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Task Interactions (1)Task Interactions (1)

• Why? - Independent processes:

– One that can’t affect or be affected by the rest of the 

universe

• E.g., Processes running on different non-networked machines

– Properties:
• No shared state between processes

• Deterministic: Input state alone determines results

• Reproducible: Can stop and restart with no bad effects
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Task Interactions (2)Task Interactions (2)

• Why? - Cooperating processes: 
– Non-independent processes.

– Processes that share state: not necessarily  “cooperating”
• E.g., Processes share a single file system

– Properties:
• Behavior is non-deterministic, maybe irreproducible
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• Why permit processes to cooperate?
(1) Want to share resources:

One computer, many users.

One checking account file, many tellers.
(2) Want to do things faster:

Read next block while processing current one.

Divide jobs into sub-jobs, execute in parallel.
(3) Want to construct systems in modular fashion:

Unix example: tbl | eqn | troff

Task Interactions (3)Task Interactions (3)



4

Case of Task Interaction: Case of Task Interaction: 
Data Sharing Problem (1)Data Sharing Problem (1)

• Interrupt routines and task code may share one or 
more variables that they can use to communicate 
with each other.

• This may cause a data sharing problem – a sort of 
synchronization problem.
– Such a task is referred to as non-reentrant code

• Example: nuclear reactor monitoring system
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static int iTemperatures[2];
void interrupt vReadTemperatures (void) {

iTemperatures[0] = !! Read in value from hardware
iTemperatures[1] = !! Read in value from hardware

}
void main (void){

int iTemp0, iTemp;
while(TRUE){

iTemp0 = iTemperatures[0];
iTemp1 = iTemperatures[1];
if (iTemp0 != iTemp1)

!! set off howling alarm;
}

} 

static static intint iTemperatures[2];iTemperatures[2];

void interrupt void interrupt vReadTemperaturesvReadTemperatures (void) {(void) {
iTemperatures[0] = !! Read in value from hardwareiTemperatures[0] = !! Read in value from hardware
iTemperatures[1] = !! Read in value from hardwareiTemperatures[1] = !! Read in value from hardware

}}
void main (void){void main (void){

intint iTemp0, iTemp0, iTempiTemp;;

while(TRUEwhile(TRUE){){
iTemp0 = iTemperatures[0];iTemp0 = iTemperatures[0];
iTemp1 = iTemperatures[1];iTemp1 = iTemperatures[1];
if (iTemp0 != iTemp1)if (iTemp0 != iTemp1)

!! set off howling alarm;!! set off howling alarm;
}}

} } 

Case of Task Interaction: Case of Task Interaction: 
Data Sharing Problem (2)Data Sharing Problem (2)
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static int iTemperatures[2];
void interrupt vReadTemperatures (void) {

iTemperatures[0] = !! Read in value from hardware
iTemperatures[1] = !! Read in value from hardware

}
void main (void){

int iTemp0, iTemp;
while(TRUE){

iTemp0 = iTemperatures[0];
iTemp1 = iTemperatures[1];
if (iTemp0 != iTemp1)

!! set off howling alarm;
}

} 

static static intint iTemperatures[2];iTemperatures[2];

void interrupt void interrupt vReadTemperaturesvReadTemperatures (void) {(void) {
iTemperatures[0] = !! Read in value from hardwareiTemperatures[0] = !! Read in value from hardware
iTemperatures[1] = !! Read in value from hardwareiTemperatures[1] = !! Read in value from hardware

}}
void main (void){void main (void){

intint iTemp0, iTemp0, iTempiTemp;;

while(TRUEwhile(TRUE){){
iTemp0 = iTemperatures[0];iTemp0 = iTemperatures[0];
iTemp1 = iTemperatures[1];iTemp1 = iTemperatures[1];
if (iTemp0 != iTemp1)if (iTemp0 != iTemp1)

!! set off howling alarm;!! set off howling alarm;
}}

} } 

If interrupt occurs between these 
two statements, iTemp0 and 
iTemp1 will differ and the system 
will set off the alarm, even though 
the two measured temperatures 
were always the same.

If interrupt occurs between these 
two statements, iTemp0 and 
iTemp1 will differ and the system 
will set off the alarm, even though 
the two measured temperatures 
were always the same.

Case of Task Interaction: Case of Task Interaction: 
Data Sharing Problem (3)Data Sharing Problem (3)
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static int iTemperatures[2];
void interrupt vReadTemperatures (void){

iTemperatures[0] = !! Read in value from hardware
iTemperatures[1] = !! Read in value from hardware

} 

void main (void){
while (TRUE){

if (iTemperature[0] != iTemperatures[1])
!! set off howling alarm;

}
}

static static intint iTemperatures[2];iTemperatures[2];

void interrupt void interrupt vReadTemperaturesvReadTemperatures (void){(void){
iTemperatures[0] = !! Read in value from hardwareiTemperatures[0] = !! Read in value from hardware
iTemperatures[1] = !! Read in value from hardwareiTemperatures[1] = !! Read in value from hardware

} } 

void main (void){void main (void){
while (TRUE){while (TRUE){

if (iTemperature[0] != iTemperatures[1])if (iTemperature[0] != iTemperatures[1])
!! set off howling alarm;!! set off howling alarm;

}}
}}

The same bug in previous page !

The problem is that the statement 
that compares iTemperatures[0] 
with iTemperatures[1] can be 
interrupted.

The same bug in previous page !

The problem is that the statement 
that compares iTemperatures[0] 
with iTemperatures[1] can be 
interrupted.

Case of Task Interaction: Case of Task Interaction: 
Data Sharing Problem (4)Data Sharing Problem (4)
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• Solution
– Disabling Interrupts

• In the previous code
void main (void){

int iTemp0, iTemp;
while(TRUE){

disable(); /*Disable interrupts using array*/
iTemp0 = iTemperatures[0];
iTemp1 = iTemperatures[1];
enable();
if (iTemp0 != iTemp1)

!! set off howling alarm;
}

} 

void main (void){void main (void){
intint iTemp0, iTemp0, iTempiTemp;;

while(TRUEwhile(TRUE){){
disable(); /*Disable interrupts using array*/disable(); /*Disable interrupts using array*/
iTemp0 = iTemperatures[0];iTemp0 = iTemperatures[0];
iTemp1 = iTemperatures[1];iTemp1 = iTemperatures[1];
enable();enable();
if (iTemp0 != iTemp1)if (iTemp0 != iTemp1)

!! set off howling alarm;!! set off howling alarm;
}}

} } 

Case of Task Interaction: Case of Task Interaction: 
Data Sharing Problem (5)Data Sharing Problem (5)
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• To handle cooperating processes, we needs the 
notion of atomic operations
– Atomic means either it happens in its entirety or not at all.

– The operation can not be interrupted in the middle.
Examples:

int A,B; A = B; // On most systems.

(1) On uniprocessors, code between interrupts.

(2) Test-and-set instruction in some architectures.

Obtaining Reentrancy (1)Obtaining Reentrancy (1)
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• Need hardware support to provide atomic operations.
• Synchronization: Using atomic operations to ensure 

correct operation of cooperating processes.
• Example of cooperating processes that need 

synchronization: 
Two processes execute the following code:

if(BufferIsAvail) {
BufferIsAvail = FALSE;
UseBuffer();
BufferIsAvail = TRUE;

}

Obtaining Reentrancy (2)Obtaining Reentrancy (2)
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Time Proc 1 Proc 2

0 if(BufferIsAvail)
1 if(BufferIsAvail)
2 BufferIsAvail = FALSE
3 BufferIsAvail = FALSE
4 UseBuffer();
5 UseBuffer();

Problem : Both processes issue UseBuffer().

Obtaining Reentrancy (3)Obtaining Reentrancy (3)
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• Lack of atomicity of “if” and “assignment.”

• Mutual exclusion:
– Mechanisms that ensure that only one person or process is 

doing certain things at one time.

• Critical section:
– A section of code, or collection of operations, in which only 

one process may be executing at a time.

Obtaining Reentrancy (4)Obtaining Reentrancy (4)

13

• Requirements for a mutual exclusion mechanism.

1) Only one process is allowed in a critical section at a time.

2) If several requests at once, must allow one process to 

proceed.

3) Must not depend on processes outside critical section.

Obtaining Reentrancy (5)Obtaining Reentrancy (5)
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• Desirable properties for a mutual exclusion 

mechanism:

1) Don’t make a process wait forever.

2) Efficient: Don’t use up substantial amounts of  resources 

when waiting. (E.g., busy waiting.)

3) Simple: Should be easy to use.

Obtaining Reentrancy (6)Obtaining Reentrancy (6)
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Semaphores (1): NecessitySemaphores (1): Necessity
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Semaphores (2): NecessitySemaphores (2): Necessity
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Semaphores (3): OperationSemaphores (3): Operation

열쇠열쇠 줘줘~~열쇠열쇠 받아받아~~기다려기다려~~열쇠열쇠 받아받아~~

18

Semaphores (3): OperationSemaphores (3): Operation

열쇠열쇠 받아받아~~
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Semaphores (4): BasicsSemaphores (4): Basics

• One synchronization mechanism
– A sync. variable that takes on integer values.

– P(Semaphore): An atomic operation that waits for  
semaphore to become positive and then decrements it by 
one. (Also called wait().)

– V(Semaphore): An atomic operation that increments 
semaphore by one. (Also called signal().)

– Semaphores are simple and elegant.

– They do a lot more that just mutual exclusion.
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Task1(){
P(S1)

use pr;
V(S1)

}

Task2(){
P(S1)

use pr;
V(S1)

}

semaphore S = 1;

Semaphores (5): UsageSemaphores (5): Usage
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Semaphores (6): InitializationSemaphores (6): Initialization
• Binary semaphore vs Counting semaphore
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Task1(){
P(S1)

use pr;
V(S1)

}

Task2(){
P(S1)

use pr;
V(S1)

}

semaphore S = 2;

Semaphores (6): InitializationSemaphores (6): Initialization
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Semaphores (7): BasicsSemaphores (7): Basics

• Buffer example with semaphores:
1) P(BufferIsAvail);

2) UseBuffer();

3) V(BufferIsAvail);

Note: BufferIsAvail must be set to one

• What happens if BufferIsAvail is set to two? or zero?

• Uses of semaphores:
– Mutual exclusion

– Scheduling
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Semaphore (8): SchedulingSemaphore (8): Scheduling

ISR Task

V(S) P(S)

semaphore S = 0;
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• Scheduling with semaphores
– Producer: Creates copies of a resource.

Example: a user typing characters.

– Consumer: Uses up (destroys) copies of a resources.

Example: program reading users characters.

– Buffers: Memory used to hold info after the producer has 
created it and before the consumer has used it.

Allows producer to get ahead of consumer.

Consumer and procedure don’t operate in lock-step.

Semaphores (9): Semaphores (9): 
Producer/ConsumerProducer/Consumer
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write to 
buf

read 
from buf

Producer Consumer

Bounded buffer with blocking reads and writes

Semaphores (9): Semaphores (9): 
Producer/ConsumerProducer/Consumer
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• What is “correct” for this example?

• Constraints:
– Consumer must wait for producer to fill buffer.

– Producer must wait for consumer to empty buffers if all buffer 
space is filled.

• A separate semaphore is used for each constraint:
– emptyBufferAvail — Initialized to numBuffers.

– fullBufferAvail — Initialized to 0.

Semaphores (9): Semaphores (9): 
Producer/ConsumerProducer/Consumer
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Producer(){
P(         )

buf = data;
V(          )

}

Consumer(){
P(          )

data = buf;
V(         )

}
Semaphore   buf_avail = 1,

data_avail = 0;

buf_avail

data_avail

data_avail

buf_avail

Semaphores (9): Semaphores (9): 
Producer/ConsumerProducer/Consumer
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Semaphores (10): Disable InterruptsSemaphores (10): Disable Interrupts

Task1(){
P(S1)

use pr1;
V(S1)

}

Task2(){
P(S1)

use pr1;
V(S1)

}
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Semaphores (10): Disable InterruptsSemaphores (10): Disable Interrupts

Task3(){
P(S2)

use pr2;
V(S2)

}

Task1(){
disable intr

use pr1;
enable intr

}

Turn all traffic lights in Seoul into redTurn all traffic lights in Seoul into red
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Semaphores (11): Drawbacks Semaphores (11): Drawbacks 

Producer(){
P(S1)

buf = data;
V(S2)

}

Consumer(){
P(S2)

data = buf;
V(S1)

}

Semaphore naming issueSemaphore naming issue
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Semaphores (11): Drawbacks Semaphores (11): Drawbacks 

Task1(){
P(S1)

buf = data;
V(S1)

}

Task2(){
P(S2)

data = buf;
V(S1)

}

Is this a race condition or not?Is this a race condition or not?
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Task1(){
mutex_lock(S1)

buf = data;
mutex_unlock(S1)

}

Task2(){
mutex_lock(S2)

data = buf;
mutex_unlcok(S1)

}

This is surely a race condition.This is surely a race condition.

Semaphores (12): SolutionSemaphores (12): Solution
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Semaphores (13): ImplementationSemaphores (13): Implementation

• Note: V() is done when a resource is created and P() 
when destroyed.

• Producers and consumers are like Unix pipes:
– Example: cat file | grep foo

• Semaphore implementation — Uniprocessors.
struct Semaphore {

int value;

Queue waitQ;

}

• Use disable of interrupts to get mutual exclusion.
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Semaphores (13): ImplementationSemaphores (13): Implementation
P(sema)
{

disableInterrulpts();
if(sema.value-- > 0) {

enableInterrupts();
} else {

putMeToWaitQ(sema.waitQ);
enableInterrupts();
waitOn(sema.waitQ);

}
}

V(sema)
{

disbleInterrupts();
if(sema.value++ >= 0) {

enableInterrpts();
} else {

move1ToRdyList(sema.waitQ);
enableInterrupts();
yieldCPU();

}
}
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• Multiprocessor solution: Mutual exclusion is harder

• Possibilities:
(1) Turn off all other processors.

(2) Use atomic hardware support.
Read-modify-write memory operations.

Example: test and Set (TAS) instruction

Semaphores (13): ImplementationSemaphores (13): Implementation
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• Common solution:
– Change disableInterrupt(); to:

disableInterrupt();

while (TAS(lockMem) ! = 0) continue;

– Change enableInterrupt(); to:
lockMem = 0

enableInterrupt();

• Note: Multiprocessors solution does some busy-
waiting.

Semaphores (13): ImplementationSemaphores (13): Implementation
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• Important point: Implement some mechanism once, 
very carefully. Then always write programs that use 
that mechanism. Layering is very important.

Semaphores (13): ImplementationSemaphores (13): Implementation
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Monitors (1)Monitors (1)

• Monitors: High-level data abstraction tool that 
combines three features:
(1) shared data.

(2) Operations on the data.

(3) Synchronization, scheduling.

• Monitors can be embedded in programming 
languages.
– Example: Mesa/Cedar from Xerox and Java.
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Monitors (2)Monitors (2)

• Example monitor in C:
monitor QueueHandler:

struct { ... } queue; //shared date.

AddToQueue(val) { - code to add to shared queue - }

int RemoveFromQueue() { - code to remove - }

endmonitor;

• One binary semaphore is associated with each 
monitor.
– Implicit mutual exclusion.
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Monitors (3)Monitors (3)

• Monitors are easier to use and safer than 
semaphores.
– Complier can check usage.

• Condition variables: things to wait on.
– wait (condition): Release monitor lock, put process to sleep. 

Reacquire lock when waken.
– signal (condition): Wake up one process waiting on the 

condition variable. If nobody waiting, do nothing.
Note: No history in condition variables.

– broadcast (condition): Wake up all processes waiting on the 
condition variable.
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• There are several different variations on the 
wait/signal mechanism.
– Who gets the monitor lock after a signal?
– “Mesa semantics”;

On signal, signaler keeps monitor lock.
Awakened process waits for monitor lock.

Must check again and be prepared to sleep.

• Unix internally uses a mechanism similar to 
wait/signal.

• Unix kernel critical sections are made by disabling 
interrupts:
– “spl” calls.

Monitors (4)Monitors (4)
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type resource_manager is monitor
var busy: boolean; x: condition;

procedure entry acquire()
{

if (busy) x.wait;
busy = true;

}
procedure entry release()
}

busy = false;
x.signal;

}
{ /* Initialization */

busy = false;
}

Monitors (5): UsageMonitors (5): Usage
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P(monitor_lock);
Body of the Function;

if (sig_lock.cnt > 0) {
V(sig_lock);

} else {
V(monitor_lock);

}

Monitors (6): RealizationMonitors (6): Realization

/* x.wait*/
x_cnt++;
if (sig_lock.cnt > 0) {

V(sig_lock);
} else {

V(monitor_lock);
P(x_lock);
x_cnt--;

/* x.signal; */
if (x_cnt > 0) {

sig_lock.cnt++;
V(x_lock);
P(sig_lock);
sig_lock.cnt--;

}

Semaphore for condition xx_lock
Semaphore for signalerssig_lock
Semaphore for the monitormonitor_lock
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Communication with Messages (1)Communication with Messages (1)

• Up until now, discussion has been about communication 
with shared date.
– Messages allow communication without shared data.
– Only one process “owns” the data at a time.

• Definitions:
– Message: A piece of information that is passed from one 

process to another.
– Mailbox:  A place where messages are stored between the time 

they are sent and the time they are  received.
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Communication with Messages (2)Communication with Messages (2)

• Operations on messages:
– Send: Copy a message into mailbox.

– Receive: Copy a message out of mailbox.

• Two general styles of message communication:
– 1-way: Message flow back-and-forth.

Example: Unix pipes, producer/consumer.

– 2-way: Message flow back-and-forth.

Example: Remote procedure call, client/server.
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Communication with Messages (3)Communication with Messages (3)

• Producer/Consumer example:

Producer:
int msg1[1000];
{

- - prepare msg 1 - -
send(msg1, mbox);

}

Consumer:
int msg2[1000];
while(TRUE)
{

recive(msg2, mbox);
- - process msg2

}

Note: Buffer recycling is implicit.
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Communication with Messages (4)Communication with Messages (4)
• Client/Server example:

Client:
char response[1000];

while(TRUE)
{

send{“A CMD”, mbox1);
received(response, mbox2);

}

Server:
char command[100];
char answer[1000];

while(TRUE)
{

receive(command, mbox1);
- - decode command - -
- - fill in answer
send(answer, mbox2);

}

A lot like a procedure call & return
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• Why use messages?
– Many applications fit into this model of processing a 

sequential flow of information.
Example: Unix pipes.

– Communication parties can be separate, except for the 
mailbox:

Less error-prone: No invisible side effects.
Parties might not trust each other (OS vs. user).
Parties might be written at different times by different 
programmers.
Parties might be running on different machines on a 
network.

Communication with Messages (5)Communication with Messages (5)
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• Message systems vary along several dimensions.

• Relationship between mailboxes and processes:
(1) One mailbox per process, uses process name in send, no 

name in receive (simple but restrictive) [RC4000, V].

(2) No strict mailbox-process association, uses mailbox name 
(can have multiple mailboxes per process; can pass 
mailboxes from process to process; but trickier to 
implement) [Unix].

Communication with Messages (6)Communication with Messages (6)
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Communication with Messages (7)Communication with Messages (7)
(3) Extent of buffering:

– Buffering (more efficient for large transfers when sender and 
receiver run at varying speeds).

– None – rendezvous protocols (simple; OK for call-return type 
communication; knows that message was received).

• Blocking vs. non-blocking ops:
– Blocking receive: Return message if mailbox isn’t empty; 

otherwise, wait until message arrives.

– Non-blocking receive: Return message if mailbox isn’t 
empty; otherwise, return special “empty” value.
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– Blocking send: Wait until mailbox has space.

– Non-blocking send: Return “full” if no space in mailbox.

• Additional forms of waiting:
– Almost all systems allow many processes to wait on the 

same mailbox at the same time. Messages get passed to 
processes in order.

– A few systems allow a process to wait on several mailboxes 
at once (e.g. select in UNIX). The process gets the first 
message to arrive on any of the mailboxes.

Useful for network services, window systems, etc.

Communication with Messages (8)Communication with Messages (8)
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• Constraints on what get passed in messages:

– None: Just a stream of bytes (Unix pipes).

– Enforce message boundaries (send and receive in same 

chunks).

– Protected objects (e.g. process id of sender, or a token for a 

mailbox).

Communication with Messages (9)Communication with Messages (9)

54

Communication with Messages (10)Communication with Messages (10)

• Messages and shared-data approaches are equally 

powerful, but result in very different-looking styles of 

programming. 

Most people find shared-data approach easier to 

work with.

• We will revisit this material when we talk about 

networks.
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ClientClient--Server CommunicationServer Communication
• Sockets
• Remote Procedure Calls
• Remote Method Invocation (Java)



56

SocketsSockets
• A socket is defined as an endpoint for communication.
• Concatenation of IP address and port
• The socket 161.25.19.8:1625 refers to port 1625 on 

host 161.25.19.8
• Communication consists between a pair of sockets.
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Socket CommunicationSocket Communication
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Remote Procedure CallsRemote Procedure Calls
• Remote procedure call (RPC) abstracts procedure 

calls between processes on networked systems.
• Stubs – client-side proxy for the actual procedure on 

the server.
• The client-side stub locates the server and marshalls

the parameters.
• The server-side stub receives this message, unpacks 

the marshalled parameters, and peforms the 
procedure on the server.
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Execution of RPCExecution of RPC
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Remote Method InvocationRemote Method Invocation
• Remote Method Invocation (RMI) is a Java 

mechanism similar to RPCs.
• RMI allows a Java program on one machine to 

invoke a method on a remote object.
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Marshalling ParametersMarshalling Parameters
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Deadlock (1)Deadlock (1)

• Deadlock is one area where there is a strong theory, 
but it is almost completely ignored in practice.
– Reason: Solutions are expensive and/or require predicting 

the future.

• Deadlock example with semaphores.
Process 0: Process 1:

P(semaX); P(semaY);

P(semaY); P(semaX);
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Deadlock (2)Deadlock (2)

• Define deadlock: A situation where each of a 

collection of processes is waiting for something from 

other processes in the collection. Since all are 

waiting,none can provide any of the things being 

waited for.
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Deadlock (3): ExampleDeadlock (3): Example

PROC0 PROC1 

semaX semaY
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• The previous example was relatively simple-minded 
Things may be much more complicated:
– In general, don’t know in advance how many resources a 

process will need. If only we could predict the future...

– Deadlock can occur over separate resources, as in 
semaphore example, or over pieces of a single resource, as 
in memory, or even over totally separate classes of 
resources (tape drives and memory).

– Deadlock can occur over anything involving, for example, 
messages in a pipe system.

– Hard for Os to control.

Deadlock (4)Deadlock (4)
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• Four necessary conditions for deadlock:
(1) Mutual exclusion (limited access):

Resources cannot be shared.

(2) No preemption:

Once given, a resource cannot be taken away.

(3) Hold and wait (multiple independent requests):

Processes don’t ask for resources all at once.

(4) Circular wait:

There is a circularity in the graph of who has what and who 
wants what.

Deadlock (5)Deadlock (5)
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• Solution to deadlock problem fall into two general 
categories:
– Detection: Determine when the system is deadlocked, and 

then take drastic action. Requires termination of one or more 
processes in order to release their resources.

– Prevention: Organize the system so that it is impossible for 
deadlock ever to occur. May lead to less efficient resource 
utilization in order to guarantee no deadlocks.

Deadlock (6): HandlingDeadlock (6): Handling
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• Mutual exclusion:

– Don’t allow exclusive access.

This is probably not reasonable for many applications.

• No preemption:

– Allow preemption. (E.g., Preempt your disk space?).

Deadlock Prevention (1)Deadlock Prevention (1)
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Deadlock Prevention (2)Deadlock Prevention (2)

• Hold and wait:

– Make process ask for everything at once. Either get them all 

or wait for them all. Tricky to implement:

Must be able to wait on many things without locking 

anything. Painful for process: May be difficult to predict, so

must make very wasteful use of resources.

This requires the process to predict the future.
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• Circular waiting:

– Create enough resources so that there’s always plenty for all.

– Don’t allow waiting. This punts the problem back to the user.

(E.g., Phone company).

– Make ordered or hierarchical requests. E.g., ask for all S’s, 

then all T’s etc. All processes must follow the same ordering 

scheme. Of course, for this you have to know in advance 

what is needed.

Deadlock Prevention (3)Deadlock Prevention (3)
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Deadlock Prevention (4)Deadlock Prevention (4)

• In general, prevention of deadlock is expensive 

and/or inefficient.

Detection is also expensive and recovery is seldom 

possible

(What if process has things in a weird state?).
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Deadlock Avoidance (1): Safe StateDeadlock Avoidance (1): Safe State

• Safe state: The system can allocate resources to each 

process up to its maximum in some order and still 

avoid a deadlock.

• A safe sequence must exist from a safe state.

• Unsafe state: May lead to a deadlock.
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Deadlock Avoidance (2): Safe StateDeadlock Avoidance (2): Safe State
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Deadlock Avoidance (3): Safe StateDeadlock Avoidance (3): Safe State

• Example: A system with 12 magnetic drives.
Safe sequence: <P1,P0,P2>

Processes   Max Needs      Current Allocations

P0 10 5

P1 4 2

P2 9 2

Transition from a safe state to an unsafe one: < P'2>

Processes Max Needs      New Allocation (1 additional 
request)

P'2 9 3
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Deadlock Avoidance (4): Deadlock Avoidance (4): 
BankerBanker’’s Algorithms Algorithm

• A new process must declare the maximum resource 
needs.

• When a process requests resources, the algorithm 
checks if the allocation will leave the system in a safe 
state.

• Grant the resources, if so.
• Have it wait until some other process releases 

enough resources.
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• Available[1;m]: The number of available resources of 

each type.

• Max[1:n,1:m]: The maximum demand of each process.

• Allocation[1:n,1:m]: The number of resources of each 

type currently allocated to each process.

Deadlock Avoidance (5): Deadlock Avoidance (5): 
BankerBanker’’s Algorithm (Notations)s Algorithm (Notations)
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Deadlock Avoidance (6): Deadlock Avoidance (6): 
BankerBanker’’s Algorithm (Notations)s Algorithm (Notations)

• Need[1:n,1,m]: The remaining resource need of each 

process.
Max[I,j] = Allocation[I,j] + Need[I,j]

• For two vectors X and Y:

X ≤ Y iff ∀i :: 1 ≤ i ≤ n :: X[i] ≤ Y[i]

X < Y iff X ≤ Y and X ≠ Y.
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Step 0: Work[1:m] and Finish[1:n] are two vectors.

Step 1: Work:= Available and Finish[i]:= false for i = 1,2,...,n.

Step 2: Find an i such that both

• Finish[i] = false

• Need[i] ≤ Work

If no such i exists, go to Step 4.

Deadlock Avoidance (7): Deadlock Avoidance (7): 
BankerBanker’’s Algorithm (Safety)s Algorithm (Safety)
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Deadlock Avoidance (8): Deadlock Avoidance (8): 
BankerBanker’’s Algorithm (Safety)s Algorithm (Safety)

Step 3: Work:= Work + Allocation[i]

Finish[i]:= true

Go to Step 2.

Step 4: If Finish[i] = true for all i,then the system is in a 

safe state.
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BankerBanker’’s Algorithm (9): s Algorithm (9): 
Resource Request for PiResource Request for Pi

Step 0: Request[1:n, 1:m] is the resource request of 

each process.

Step 1: If Request[i] ≤ Need[i], go to step2.

Otherwise, raise an error condition.

Step 2: If Request[i] ≤ Available, go to step 3.

Otherwise, Pi must wait for the resource.
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BankerBanker’’s Algorithm (10): s Algorithm (10): 
Resource Request for PiResource Request for Pi

Step 3:

Available:= Available – Request[i];

Allocation[I]:= Allocation[i]+ Request[i];

Need[i]:= Need[i] – Request[i];

Step 4: If the resulting resource allocation is safe, the 
transaction is completed and Pi if allocated. 
Otherwise, Pi must wait and old resource allocation 
state is restored.
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Deadlock Avoidance (11): Deadlock Avoidance (11): 
BankerBanker’’s Algorithm (Example)s Algorithm (Example)

4 3 30 0 2P4

2 2 2 2 1 1P3

9 0 23 0 2P2

3 2 22 0 0P1

3 3 27 5 30 1 0P0

A B CA B CA B C
AvailableMax NeedsAllocationsProcesses

• A state snapshot: Safe sequence <P1,P3,P4,P2,P0>

• NewRequest[1] = (1,0,2):
– Determine if the new state is safe.
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Deadlock Detection (1)Deadlock Detection (1)

• Single instance of each resource type:

Existence of cycle is a necessary and sufficient 

condition for a deadlock.

• Multiple instances of a resource type:

Use a deadlock detection algorithm similar to the 

banker’s algorithm.
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Step 0: Work[1:m] and Finish[1:n] are two vectors.

Step 1: Work:= Available.

For I = 1,2,...,n, Finish[i]:=

Step 2: Find an i such that both 
• Finish[i] = false

• Request[i] ≤ Work
If no such exists, go to Step 4.

Deadlock Detection Algorithm (2)Deadlock Detection Algorithm (2)

false, if Allocation[i] ≠
0;
true, otherwise.
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Deadlock Detection Algorithm (3)Deadlock Detection Algorithm (3)

Step 3: Work:= Work + Allocation[i]; Finish[i]:= true

Go to Step 2.

Step 4: If Finish[i] = false for some i, then the system is 

in a deadlock state. Such i (i.e., Pi ) is a deadlocked 

process.
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• Deadlock involving P1, P2, P3,P4:

Deadlock Detection Algorithm (4): Deadlock Detection Algorithm (4): 
ExampleExample

0 0 20 0 2P4

1 0 02 1 1P3

0 0 13 0 3P2

2 0 22 0 0P1

0 0 00 0 00 1 0P0

A B CA B CA B C
AvailableRequestsAllocationsProcesses
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Deadlock RecoveryDeadlock Recovery
• Process termination

– Abort all deadlocked processes
– Abort one process one at a time until the deadlock cycle is 

eliminated.

• Resource Preemption
– Select a victim
– Rollback
– Starvation


