(z)
Differentiation in the nx[n] _der(z)
) dz
z-domain

Initial Value Theorem
x[0] = limX(z)

Let us examine the difference in the convolution property first. Table 10.3 states that
if x;[n] = x3[n] = 0 for all n < 0, then

xi[n] * x;[n] Pl X1 (2) Xa(2). (10.138)

Since in this case the unilateral and bilateral transforms are identical for each of these
signals, eq. (10.138) follows from the bilateral convolution property. Thus, the system
analysis and system function algebra developed and used in this chapter apply without
change to unilateral transforms, as long as we are considering causal LTI systems (for
which the system function is both the bilateral and the unilateral transform of the impulse
response) with inputs that are identically zero for n < 0. An example of such application
is to the accumulation or summation property in Table 10.3. Specifically, if x[n] = O for
n < 0, then

S k] = x{n] * uln] <o LRUE) = X()

k=0

1

1 —z7!

(10.139)

As a second example, consider&e following:

> XCkI Un-k1
(<=¢
U

S %[kl urn-kl

=-R
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Example 10.36
Consider the causal LTI system described by the difference equation
* yln] + 3y[n— 1] = x[n], (10.140)
together with the condition of initial rest. The system function for this system is

1

Hz) = ——. (10.141)
Ynl<eo n<o itz
. ' Suppose that the input to the system is x[n] = au[n], where « is a given constant. In
6 IIE o J#K‘/ 2 this case, the unilateral (and bilateral) z-transform of the output y[n] is
(2 . D
(yfz) = (Z)/Z(i') _ _GMa (1) ’
S ™ T T——"
Applying Example 10.32 to each term of eq. (10.142) yields
(1) = af &+ (2 )(=3)" juln) (10.143)
ylnl = « i ¥ ulnl. 147

An important point to note here is that the convolution property for unilateral z-
transforms applies only if the signals x;[n] and x,[n] in eq. (10.138) are both identically
zero for n < 0. While it is generally true that the bilateral transform of x,[n]* x,[n] equals
the product of the bilateral transforms of x,[n] and x[#], the unilateral transform of x1[n]*
x2[n] in general does not equal the product of the unilateral transforms if xi[n] or x5[n]is
nonzero for n < 0. This point is explored further in Problem 10.41.

Much of the importance of the unilateral z-transform lies in its application to analyz-
ing causal systems and, in particular, systems characterized by linear constant-coefficient
difference equations with possibly nonzero initial conditions. In Section 10.7 we saw
how the bilateral transform—particularly the shifting property for bilateral z-transforms—
could be used to analyze and compute solutions for LTI systems characterized by such
difference equations, together with the assumption of initial rest. As we will now see,
the shifting property for unilateral transforms, which differs from its bilateral counterpart,
plays an analogous role for initialized systems.

To develop the shifting property for the unilateral transform, consider the signal

gilinl=xfn—1], (10.144)

Then

el

Y = > xln— 1]

n=0

= x[~11+ > x[n—1]z™"

n=1

= x[-1]+ Z x[n]z= D,

n=0
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or
Yz) = x[-1]+ 77! Zx[n]z"”, (10.145)
n=0
so that
Y(z) = x[-1]14 2 'L(2). (10.146)
By repeated application of eq. (10.146), the unilateral transform of
= wln] = y[n — 1] = x[n — 2] | o (10.147) e
B Wa@) =2 xn-2] € = xpal+ xr-112 "'+ F.xt’n -2] 2
7N=o =a
W(z) = x[-2] + x[~1]z"" + z72%X(2). (10.148)

Continuing this iterative procedure, we can also determine the unilateral transform of x[n—
m] for any positive value of m.

Eq. (10.146) is sometimes referred to as the time delay property, since y[n] in
eq. (10.144) is a delayed version of x[n]. There is also a time advance property for
unilateral transforms that relates the transform of an advanced version of x[n] to 9(z).
Specifically, as shown in Problem 10.60,

= x[n + 1] = 290(2) — zx{0]. (10.149)
- [~ -]
(UB{remin) = 2 xenti1g™ = 23 xrm)2-2xbls z%(g-)_ZX-E;J)
- =-

10.9.3 Solving Difference Equations Using the Unilateral
z-Transform

The following example illustrates the use of unilateral z-transforms and the time delay
property to solve linear constant-coefficient difference equations with nonzero initial con-
ditions:

Example 10.37 Yyom3 + 3 Yon~1 ) = xCAJ
Consider again tiW) with x[n] = au[n] and with the initial

condition
pi=l= 8. (10.150)

Applying the unilateral transform to both sides of eq. (10.140) and using the linearity
and time delay properties, we obtain

YD) +3B +32Y0) = —— (10.151)

il
Solving for Y(z) yields

3B @
7 = — - S
Y(z) v +(1+3:7|)(1__: - (10.152)

\ (R -3p) @ e
avae o o ‘F
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