
CPU SchedulingCPU Scheduling
(Topic 3)(Topic 3)

홍 성수

서울대학교공과대학전기공학부

Real-Time Operating Systems Laboratory

1

• Resources fall into two classes:
– Preemptible: Can take resource away, use it for something

else, then give it back later.
Examples: Processor or disk.

– Non-preemptible: Once given, it can’t be reused until
process gives it back.

Examples: File space, terminal

• Distinction is a little arbitrary, like (non-)breakable.

CPU Scheduling (1)CPU Scheduling (1)

2

CPU Scheduling (2)CPU Scheduling (2)

• Until now you have heard about processes:
– Process implementation

– Process synchronization/deadlock

– Process communication

• From now on you’ll hear about resources.
– Resources are things operated upon by processes.

– Example: CPU time, disk space, disk channel time.

3

• OS makes two related kinds of decisions about
resources:
– Who gets what?

Given a set of requests for resources, which processes should be
given which resources in order to make most efficient use of
the resources?

Implication is that resources aren’t easily preemptible.
– How long can they keep it?

When more resources are requested than can be granted
immediately, in which order should they be serviced ?

Examples:
Processor scheduling: One processor, many processes.
Memory scheduling in VM systems.

Implication is that resource is preemptible.

CPU Scheduling (3)CPU Scheduling (3)

4

• Resource #1 to examine: The processor

• Processes may be in any of three general scheduling
states.
– Running: Has the CPU.

– Ready: Wants the CPU.

– Waiting (Blocked): Waiting for some event:
Disk I/O, message, semaphore, etc.

CPU Scheduling (4)CPU Scheduling (4)

5

CPU Scheduling (5)CPU Scheduling (5)

6

• Maximize CPU utilization with multiprogramming
• CPU–I/O burst cycle

– Process execution consists of a cycle of CPU execution and
I/O wait.

• CPU burst distribution

Basic ConceptsBasic Concepts

7

Alternating CPU and I/O BurstsAlternating CPU and I/O Bursts

8

Histogram of CPU Burst TimesHistogram of CPU Burst Times

9

CPU SchedulerCPU Scheduler
• Selects one among the processes in memory that are

ready to execute, and allocates the CPU to one of
them.

• CPU scheduling decisions may take place when a
process:
1. Switches from running to waiting state.
2. Switches from running to ready state.
3. Switches from waiting to ready.
4. Terminates.

• Scheduling under 1 and 4 is nonpreemptive.
• All other scheduling is preemptive.

10

DispatcherDispatcher
• Dispatcher module gives control of the CPU to the

process selected by the short-term scheduler; this
involves:
– switching context
– switching to user mode
– jumping to the proper location in the user program to restart

that program

• Dispatch latency – time it takes for the dispatcher to
stop one process and start another running.

11

Scheduling CriteriaScheduling Criteria
• CPU utilization – keep the CPU as busy as possible
• Throughput – # of processes that complete their

execution per time unit
• Turnaround time – amount of time to execute a particular

process
• Waiting time – amount of time a process has been waiting

in the ready queue
• Response time – amount of time it takes from when a

request was submitted until the first response is produced,
not output (for time-sharing environment)

12

Optimization CriteriaOptimization Criteria
• Max CPU utilization
• Max throughput
• Min turnaround time
• Min waiting time
• Min response time

13

• Goals of scheduling disciplines:
– Efficiency of resource utilization.

Example: Keep CPU and disks busy.

– Minimize overhead.
Example: Reduce context switches.

– Minimize response time.

– Distribute cycles equitably.

• Scheduling disciplines:
– FIFO, FCFS, LIFO, RR, STCF, etc.

CPU Scheduling PoliciesCPU Scheduling Policies

14

• Associate with each process the length of its next
CPU burst. Use these lengths to schedule the
process with the shortest time.

• Two schemes:
– nonpreemptive – once CPU given to the process it cannot be

preempted until completes its CPU burst.
– preemptive – if a new process arrives with CPU burst length

less than remaining time of current executing process,
preempt. This scheme is know as the
Shortest-Remaining-Time-First (SRTF).

• SJF is optimal – gives minimum average waiting time
for a given set of processes.

Shortest Job First (SJF) (1)Shortest Job First (SJF) (1)

15

Process Arrival Time Burst Time
P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

• SJF (nonpreemptive)

• Average waiting time = (0 + 6 + 3 + 7)/4 - 4

P1 P3 P2

73 160

P4

8 12

SJF (2): SJF (2): NonpreemptiveNonpreemptive

16

SJF (3): PreemptiveSJF (3): Preemptive
Process Arrival Time Burst Time

P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

• SJF (preemptive)

• Average waiting time = (9 + 1 + 0 +2)/4 - 3

P1 P3P2

42 110

P4

5 7

P2 P1

16

17

• Can only estimate the length.
• Can be done by using the length of previous CPU

bursts, using exponential averaging.

:Define 4.
10 , 3.

burst CPU next the for value predicted 2.
burst CPU of lenght actual 1.

≤≤
=

=

+

αα
τ 1n

th
n nt

() .t nnn ταατ −+== 11

Predicting Next CPU Burst SizePredicting Next CPU Burst Size

18

Predicting Next CPU Burst SizePredicting Next CPU Burst Size

19

• α =0
– τn+1 = τn

– Recent history does not count.
• α =1

– τn+1 = tn
– Only the actual last CPU burst counts.

• If we expand the formula, we get:
τn+1 = α tn+(1 - α) α tn -1 + …

+(1 - α)j α tn -1 + …
+(1 - α)n=1 tn τ0

• Since both α and (1 - α) are less than or equal to 1, each
successive term has less weight than its predecessor.

Exponential AveragingExponential Averaging

20

• Run until finish.
– Also called First Come Fist Served (FCFS).

– In the simplest case this means uniprogramming.

– Usually, “finished” means “blocked.”
One process can use CPU while another waits on a semaphore.

Go to the back of run queue when ready.

– Problem: One process can monopolize CPU.

– Solution: Limit maximum amount of time that a process can
run without a context switch.

This time is called a time slice.

First In First Out (1)First In First Out (1)

21

Process Burst Time
P1 24
P2 3
P3 3

• Suppose that the processes arrive in the order: P1 , P2 , P3
The Gantt Chart for the schedule is:

• Waiting time for P1 = 0; P2 = 24; P3 = 27
• Average waiting time: (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 300

First In First Out (2)First In First Out (2)

22

Suppose that the processes arrive in the order
P2 , P3 , P1 .

• The Gantt chart for the schedule is:

• Waiting time for P1 = 6; P2 = 0; P3 = 3
• Average waiting time: (6 + 0 + 3)/3 = 3
• Much better than previous case.
• Convoy effect short process behind long process

P1P3P2

63 300

First In First Out (3)First In First Out (3)

23

Round Robin (1)Round Robin (1)

• Round Robin: Run process for one time slice, then
move to the back of queue.
– Each process gets equal share of the CPU.

– Most systems use some variant of this.

• What happens if the time slice isn’t chosen carefully:
– Too long: A process can monopolize the CPU.

– Too short: Too much context switch overhead.

24

• Originally, Unix had 1 second time slices. Too long.
Current systems have time slices of around 100 ms.

• Implementation of priorities:
– Run highest-priority processes first.

– Round-robin among processes of equal priority.

– Re-insert process in run queue behind all processes of
greater or equal priority.

Round Robin (2)Round Robin (2)

25

• Round-robin can produce bad results occasionally:

Consider 10 processes each requiring 100 time slices:
– Under round-robin they all take 1000 time slices to finish.

– FIFO would average only 500 time slices.

Round-robin is fair, but uniformly inefficient.

• How to optimized the average response time ?

STCF: Shortest time to completion first.
– Results in minimum average response time.

Round Robin (3)Round Robin (3)

26

• Example: 2 processes:
– Proc 1: Run for 1 ms then wait for I/O for 10 ms.

– Proc 2: No waiting, run continuously.

(1) Round-robin with a 100 ms time slice:
– I/O process runs at 1/10th speed.

– I/O devices are only 10% utilized.

(2) Round-robin with a 1 ms time slice:
– CPU bound process gets interrupted 9 times unnecessarily

for each valid interrupt.

Round Robin (4)Round Robin (4)

27

• STCF works quite nicely.

• Unfortunately, STCF requires knowledge of the future.
– Must use past behavior to predict future behavior.

– Example: Long-running process will probably take a long time
more.

• Use the dispatcher’s priority mechanisms to disfavor
long running processes.

Exponential Queues (1)Exponential Queues (1)

28

• Exponential Queues (or Multi-Level Feedback Queues):
– Give newly runnable processes a high priority and a very short

time slice.

If process uses up the time slice without blocking:
Decrease its priority by 1.

Double time slice for next time.

Example:
PROC 1 runs for 1 ms and blocks.

PROC 2 runs for 1 ms and doesn’t block.

PROC 2 gets priority-1, time slice 2.

Exponential Queues (2)Exponential Queues (2)

29

PROC 2 runs for 2 ms and doesn’t block.
PROC 2 gets priority-2, time slice 4.

PROC 2 runs for 4 ms and doesn’t block.
PROC 2 gets priority-3, time slice 8.

PROC 2 runs for 3 ms and gets preempted.
PROC 1 runs for 1 ms and blocks.
PROC 2 runs for 5
……
PROC 1 runs for 1 ms and blocks.
PROC 2 runs until PROC 1 is ready and preempts it.

– Techniques like this one are called adaptive.
Common in interactive systems.

– The CTSS systems (MIT around 1962) was the first to use
exponential queues.

Exponential Queues (3)Exponential Queues (3)

30

• Fair share scheduling (similar to what’s implemented in
Unix):
– Keep history of recent CPU usage for each process.
– Give highest priority to process that has used the least CPU time

recently.
Highly interactive jobs, like editors, will use little CPU and get high

priority.
CPU-bound jobs, like compilers, will get lower priority.

– Can adjust priorities by changing “billing factors” for processes.
E.g., to make high-priority process, only use half its recent CPU usage

in computing history.

Fair Share SchedulingFair Share Scheduling

31

• Summary
– In principle, scheduling algorithms can be arbitary, Since the

system should produce the same results in any event.

– However, the algorithms have strong effects on the system’s
overhead, efficiency, and response time.

– The best schemes are adaptive. To do absolutely best, se’d
have to be able to predict the future.

• Best scheduling algorithms tend to give highest
priority to the processes that need the least !

CPU SchedulingCPU Scheduling

