
Process SynchronizationProcess Synchronization
(Topic 2(Topic 2--2)2)

홍 성수

서울대학교공과대학전기공학부

Real-Time Operating Systems Laboratory

1

Task Interactions (1)Task Interactions (1)

• Why? - Independent processes:

– One that can’t affect or be affected by the rest of the

universe

• E.g., Processes running on different non-networked machines

– Properties:
• No shared state between processes

• Deterministic: Input state alone determines results

• Reproducible: Can stop and restart with no bad effects

2

Task Interactions (2)Task Interactions (2)

• Why? - Cooperating processes:
– Non-independent processes.

– Processes that share state: not necessarily “cooperating”
• E.g., Processes share a single file system

– Properties:
• Behavior is non-deterministic, maybe irreproducible

3

• Why permit processes to cooperate?
(1) Want to share resources:

One computer, many users.

One checking account file, many tellers.
(2) Want to do things faster:

Read next block while processing current one.

Divide jobs into sub-jobs, execute in parallel.
(3) Want to construct systems in modular fashion:

Unix example: tbl | eqn | troff

Task Interactions (3)Task Interactions (3)

4

Case of Task Interaction: Case of Task Interaction:
Data Sharing Problem (1)Data Sharing Problem (1)

• Interrupt routines and task code may share one or
more variables that they can use to communicate
with each other.

• This may cause a data sharing problem – a sort of
synchronization problem.
– Such a task is referred to as non-reentrant code

• Example: nuclear reactor monitoring system

5

static int iTemperatures[2];
void interrupt vReadTemperatures (void) {

iTemperatures[0] = !! Read in value from hardware
iTemperatures[1] = !! Read in value from hardware

}
void main (void){

int iTemp0, iTemp;
while(TRUE){

iTemp0 = iTemperatures[0];
iTemp1 = iTemperatures[1];
if (iTemp0 != iTemp1)

!! set off howling alarm;
}

}

static static intint iTemperatures[2];iTemperatures[2];

void interrupt void interrupt vReadTemperaturesvReadTemperatures (void) {(void) {
iTemperatures[0] = !! Read in value from hardwareiTemperatures[0] = !! Read in value from hardware
iTemperatures[1] = !! Read in value from hardwareiTemperatures[1] = !! Read in value from hardware

}}
void main (void){void main (void){

intint iTemp0, iTemp0, iTempiTemp;;

while(TRUEwhile(TRUE){){
iTemp0 = iTemperatures[0];iTemp0 = iTemperatures[0];
iTemp1 = iTemperatures[1];iTemp1 = iTemperatures[1];
if (iTemp0 != iTemp1)if (iTemp0 != iTemp1)

!! set off howling alarm;!! set off howling alarm;
}}

} }

Case of Task Interaction: Case of Task Interaction:
Data Sharing Problem (2)Data Sharing Problem (2)

6

static int iTemperatures[2];
void interrupt vReadTemperatures (void) {

iTemperatures[0] = !! Read in value from hardware
iTemperatures[1] = !! Read in value from hardware

}
void main (void){

int iTemp0, iTemp;
while(TRUE){

iTemp0 = iTemperatures[0];
iTemp1 = iTemperatures[1];
if (iTemp0 != iTemp1)

!! set off howling alarm;
}

}

static static intint iTemperatures[2];iTemperatures[2];

void interrupt void interrupt vReadTemperaturesvReadTemperatures (void) {(void) {
iTemperatures[0] = !! Read in value from hardwareiTemperatures[0] = !! Read in value from hardware
iTemperatures[1] = !! Read in value from hardwareiTemperatures[1] = !! Read in value from hardware

}}
void main (void){void main (void){

intint iTemp0, iTemp0, iTempiTemp;;

while(TRUEwhile(TRUE){){
iTemp0 = iTemperatures[0];iTemp0 = iTemperatures[0];
iTemp1 = iTemperatures[1];iTemp1 = iTemperatures[1];
if (iTemp0 != iTemp1)if (iTemp0 != iTemp1)

!! set off howling alarm;!! set off howling alarm;
}}

} }

If interrupt occurs between these
two statements, iTemp0 and
iTemp1 will differ and the system
will set off the alarm, even though
the two measured temperatures
were always the same.

If interrupt occurs between these
two statements, iTemp0 and
iTemp1 will differ and the system
will set off the alarm, even though
the two measured temperatures
were always the same.

Case of Task Interaction: Case of Task Interaction:
Data Sharing Problem (3)Data Sharing Problem (3)

7

static int iTemperatures[2];
void interrupt vReadTemperatures (void){

iTemperatures[0] = !! Read in value from hardware
iTemperatures[1] = !! Read in value from hardware

}

void main (void){
while (TRUE){

if (iTemperature[0] != iTemperatures[1])
!! set off howling alarm;

}
}

static static intint iTemperatures[2];iTemperatures[2];

void interrupt void interrupt vReadTemperaturesvReadTemperatures (void){(void){
iTemperatures[0] = !! Read in value from hardwareiTemperatures[0] = !! Read in value from hardware
iTemperatures[1] = !! Read in value from hardwareiTemperatures[1] = !! Read in value from hardware

} }

void main (void){void main (void){
while (TRUE){while (TRUE){

if (iTemperature[0] != iTemperatures[1])if (iTemperature[0] != iTemperatures[1])
!! set off howling alarm;!! set off howling alarm;

}}
}}

The same bug in previous page !

The problem is that the statement
that compares iTemperatures[0]
with iTemperatures[1] can be
interrupted.

The same bug in previous page !

The problem is that the statement
that compares iTemperatures[0]
with iTemperatures[1] can be
interrupted.

Case of Task Interaction: Case of Task Interaction:
Data Sharing Problem (4)Data Sharing Problem (4)

8

• Solution
– Disabling Interrupts

• In the previous code
void main (void){

int iTemp0, iTemp;
while(TRUE){

disable(); /*Disable interrupts using array*/
iTemp0 = iTemperatures[0];
iTemp1 = iTemperatures[1];
enable();
if (iTemp0 != iTemp1)

!! set off howling alarm;
}

}

void main (void){void main (void){
intint iTemp0, iTemp0, iTempiTemp;;

while(TRUEwhile(TRUE){){
disable(); /*Disable interrupts using array*/disable(); /*Disable interrupts using array*/
iTemp0 = iTemperatures[0];iTemp0 = iTemperatures[0];
iTemp1 = iTemperatures[1];iTemp1 = iTemperatures[1];
enable();enable();
if (iTemp0 != iTemp1)if (iTemp0 != iTemp1)

!! set off howling alarm;!! set off howling alarm;
}}

} }

Case of Task Interaction: Case of Task Interaction:
Data Sharing Problem (5)Data Sharing Problem (5)

9

• To handle cooperating processes, we needs the
notion of atomic operations
– Atomic means either it happens in its entirety or not at all.

– The operation can not be interrupted in the middle.
Examples:

int A,B; A = B; // On most systems.

(1) On uniprocessors, code between interrupts.

(2) Test-and-set instruction in some architectures.

Obtaining Reentrancy (1)Obtaining Reentrancy (1)

10

• Need hardware support to provide atomic operations.
• Synchronization: Using atomic operations to ensure

correct operation of cooperating processes.
• Example of cooperating processes that need

synchronization:
Two processes execute the following code:

if(BufferIsAvail) {
BufferIsAvail = FALSE;
UseBuffer();
BufferIsAvail = TRUE;

}

Obtaining Reentrancy (2)Obtaining Reentrancy (2)

11

Time Proc 1 Proc 2

0 if(BufferIsAvail)
1 if(BufferIsAvail)
2 BufferIsAvail = FALSE
3 BufferIsAvail = FALSE
4 UseBuffer();
5 UseBuffer();

Problem : Both processes issue UseBuffer().

Obtaining Reentrancy (3)Obtaining Reentrancy (3)

12

• Lack of atomicity of “if” and “assignment.”

• Mutual exclusion:
– Mechanisms that ensure that only one person or process is

doing certain things at one time.

• Critical section:
– A section of code, or collection of operations, in which only

one process may be executing at a time.

Obtaining Reentrancy (4)Obtaining Reentrancy (4)

13

• Requirements for a mutual exclusion mechanism.

1) Only one process is allowed in a critical section at a time.

2) If several requests at once, must allow one process to

proceed.

3) Must not depend on processes outside critical section.

Obtaining Reentrancy (5)Obtaining Reentrancy (5)

14

• Desirable properties for a mutual exclusion

mechanism:

1) Don’t make a process wait forever.

2) Efficient: Don’t use up substantial amounts of resources

when waiting. (E.g., busy waiting.)

3) Simple: Should be easy to use.

Obtaining Reentrancy (6)Obtaining Reentrancy (6)

15

Semaphores (1): NecessitySemaphores (1): Necessity

16

Semaphores (2): NecessitySemaphores (2): Necessity

17

Semaphores (3): OperationSemaphores (3): Operation

열쇠열쇠 줘줘~~열쇠열쇠 받아받아~~기다려기다려~~열쇠열쇠 받아받아~~

18

Semaphores (3): OperationSemaphores (3): Operation

열쇠열쇠 받아받아~~

19

Semaphores (4): BasicsSemaphores (4): Basics

• One synchronization mechanism
– A sync. variable that takes on integer values.

– P(Semaphore): An atomic operation that waits for
semaphore to become positive and then decrements it by
one. (Also called wait().)

– V(Semaphore): An atomic operation that increments
semaphore by one. (Also called signal().)

– Semaphores are simple and elegant.

– They do a lot more that just mutual exclusion.

20

Task1(){
P(S1)

use pr;
V(S1)

}

Task2(){
P(S1)

use pr;
V(S1)

}

semaphore S = 1;

Semaphores (5): UsageSemaphores (5): Usage

21

Semaphores (6): InitializationSemaphores (6): Initialization
• Binary semaphore vs Counting semaphore

22

Task1(){
P(S1)

use pr;
V(S1)

}

Task2(){
P(S1)

use pr;
V(S1)

}

semaphore S = 2;

Semaphores (6): InitializationSemaphores (6): Initialization

23

Semaphores (7): BasicsSemaphores (7): Basics

• Buffer example with semaphores:
1) P(BufferIsAvail);

2) UseBuffer();

3) V(BufferIsAvail);

Note: BufferIsAvail must be set to one

• What happens if BufferIsAvail is set to two? or zero?

• Uses of semaphores:
– Mutual exclusion

– Scheduling

24

Semaphore (8): SchedulingSemaphore (8): Scheduling

ISR Task

V(S) P(S)

semaphore S = 0;

25

• Scheduling with semaphores
– Producer: Creates copies of a resource.

Example: a user typing characters.

– Consumer: Uses up (destroys) copies of a resources.

Example: program reading users characters.

– Buffers: Memory used to hold info after the producer has
created it and before the consumer has used it.

Allows producer to get ahead of consumer.

Consumer and procedure don’t operate in lock-step.

Semaphores (9): Semaphores (9):
Producer/ConsumerProducer/Consumer

26

write to
buf

read
from buf

Producer Consumer

Bounded buffer with blocking reads and writes

Semaphores (9): Semaphores (9):
Producer/ConsumerProducer/Consumer

27

• What is “correct” for this example?

• Constraints:
– Consumer must wait for producer to fill buffer.

– Producer must wait for consumer to empty buffers if all buffer
space is filled.

• A separate semaphore is used for each constraint:
– emptyBufferAvail — Initialized to numBuffers.

– fullBufferAvail — Initialized to 0.

Semaphores (9): Semaphores (9):
Producer/ConsumerProducer/Consumer

28

Producer(){
P()

buf = data;
V()

}

Consumer(){
P()

data = buf;
V()

}
Semaphore buf_avail = 1,

data_avail = 0;

buf_avail

data_avail

data_avail

buf_avail

Semaphores (9): Semaphores (9):
Producer/ConsumerProducer/Consumer

29

Semaphores (10): Disable InterruptsSemaphores (10): Disable Interrupts

Task1(){
P(S1)

use pr1;
V(S1)

}

Task2(){
P(S1)

use pr1;
V(S1)

}

30

Semaphores (10): Disable InterruptsSemaphores (10): Disable Interrupts

Task3(){
P(S2)

use pr2;
V(S2)

}

Task1(){
disable intr

use pr1;
enable intr

}

Turn all traffic lights in Seoul into redTurn all traffic lights in Seoul into red

31

Semaphores (11): Drawbacks Semaphores (11): Drawbacks

Producer(){
P(S1)

buf = data;
V(S2)

}

Consumer(){
P(S2)

data = buf;
V(S1)

}

Semaphore naming issueSemaphore naming issue

32

Semaphores (11): Drawbacks Semaphores (11): Drawbacks

Task1(){
P(S1)

buf = data;
V(S1)

}

Task2(){
P(S2)

data = buf;
V(S1)

}

Is this a race condition or not?Is this a race condition or not?

33

Task1(){
mutex_lock(S1)

buf = data;
mutex_unlock(S1)

}

Task2(){
mutex_lock(S2)

data = buf;
mutex_unlcok(S1)

}

This is surely a race condition.This is surely a race condition.

Semaphores (12): SolutionSemaphores (12): Solution

34

Semaphores (13): ImplementationSemaphores (13): Implementation

• Note: V() is done when a resource is created and P()
when destroyed.

• Producers and consumers are like Unix pipes:
– Example: cat file | grep foo

• Semaphore implementation — Uniprocessors.
struct Semaphore {

int value;

Queue waitQ;

}

• Use disable of interrupts to get mutual exclusion.

35

Semaphores (13): ImplementationSemaphores (13): Implementation
P(sema)
{

disableInterrulpts();
if(sema.value-- > 0) {

enableInterrupts();
} else {

putMeToWaitQ(sema.waitQ);
enableInterrupts();
waitOn(sema.waitQ);

}
}

V(sema)
{

disbleInterrupts();
if(sema.value++ >= 0) {

enableInterrpts();
} else {

move1ToRdyList(sema.waitQ);
enableInterrupts();
yieldCPU();

}
}

36

• Multiprocessor solution: Mutual exclusion is harder

• Possibilities:
(1) Turn off all other processors.

(2) Use atomic hardware support.
Read-modify-write memory operations.

Example: test and Set (TAS) instruction

Semaphores (13): ImplementationSemaphores (13): Implementation

37

• Common solution:
– Change disableInterrupt(); to:

disableInterrupt();

while (TAS(lockMem) ! = 0) continue;

– Change enableInterrupt(); to:
lockMem = 0

enableInterrupt();

• Note: Multiprocessors solution does some busy-
waiting.

Semaphores (13): ImplementationSemaphores (13): Implementation

38

• Important point: Implement some mechanism once,
very carefully. Then always write programs that use
that mechanism. Layering is very important.

Semaphores (13): ImplementationSemaphores (13): Implementation

39

Monitors (1)Monitors (1)

• Monitors: High-level data abstraction tool that
combines three features:
(1) shared data.

(2) Operations on the data.

(3) Synchronization, scheduling.

• Monitors can be embedded in programming
languages.
– Example: Mesa/Cedar from Xerox and Java.

40

Monitors (2)Monitors (2)

• Example monitor in C:
monitor QueueHandler:

struct { ... } queue; //shared date.

AddToQueue(val) { - code to add to shared queue - }

int RemoveFromQueue() { - code to remove - }

endmonitor;

• One binary semaphore is associated with each
monitor.
– Implicit mutual exclusion.

41

Monitors (3)Monitors (3)

• Monitors are easier to use and safer than
semaphores.
– Complier can check usage.

• Condition variables: things to wait on.
– wait (condition): Release monitor lock, put process to sleep.

Reacquire lock when waken.
– signal (condition): Wake up one process waiting on the

condition variable. If nobody waiting, do nothing.
Note: No history in condition variables.

– broadcast (condition): Wake up all processes waiting on the
condition variable.

42

• There are several different variations on the
wait/signal mechanism.
– Who gets the monitor lock after a signal?
– “Mesa semantics”;

On signal, signaler keeps monitor lock.
Awakened process waits for monitor lock.

Must check again and be prepared to sleep.

• Unix internally uses a mechanism similar to
wait/signal.

• Unix kernel critical sections are made by disabling
interrupts:
– “spl” calls.

Monitors (4)Monitors (4)

43

type resource_manager is monitor
var busy: boolean; x: condition;

procedure entry acquire()
{

if (busy) x.wait;
busy = true;

}
procedure entry release()
}

busy = false;
x.signal;

}
{ /* Initialization */

busy = false;
}

Monitors (5): UsageMonitors (5): Usage

44

P(monitor_lock);
Body of the Function;

if (sig_lock.cnt > 0) {
V(sig_lock);

} else {
V(monitor_lock);

}

Monitors (6): RealizationMonitors (6): Realization

/* x.wait*/
x_cnt++;
if (sig_lock.cnt > 0) {

V(sig_lock);
} else {

V(monitor_lock);
P(x_lock);
x_cnt--;

/* x.signal; */
if (x_cnt > 0) {

sig_lock.cnt++;
V(x_lock);
P(sig_lock);
sig_lock.cnt--;

}

Semaphore for condition xx_lock
Semaphore for signalerssig_lock
Semaphore for the monitormonitor_lock

45

Communication with Messages (1)Communication with Messages (1)

• Up until now, discussion has been about communication
with shared date.
– Messages allow communication without shared data.
– Only one process “owns” the data at a time.

• Definitions:
– Message: A piece of information that is passed from one

process to another.
– Mailbox: A place where messages are stored between the time

they are sent and the time they are received.

46

Communication with Messages (2)Communication with Messages (2)

• Operations on messages:
– Send: Copy a message into mailbox.

– Receive: Copy a message out of mailbox.

• Two general styles of message communication:
– 1-way: Message flow back-and-forth.

Example: Unix pipes, producer/consumer.

– 2-way: Message flow back-and-forth.

Example: Remote procedure call, client/server.

47

Communication with Messages (3)Communication with Messages (3)

• Producer/Consumer example:

Producer:
int msg1[1000];
{

- - prepare msg 1 - -
send(msg1, mbox);

}

Consumer:
int msg2[1000];
while(TRUE)
{

recive(msg2, mbox);
- - process msg2

}

Note: Buffer recycling is implicit.

48

Communication with Messages (4)Communication with Messages (4)
• Client/Server example:

Client:
char response[1000];

while(TRUE)
{

send{“A CMD”, mbox1);
received(response, mbox2);

}

Server:
char command[100];
char answer[1000];

while(TRUE)
{

receive(command, mbox1);
- - decode command - -
- - fill in answer
send(answer, mbox2);

}

A lot like a procedure call & return

49

• Why use messages?
– Many applications fit into this model of processing a

sequential flow of information.
Example: Unix pipes.

– Communication parties can be separate, except for the
mailbox:

Less error-prone: No invisible side effects.
Parties might not trust each other (OS vs. user).
Parties might be written at different times by different
programmers.
Parties might be running on different machines on a
network.

Communication with Messages (5)Communication with Messages (5)

50

• Message systems vary along several dimensions.

• Relationship between mailboxes and processes:
(1) One mailbox per process, uses process name in send, no

name in receive (simple but restrictive) [RC4000, V].

(2) No strict mailbox-process association, uses mailbox name
(can have multiple mailboxes per process; can pass
mailboxes from process to process; but trickier to
implement) [Unix].

Communication with Messages (6)Communication with Messages (6)

51

Communication with Messages (7)Communication with Messages (7)
(3) Extent of buffering:

– Buffering (more efficient for large transfers when sender and
receiver run at varying speeds).

– None – rendezvous protocols (simple; OK for call-return type
communication; knows that message was received).

• Blocking vs. non-blocking ops:
– Blocking receive: Return message if mailbox isn’t empty;

otherwise, wait until message arrives.

– Non-blocking receive: Return message if mailbox isn’t
empty; otherwise, return special “empty” value.

52

– Blocking send: Wait until mailbox has space.

– Non-blocking send: Return “full” if no space in mailbox.

• Additional forms of waiting:
– Almost all systems allow many processes to wait on the

same mailbox at the same time. Messages get passed to
processes in order.

– A few systems allow a process to wait on several mailboxes
at once (e.g. select in UNIX). The process gets the first
message to arrive on any of the mailboxes.

Useful for network services, window systems, etc.

Communication with Messages (8)Communication with Messages (8)

53

• Constraints on what get passed in messages:

– None: Just a stream of bytes (Unix pipes).

– Enforce message boundaries (send and receive in same

chunks).

– Protected objects (e.g. process id of sender, or a token for a

mailbox).

Communication with Messages (9)Communication with Messages (9)

54

Communication with Messages (10)Communication with Messages (10)

• Messages and shared-data approaches are equally

powerful, but result in very different-looking styles of

programming.

Most people find shared-data approach easier to

work with.

• We will revisit this material when we talk about

networks.

55

ClientClient--Server CommunicationServer Communication
• Sockets
• Remote Procedure Calls
• Remote Method Invocation (Java)

56

SocketsSockets
• A socket is defined as an endpoint for communication.
• Concatenation of IP address and port
• The socket 161.25.19.8:1625 refers to port 1625 on

host 161.25.19.8
• Communication consists between a pair of sockets.

57

Socket CommunicationSocket Communication

58

Remote Procedure CallsRemote Procedure Calls
• Remote procedure call (RPC) abstracts procedure

calls between processes on networked systems.
• Stubs – client-side proxy for the actual procedure on

the server.
• The client-side stub locates the server and marshalls

the parameters.
• The server-side stub receives this message, unpacks

the marshalled parameters, and peforms the
procedure on the server.

59

Execution of RPCExecution of RPC

60

Remote Method InvocationRemote Method Invocation
• Remote Method Invocation (RMI) is a Java

mechanism similar to RPCs.
• RMI allows a Java program on one machine to

invoke a method on a remote object.

61

Marshalling ParametersMarshalling Parameters

62

Deadlock (1)Deadlock (1)

• Deadlock is one area where there is a strong theory,
but it is almost completely ignored in practice.
– Reason: Solutions are expensive and/or require predicting

the future.

• Deadlock example with semaphores.
Process 0: Process 1:

P(semaX); P(semaY);

P(semaY); P(semaX);

63

Deadlock (2)Deadlock (2)

• Define deadlock: A situation where each of a

collection of processes is waiting for something from

other processes in the collection. Since all are

waiting,none can provide any of the things being

waited for.

64

Deadlock (3): ExampleDeadlock (3): Example

PROC0 PROC1

semaX semaY

65

• The previous example was relatively simple-minded
Things may be much more complicated:
– In general, don’t know in advance how many resources a

process will need. If only we could predict the future...

– Deadlock can occur over separate resources, as in
semaphore example, or over pieces of a single resource, as
in memory, or even over totally separate classes of
resources (tape drives and memory).

– Deadlock can occur over anything involving, for example,
messages in a pipe system.

– Hard for Os to control.

Deadlock (4)Deadlock (4)

66

• Four necessary conditions for deadlock:
(1) Mutual exclusion (limited access):

Resources cannot be shared.

(2) No preemption:

Once given, a resource cannot be taken away.

(3) Hold and wait (multiple independent requests):

Processes don’t ask for resources all at once.

(4) Circular wait:

There is a circularity in the graph of who has what and who
wants what.

Deadlock (5)Deadlock (5)

67

• Solution to deadlock problem fall into two general
categories:
– Detection: Determine when the system is deadlocked, and

then take drastic action. Requires termination of one or more
processes in order to release their resources.

– Prevention: Organize the system so that it is impossible for
deadlock ever to occur. May lead to less efficient resource
utilization in order to guarantee no deadlocks.

Deadlock (6): HandlingDeadlock (6): Handling

68

• Mutual exclusion:

– Don’t allow exclusive access.

This is probably not reasonable for many applications.

• No preemption:

– Allow preemption. (E.g., Preempt your disk space?).

Deadlock Prevention (1)Deadlock Prevention (1)

69

Deadlock Prevention (2)Deadlock Prevention (2)

• Hold and wait:

– Make process ask for everything at once. Either get them all

or wait for them all. Tricky to implement:

Must be able to wait on many things without locking

anything. Painful for process: May be difficult to predict, so

must make very wasteful use of resources.

This requires the process to predict the future.

70

• Circular waiting:

– Create enough resources so that there’s always plenty for all.

– Don’t allow waiting. This punts the problem back to the user.

(E.g., Phone company).

– Make ordered or hierarchical requests. E.g., ask for all S’s,

then all T’s etc. All processes must follow the same ordering

scheme. Of course, for this you have to know in advance

what is needed.

Deadlock Prevention (3)Deadlock Prevention (3)

71

Deadlock Prevention (4)Deadlock Prevention (4)

• In general, prevention of deadlock is expensive

and/or inefficient.

Detection is also expensive and recovery is seldom

possible

(What if process has things in a weird state?).

72

Deadlock Avoidance (1): Safe StateDeadlock Avoidance (1): Safe State

• Safe state: The system can allocate resources to each

process up to its maximum in some order and still

avoid a deadlock.

• A safe sequence must exist from a safe state.

• Unsafe state: May lead to a deadlock.

73

Deadlock Avoidance (2): Safe StateDeadlock Avoidance (2): Safe State

74

Deadlock Avoidance (3): Safe StateDeadlock Avoidance (3): Safe State

• Example: A system with 12 magnetic drives.
Safe sequence: <P1,P0,P2>

Processes Max Needs Current Allocations

P0 10 5

P1 4 2

P2 9 2

Transition from a safe state to an unsafe one: < P'2>

Processes Max Needs New Allocation (1 additional
request)

P'2 9 3

75

Deadlock Avoidance (4): Deadlock Avoidance (4):
BankerBanker’’s Algorithms Algorithm

• A new process must declare the maximum resource
needs.

• When a process requests resources, the algorithm
checks if the allocation will leave the system in a safe
state.

• Grant the resources, if so.
• Have it wait until some other process releases

enough resources.

76

• Available[1;m]: The number of available resources of

each type.

• Max[1:n,1:m]: The maximum demand of each process.

• Allocation[1:n,1:m]: The number of resources of each

type currently allocated to each process.

Deadlock Avoidance (5): Deadlock Avoidance (5):
BankerBanker’’s Algorithm (Notations)s Algorithm (Notations)

77

Deadlock Avoidance (6): Deadlock Avoidance (6):
BankerBanker’’s Algorithm (Notations)s Algorithm (Notations)

• Need[1:n,1,m]: The remaining resource need of each

process.
Max[I,j] = Allocation[I,j] + Need[I,j]

• For two vectors X and Y:

X ≤ Y iff ∀i :: 1 ≤ i ≤ n :: X[i] ≤ Y[i]

X < Y iff X ≤ Y and X ≠ Y.

78

Step 0: Work[1:m] and Finish[1:n] are two vectors.

Step 1: Work:= Available and Finish[i]:= false for i = 1,2,...,n.

Step 2: Find an i such that both

• Finish[i] = false

• Need[i] ≤ Work

If no such i exists, go to Step 4.

Deadlock Avoidance (7): Deadlock Avoidance (7):
BankerBanker’’s Algorithm (Safety)s Algorithm (Safety)

79

Deadlock Avoidance (8): Deadlock Avoidance (8):
BankerBanker’’s Algorithm (Safety)s Algorithm (Safety)

Step 3: Work:= Work + Allocation[i]

Finish[i]:= true

Go to Step 2.

Step 4: If Finish[i] = true for all i,then the system is in a

safe state.

80

BankerBanker’’s Algorithm (9): s Algorithm (9):
Resource Request for PiResource Request for Pi

Step 0: Request[1:n, 1:m] is the resource request of

each process.

Step 1: If Request[i] ≤ Need[i], go to step2.

Otherwise, raise an error condition.

Step 2: If Request[i] ≤ Available, go to step 3.

Otherwise, Pi must wait for the resource.

81

BankerBanker’’s Algorithm (10): s Algorithm (10):
Resource Request for PiResource Request for Pi

Step 3:

Available:= Available – Request[i];

Allocation[I]:= Allocation[i]+ Request[i];

Need[i]:= Need[i] – Request[i];

Step 4: If the resulting resource allocation is safe, the
transaction is completed and Pi if allocated.
Otherwise, Pi must wait and old resource allocation
state is restored.

82

Deadlock Avoidance (11): Deadlock Avoidance (11):
BankerBanker’’s Algorithm (Example)s Algorithm (Example)

4 3 30 0 2P4

2 2 2 2 1 1P3

9 0 23 0 2P2

3 2 22 0 0P1

3 3 27 5 30 1 0P0

A B CA B CA B C
AvailableMax NeedsAllocationsProcesses

• A state snapshot: Safe sequence <P1,P3,P4,P2,P0>

• NewRequest[1] = (1,0,2):
– Determine if the new state is safe.

83

Deadlock Detection (1)Deadlock Detection (1)

• Single instance of each resource type:

Existence of cycle is a necessary and sufficient

condition for a deadlock.

• Multiple instances of a resource type:

Use a deadlock detection algorithm similar to the

banker’s algorithm.

84

Step 0: Work[1:m] and Finish[1:n] are two vectors.

Step 1: Work:= Available.

For I = 1,2,...,n, Finish[i]:=

Step 2: Find an i such that both
• Finish[i] = false

• Request[i] ≤ Work
If no such exists, go to Step 4.

Deadlock Detection Algorithm (2)Deadlock Detection Algorithm (2)

false, if Allocation[i] ≠
0;
true, otherwise.

85

Deadlock Detection Algorithm (3)Deadlock Detection Algorithm (3)

Step 3: Work:= Work + Allocation[i]; Finish[i]:= true

Go to Step 2.

Step 4: If Finish[i] = false for some i, then the system is

in a deadlock state. Such i (i.e., Pi) is a deadlocked

process.

86

• Deadlock involving P1, P2, P3,P4:

Deadlock Detection Algorithm (4): Deadlock Detection Algorithm (4):
ExampleExample

0 0 20 0 2P4

1 0 02 1 1P3

0 0 13 0 3P2

2 0 22 0 0P1

0 0 00 0 00 1 0P0

A B CA B CA B C
AvailableRequestsAllocationsProcesses

87

Deadlock RecoveryDeadlock Recovery
• Process termination

– Abort all deadlocked processes
– Abort one process one at a time until the deadlock cycle is

eliminated.

• Resource Preemption
– Select a victim
– Rollback
– Starvation

