
1

4444
C ProgramC og a

ControlControl

© 2007 Pearson Education, Inc. All rights reserved.

2

Not everything that can be counted counts, and
not every thing that counts can be counted.

—Albert Einstein

Who can control his fate?
—William Shakespeare

The used key is always bright.
—Benjamin Franklin

© 2007 Pearson Education, Inc. All rights reserved.

3

Intelligence… is the faculty of making artificial
objects, especially tools to make tools.

—Henri Bergson

Every advantage in the past is judged in the light
of the final issue.

—Demosthenes

© 2007 Pearson Education, Inc. All rights reserved.

4

OBJECTIVESOBJECTIVES
In this chapter you will learn:

The essentials of counter-controlled repetition.
To use the for and do...while repetition statements to
execute statements in a program repeatedlyexecute statements in a program repeatedly.
To understand multiple selection using the switch
selection statement.
To use the break and continue program control
statements to alter the flow of control.
T th l i l t t f l diti lTo use the logical operators to form complex conditional
expressions in control statements.
To avoid the consequences of confusing the equality andTo avoid the consequences of confusing the equality and
assignment operators.

© 2007 Pearson Education, Inc. All rights reserved.

5

4.1 Introduction
4.2 Repetition Essentials
4.3 Counter-Controlled Repetition
4.4 for Repetition Statement
4.5 for Statement: Notes and Observations
4.6 Examples Using the for Statement
4.7 switch Multiple-Selection Statement
4 8 d hil Repetition Statement4.8 do...while Repetition Statement
4.9 break and continue Statements
4 10 Logical Operators4.10 Logical Operators
4.11 Confusing Equality (==) and Assignment (=) Operators
4.12 Structured Programming SummarySt uctu ed og a g Su a y

© 2007 Pearson Education, Inc. All rights reserved.

6

4.1 Introduction

This chapter introducesp
– Additional repetition control structures

- for

- do…while

– switch multiple selection statement
– break statement

- Used for exiting immediately and rapidly from certain
t l t tcontrol structures

– continue statement
- Used for skipping the remainder of the body of a repetition- Used for skipping the remainder of the body of a repetition

structure and proceeding with the next iteration of the loop

© 2007 Pearson Education, Inc. All rights reserved.

7

4.2 Repetition Essentialsp

Loopp
– Group of instructions computer executes repeatedly while

some condition remains true

Counter-controlled repetition
– Definite repetition: know how many times loop will executeDefinite repetition: know how many times loop will execute
– Control variable used to count repetitions

Sentinel-controlled repetitionSentinel controlled repetition
– Indefinite repetition
– Used when number of repetitions not known– Used when number of repetitions not known
– Sentinel value indicates "end of data"

© 2007 Pearson Education, Inc. All rights reserved.

8

4.3 Counter-Controlled Repetitionp

Counter-controlled repetition requiresp q
– The name of a control variable (or loop counter)
– The initial value of the control variable
– An increment (or decrement) by which the control variable

is modified each time through the loop
– A condition that tests for the final value of the control

variable (i.e., whether looping should continue)

© 2007 Pearson Education, Inc. All rights reserved.

9

4.3 Counter-Controlled Repetitionp

Example: p
int counter = 1; // initialization

while (counter <= 10) { // repetition condition

printf("%d\n" counter);printf(%d\n , counter);

++counter; // increment

}

– The statement
int counter = 1;

- Names counter- Names counter
- Defines it to be an integer
- Reserves space for it in memory
- Sets it to an initial value of 1

© 2007 Pearson Education, Inc. All rights reserved.

10 1 /* Fig. 4.1: fig04_01.c

 2 Counter-controlled repetition */

 3 #include <stdio.h>

 4

Outline

 5 /* function main begins program execution */

 6 int main(void)

 7 {

 8 int counter = 1; /* initialization */

fig04_01.c

Definition and assignment are performed
 9
10 while (counter <= 10) { /* repetition condition */
11 printf ("%d\n", counter); /* display counter */
12 ++counter; /* increment */
13 } /* d hil */

simultaneously

13 } /* end while */
14
15 return 0; /* indicate program ended successfully */
16
17 } /* end function main */ 17 } /* end function main */

1

2

3

4 4

5

6

7

8

9

10

© 2007 Pearson Education,
Inc. All rights reserved.

11

4.3 Counter-Controlled Repetitionp

Condensed code
– C Programmers would make the program more concise
– Initialize counter to 0

- while (++counter <= 10)
printf(“%d\n, counter);

© 2007 Pearson Education, Inc. All rights reserved.

12

Common Programming Error 4.1

Because floating-point values may be
i t t lli ti lapproximate, controlling counting loops

with floating-point variables may result in
imprecise counter values and inaccurateimprecise counter values and inaccurate
tests for termination.

© 2007 Pearson Education, Inc. All rights reserved.

13

Error-Prevention Tip 4.1

Control counting loops with integer values.

© 2007 Pearson Education, Inc. All rights reserved.

14

Good Programming Practice 4.1

Indent the statements in the body of each
t l t t tcontrol statement.

© 2007 Pearson Education, Inc. All rights reserved.

15

Good Programming Practice 4.2

Put a blank line before and after each
t l t t t t k it t d t icontrol statement to make it stand out in a

program.

© 2007 Pearson Education, Inc. All rights reserved.

16

Good Programming Practice 4.3

Too many levels of nesting can make a
diffi lt t d t d Aprogram difficult to understand. As a

general rule, try to avoid using more than
three levels of nestingthree levels of nesting.

© 2007 Pearson Education, Inc. All rights reserved.

17

Good Programming Practice 4.4

The combination of vertical spacing before
d ft t l t t t d i d t tiand after control statements and indentation

of the bodies of control statements within the
control statement headers gives programs acontrol-statement headers gives programs a
two-dimensional appearance that greatly
improves program readability.improves program readability.

© 2007 Pearson Education, Inc. All rights reserved.

18 1 /* Fig. 4.2: fig04_02.c

 2 Counter-controlled repetition with the for statement */

 3 #include <stdio.h>

 4

Outline

 5 /* function main begins program execution */

 6 int main(void)

 7 {

 8 int counter; /* define counter */

fig04_02.c

 9
10 /* initialization, repetition condition, and increment
11 are all included in the for statement header. */
12 for (counter = 1; counter <= 10; counter++) {
13 i f("%d\ ")

for loop begins by setting counter to 1
13 printf("%d\n", counter);
14 } /* end for */
15
16 return 0; /* indicate program ended successfully */
17

and repeats while counter <= 10.
Each time the end of the loop is reached,
counter is incremented by 1.

17
18 } /* end function main */

© 2007 Pearson Education,
Inc. All rights reserved.

19

Fig. 4.3 | for statement header components.

© 2007 Pearson Education, Inc. All rights reserved.

20

Common Programming Error 4.2

Using an incorrect relational operator or
i i t i iti l fi l l fusing an incorrect initial or final value of a

loop counter in the condition of a while or
for statement can cause off by one errorsfor statement can cause off-by-one errors.

© 2007 Pearson Education, Inc. All rights reserved.

21

Error-Prevention Tip 4.2

Using the final value in the condition of a while
f t t t d i th l ti lor for statement and using the <= relational

operator will help avoid off-by-one errors. For a
loop used to print the values 1 to 10 for exampleloop used to print the values 1 to 10, for example,
the loop-continuation condition should be
counter <= 10 rather than counter < 11 orcounter < 10 rather than counter < 11 or
counter < 10.

© 2007 Pearson Education, Inc. All rights reserved.

22

4.4 for Repetition Statementp

Format when using for loopsg p
for (initialization; loopContinuationTest; increment)

statement

Example:
for(int counter = 1; counter <= 10; counter++)

printf("%d\n", counter);

– Prints the integers from one to ten

© 2007 Pearson Education, Inc. All rights reserved.

23

4.4 for Repetition Statementp

For loops can usually be rewritten as while loops:p y p
initialization;
while (loopContinuationTest) {

statement;statement;
increment;

}

Initialization and incrementInitialization and increment
– Can be comma-separated lists

Example:– Example:
for (int i = 0, j = 0; j + i <= 10; j++, i++)

printf("%d\n", j + i);p j

© 2007 Pearson Education, Inc. All rights reserved.

24

Software Engineering Observation 4.1

Place only expressions involving the control
i bl i th i iti li ti d i tvariables in the initialization and increment

sections of a for statement. Manipulations
of other variables should appear eitherof other variables should appear either
before the loop (if they execute only once,
like initialization statements) or in the looplike initialization statements) or in the loop
body (if they execute once per repetition, like
incrementing or decrementing statements).g g)

© 2007 Pearson Education, Inc. All rights reserved.

25

Common Programming Error 4.3

Using commas instead of semicolons in a
f h d i tfor header is a syntax error.

© 2007 Pearson Education, Inc. All rights reserved.

26

Common Programming Error 4.4

Placing a semicolon immediately to the
i ht f f h d k th b d fright of a for header makes the body of

that for statement an empty statement.
This is normally a logic errorThis is normally a logic error.

© 2007 Pearson Education, Inc. All rights reserved.

27

4.5 for Statement : Notes and
ObservationsObservations

Arithmetic expressions
– Initialization, loop-continuation, and increment can contain

arithmetic expressions. If x equals 2 and y equals 10
for (j = x; j <= 4 * x * y; j += y / x)(j ; j y; j y /)

is equivalent to
for (j = 2; j <= 80; j += 5)

N t b t th f t t tNotes about the for statement:
– "Increment" may be negative (decrement)
– If the loop continuation condition is initially falseIf the loop continuation condition is initially false

- The body of the for statement is not performed
- Control proceeds with the next statement after the for statement

C t l i bl– Control variable
- Often printed or used inside for body, but not necessary

© 2007 Pearson Education, Inc. All rights reserved.

28

Error-Prevention Tip 4.3

Although the value of the control variable
b h d i th b d f f lcan be changed in the body of a for loop,

this can lead to subtle errors. It is best not
to change itto change it.

© 2007 Pearson Education, Inc. All rights reserved.

29

Fig. 4.4 | Flowcharting a typical for repetition statement.

© 2007 Pearson Education, Inc. All rights reserved.

30 1 /* Fig. 4.5: fig04_05.c

 2 Summation with for */

 3 #include <stdio.h>

 4

Outline

 5 /* function main begins program execution */

 6 int main(void)

 7 {

 8 int sum = 0; /* initialize sum */

i b / b b dd d /

fig04_05.c

 9 int number; /* number to be added to sum */

10
11 for (number = 2; number <= 100; number += 2) {
12 sum += number; /* add number to sum */
13 } /* d f */

Note that number has a different value
13 } /* end for */
14
15 printf("Sum is %d\n", sum); /* output sum */
16
17 ret rn 0 /* indicate program ended s ccessf ll */

each time this statement is executed

17 return 0; /* indicate program ended successfully */
18
19 } /* end function main */

Sum is 2550

© 2007 Pearson Education,
Inc. All rights reserved.

31

Good Programming Practice 4.5

Although statements preceding a for and
t t t i th b d f f ft bstatements in the body of a for can often be

merged into the for header, avoid doing so
because it makes the program more difficultbecause it makes the program more difficult
to read.

© 2007 Pearson Education, Inc. All rights reserved.

32

Good Programming Practice 4.6

Limit the size of control-statement headers
t i l li if iblto a single line if possible.

© 2007 Pearson Education, Inc. All rights reserved.

33 1 /* Fig. 4.6: fig04_06.c

 2 Calculating compound interest */

 3 #include <stdio.h>

 4 #include <math.h>

Outline
additional header

 5
 6 /* function main begins program execution */

 7 int main(void)

 8 {

d bl / d i /

fig04_06.c

(1 of 2) 9 double amount; /* amount on deposit */

10 double principal = 1000.0; /* starting principal */
11 double rate = .05; /* annual interest rate */
12 int year; /* year counter */
13

(1 of 2)

13
14 /* output table column head */
15 printf("%4s%21s\n", "Year", "Amount on deposit");
16
17 /* calc late amo nt on deposit for each of ten ears */ 17 /* calculate amount on deposit for each of ten years */
18 for (year = 1; year <= 10; year++) {
19
20 /* calculate new amount for specified year */
21 amount principal * pow(1 0 + rate year);

pow function calculates the value of the 21 amount = principal * pow(1.0 + rate, year);
22
23 /* output one table row */
24 printf("%4d%21.2f\n", year, amount);
25 } /* end for */

p
first argument raised to the power of
the second argument

25 } / end for /

26
27 return 0; /* indicate program ended successfully */
28
29 } /* end function main */

© 2007 Pearson Education,
Inc. All rights reserved.

29 } / end function main /

34

Year Amount on deposit

 1 1050.00

 2 1102.50

Outline

 3 1157.63

 4 1215.51

 5 1276.28

 6 1340 10

fig04_06.c

(2 of 2) 6 1340.10

 7 1407.10

 8 1477.46

 9 1551.33

(2 of 2)

 10 1628.89

© 2007 Pearson Education,
Inc. All rights reserved.

35

Error-Prevention Tip 4.4

Do not use variables of type float or
d bl t f t l l tidouble to perform monetary calculations.
The impreciseness of floating-point
numbers can cause errors that will resultnumbers can cause errors that will result
in incorrect monetary values.

© 2007 Pearson Education, Inc. All rights reserved.

36

4.7 switch Multiple-Selection Statement

switch

– Useful when a variable or expression is tested for all the values it
can assume and different actions are taken

FormatFormat
– Series of case labels and an optional default case

switch (value){

 '1'case '1':

actions

case '2':

tiactions

default:

actions

}}

– break; exits from statement

© 2007 Pearson Education, Inc. All rights reserved.

37 1 /* Fig. 4.7: fig04_07.c

 2 Counting letter grades */

 3 #include <stdio.h>

 4

OutlineOutline

 5 /* function main begins program execution */

 6 int main(void)

 7 {

 8 int grade; /* one grade */

i / b f /

fig04_07.c

(1 of 4) 9 int aCount = 0; /* number of As */

10 int bCount = 0; /* number of Bs */
11 int cCount = 0; /* number of Cs */
12 int dCount = 0; /* number of Ds */
13 i f 0 /* b f */

(1 of 4)

13 int fCount = 0; /* number of Fs */
14
15 printf("Enter the letter grades.\n");
16 printf("Enter the EOF character to end input.\n");
1717
18 /* loop until user types end-of-file key sequence */
19 while ((grade = getchar()) != EOF) {
20
21 /* determine which grade was input */

EOF stands for “end of file;” this character varies
from system to system21 /* determine which grade was input */

22 switch (grade) { /* switch nested in while */
23
24 case 'A': /* grade was uppercase A */
25 case 'a': /* or lowercase a */

from system to system

switch statement checks each of its nested
cases for a match

25 case a : / or lowercase a /

26 ++aCount; /* increment aCount */
27 break; /* necessary to exit switch */
28

© 2007 Pearson Education,
Inc. All rights reserved.

break statement makes program skip to end of switch

3829 case 'B': /* grade was uppercase B */
30 case 'b': /* or lowercase b */
31 ++bCount; /* increment bCount */
32 break; /* exit switch */

Outline

33
34 case 'C': /* grade was uppercase C */
35 case 'c': /* or lowercase c */
36 ++cCount; /* increment cCount */

b k / i i h /

fig04_07.c

(2 of 4)37 break; /* exit switch */
38
39 case 'D': /* grade was uppercase D */
40 case 'd': /* or lowercase d */
41 d /* i d */

(2 of 4)

41 ++dCount; /* increment dCount */
42 break; /* exit switch */
43
44 case 'F': /* grade was uppercase F */
45 case 'f' /* or lo ercase f */ 45 case 'f': /* or lowercase f */
46 ++fCount; /* increment fCount */
47 break; /* exit switch */
48
49 case '\n': /* ignore newlines */ 49 case \n : /* ignore newlines, */

50 case '\t': /* tabs, */
51 case ' ': /* and spaces in input */
52 break; /* exit switch */
5353

© 2007 Pearson Education,
Inc. All rights reserved.

3954 default: /* catch all other characters */
55 printf("Incorrect letter grade entered.");
56 printf(" Enter a new grade.\n");
57 break; /* optional; will exit switch anyway */

Outline
default case occurs if none of the

58 } /* end switch */
59
60 } /* end while */
61

/ f l /

fig04_07.c

(3 of 4)

cases are matched

62 /* output summary of results */
63 printf("\nTotals for each letter grade are:\n");
64 printf("A: %d\n", aCount); /* display number of A grades */
65 printf("B: %d\n", bCount); /* display number of B grades */
66 i f(" %d\ ") /* di l b f d */

(3 of 4)

66 printf("C: %d\n", cCount); /* display number of C grades */
67 printf("D: %d\n", dCount); /* display number of D grades */
68 printf("F: %d\n", fCount); /* display number of F grades */
69
70 ret rn 0 /* indicate program ended s ccessf ll */ 70 return 0; /* indicate program ended successfully */
71
72 } /* end function main */

© 2007 Pearson Education,
Inc. All rights reserved.

40
Enter the letter grades.
Enter the EOF character to end input.
a
b

Outline

c
C
A
d
f
C

fig04_07.c

(4 of 4)C
E
Incorrect letter grade entered. Enter a new grade.
D
A
b

(4 of 4)

^Z

Totals for each letter grade are:
A: 3
B: 2
 3 C: 3

D: 2
F: 1

© 2007 Pearson Education,
Inc. All rights reserved.

41

Portability Tip 4.1

The keystroke combinations for entering
EOF (d f fil) t d d tEOF (end of file) are system dependent.

© 2007 Pearson Education, Inc. All rights reserved.

42

Portability Tip 4.2

Testing for the symbolic constant EOF rather
1than –1 makes programs more portable. The C

standard states that EOF is a negative integral
l (b t t il 1) Th EOF ldvalue (but not necessarily –1). Thus, EOF could

have different values on different systems.

© 2007 Pearson Education, Inc. All rights reserved.

43

Common Programming Error 4.5

Forgetting a break statement when one is
d d i it h t t t i l ineeded in a switch statement is a logic

error.

© 2007 Pearson Education, Inc. All rights reserved.

44

Fig. 4.8 | switch multiple-selection statement with breaks.

© 2007 Pearson Education, Inc. All rights reserved.

45

Good Programming Practice 4.7

Provide a default case in switch
t t t C t li itl t t d istatements. Cases not explicitly tested in a
switch are ignored. The default case helps
prevent this by focusing the programmer onprevent this by focusing the programmer on
the need to process exceptional conditions.
There are situations in which no defaultThere are situations in which no default
processing is needed.

© 2007 Pearson Education, Inc. All rights reserved.

46

Good Programming Practice 4.8

Although the case clauses and the
d f lt l i it h t t tdefault case clause in a switch statement
can occur in any order, it is considered good
programming practice to place the default programming practice to place the default
clause last.

© 2007 Pearson Education, Inc. All rights reserved.

47

Good Programming Practice 4.9

In a switch statement when the
d f lt l i li t d l t th b kdefault clause is listed last, the break
statement is not required. But some
programmers include this break forprogrammers include this break for
clarity and symmetry with other cases.

© 2007 Pearson Education, Inc. All rights reserved.

48

Common Programming Error 4.6

Not processing newline characters in the
i t h di h t t tiinput when reading characters one at a time
can cause logic errors.

© 2007 Pearson Education, Inc. All rights reserved.

49

Error-Prevention Tip 4.5

Remember to provide processing capabilities
f li (d ibl th hit)for newline (and possibly other white-space)
characters in the input when processing
characters one at a timecharacters one at a time.

© 2007 Pearson Education, Inc. All rights reserved.

50

4.8 do…while Repetition Statementp

The do…while repetition statement p
– Similar to the while structure
– Condition for repetition only tested after the body of the p y y

loop is performed
- All actions are performed at least once

– Format:
do {

t t tstatement;
} while (condition);

© 2007 Pearson Education, Inc. All rights reserved.

51

4.8 do…while Repetition Statementp

Example (letting counter = 1):p (g)
do {

printf("%d ", counter);

} while (++counter <= 10);

– Prints the integers from 1 to 10

© 2007 Pearson Education, Inc. All rights reserved.

52

Good Programming Practice 4.10

Some programmers always include braces in
d hil t t t if th ba do...while statement even if the braces

are not necessary. This helps eliminate
ambiguity between the do whileambiguity between the do...while
statement containing one statement and the
while statement.while statement.

© 2007 Pearson Education, Inc. All rights reserved.

53

Common Programming Error 4.7

Infinite loops are caused when the loop-continuation
condition in a while for or do whilecondition in a while, for or do...while
statement never becomes false. To prevent this,
make sure there is not a semicolon immediately y
after the header of a while or for statement. In a
counter-controlled loop, make sure the control
variable is incremented (or decremented) in the loopvariable is incremented (or decremented) in the loop.
In a sentinel-controlled loop, make sure the sentinel
value is eventually input.

© 2007 Pearson Education, Inc. All rights reserved.

54 1 /* Fig. 4.9: fig04_09.c

 2 Using the do/while repetition statement */

 3 #include <stdio.h>

 4

Outline

 5 /* function main begins program execution */

 6 int main(void)

 7 {

 8 int counter = 1; /* initialize counter */

fig04_09.c

 9
10 do {
11 printf("%d ", counter); /* display counter */
12 } while (++counter <= 10); /* end do...while */
13

increments counter then checks if it is
13
14 return 0; /* indicate program ended successfully */
15
16 } /* end function main */

less than or equal to 10

1 2 3 4 5 6 7 8 9 10

© 2007 Pearson Education,
Inc. All rights reserved.

55

Fig. 4.10 | Flowcharting the do...while repetition statement.

© 2007 Pearson Education, Inc. All rights reserved.

56

4.9 break and continue Statements

break

– Causes immediate exit from a while, for, do…while or
switch statement

– Program execution continues with the first statement after
the structure
C f b k– Common uses of the break statement

- Escape early from a loop
Skip the remainder of a switch statement- Skip the remainder of a switch statement

© 2007 Pearson Education, Inc. All rights reserved.

57 1 /* Fig. 4.11: fig04_11.c

 2 Using the break statement in a for statement */

 3 #include <stdio.h>

 4

Outline

 5 /* function main begins program execution */

 6 int main(void)

 7 {

 8 int x; /* counter */

fig04_11.c

 9
10 /* loop 10 times */
11 for (x = 1; x <= 10; x++) {
12
13 /* if i 5 i l */ 13 /* if x is 5, terminate loop */
14 if (x == 5) {
15 break; /* break loop only if x is 5 */
16 } /* end if */
1

break immediately ends for loop

17
18 printf("%d ", x); /* display value of x */
19 } /* end for */
20
21 i tf("\ B k t f l t %d\ ") 21 printf("\nBroke out of loop at x == %d\n", x);
22
23 return 0; /* indicate program ended successfully */
24
25 } /* end function main */ 25 } /* end function main */

1 2 3 4

Broke out of loop at x == 5

© 2007 Pearson Education,
Inc. All rights reserved.

58

4.9 break and continue Statements

continue

– Skips the remaining statements in the body of a while,
for or do…while statement

- Proceeds with the next iteration of the loop
– while and do…while

- Loop-continuation test is evaluated immediately after the
continue statement is executed

– forfor

- Increment expression is executed, then the loop-continuation
test is evaluated

© 2007 Pearson Education, Inc. All rights reserved.

59 1 /* Fig. 4.12: fig04_12.c

 2 Using the continue statement in a for statement */

 3 #include <stdio.h>

 4

Outline

 5 /* function main begins program execution */

 6 int main(void)

 7 {

 8 int x; /* counter */

fig04_12.c

 9
10 /* loop 10 times */
11 for (x = 1; x <= 10; x++) {
12
13 /* if i 5 i i h i i f l */ 13 /* if x is 5, continue with next iteration of loop */
14 if (x == 5) {
15 continue; /* skip remaining code in loop body */
16 } /* end if */
17

continue skips to end of for
loop and performs next iteration

17
18 printf("%d ", x); /* display value of x */
19 } /* end for */
20
21 printf("\nUsed continue to skip printing the value 5\n"); 21 printf(\nUsed continue to skip printing the value 5\n);

22
23 return 0; /* indicate program ended successfully */
24
25 } /* end function main */ 25 } / end function main /

1 2 3 4 6 7 8 9 10

Used continue to skip printing the value 5

© 2007 Pearson Education,
Inc. All rights reserved.

60

Software Engineering Observation 4.2

Some programmers feel that break and
ti i l t th f t t dcontinue violate the norms of structured

programming. Because the effects of these
statements can be achieved by structuredstatements can be achieved by structured
programming techniques we will soon learn,
these programmers do not use break andthese programmers do not use break and
continue.

© 2007 Pearson Education, Inc. All rights reserved.

61

Performance Tip 4.1

The break and continue statements,
h d l f f t th thwhen used properly, perform faster than the

corresponding structured techniques that we
will soon learnwill soon learn.

© 2007 Pearson Education, Inc. All rights reserved.

62

Software Engineering Observation 4.3

There is a tension between achieving
lit ft i i d hi iquality software engineering and achieving

the best-performing software. Often one of
these goals is achieved at the expense of thethese goals is achieved at the expense of the
other.

© 2007 Pearson Education, Inc. All rights reserved.

63

4.10 Logical Operatorsg p

&& (logical AND)
– Returns true if both conditions are true

|| (logical OR)
– Returns true if either of its conditions are true

! (logical NOT, logical negation)
Reverses the truth/falsity of its condition– Reverses the truth/falsity of its condition

– Unary operator, has one operand
Useful as conditions in loopsp

Expression Result
true && false false
true || false truetrue || false true

!false true

© 2007 Pearson Education, Inc. All rights reserved.

64

 expression1 expression2 expression1 && expression2

 0 0 0
 0 nonzero 0
 nonzero 0 0
 nonzero nonzero 1

Fig. 4.13 | Truth table for the && (logical AND) operator.

© 2007 Pearson Education, Inc. All rights reserved.

65

 expression1 expression2 expression1 || expression2

 0 0 0
 0 nonzero 1
 nonzero 0 1
 nonzero nonzero 1

Fig. 4.14 | Truth table for the logical OR (||) operator.

© 2007 Pearson Education, Inc. All rights reserved.

66

 expression !expression

 0 1
 nonzero 0

Fig. 4.15 | Truth table for operator ! (logical negation).

© 2007 Pearson Education, Inc. All rights reserved.

67

Performance Tip 4.2

In expressions using operator &&, make the
diti th t i t lik l t b f l thcondition that is most likely to be false the

leftmost condition. In expressions using
operator || make the condition that isoperator ||, make the condition that is
most likely to be true the leftmost condition.
This can reduce a program’s execution time.This can reduce a program s execution time.

© 2007 Pearson Education, Inc. All rights reserved.

68

Operators Associativity Type

 ++ (postfix) -- (postfix) right to left postfix

 + - !

++ (prefix) -- (prefix) (type) right to left unary

 * / % left to right multiplicative

 + - left to right additive

 < <= > >=

 left to right relational

 == != left to right equality

 && left to right logical AND

 || left to right logical OR

 ?: right to left conditionalg

 = += -= *= /= %= right to left assignment

 , left to right comma

Fig. 4.16 | Operator precedence and associativity.

© 2007 Pearson Education, Inc. All rights reserved.

69

4.11 Confusing Equality (==) and
Assignment (=) OperatorsAssignment (=) Operators

Dangerous errorg
– Does not ordinarily cause syntax errors
– Any expression that produces a value can be used in y p p

control structures
– Nonzero values are true, zero values are false
– Example using ==:

if (payCode == 4)

i f(" b \ ")printf("You get a bonus!\n");

- Checks payCode, if it is 4 then a bonus is awarded

© 2007 Pearson Education, Inc. All rights reserved.

70

4.11 Confusing Equality (==) and
Assignment (=) OperatorsAssignment (=) Operators

- Example, replacing == with =:
if (payCode = 4)

printf("You get a bonus!\n");

This sets payCode to 4This sets payCode to 4
4 is nonzero, so expression is true, and bonus awarded no

matter what the payCode was
– Logic error, not a syntax error

© 2007 Pearson Education, Inc. All rights reserved.

71

Common Programming Error 4.8

Using operator == for assignment or using
t f lit i l ioperator = for equality is a logic error.

© 2007 Pearson Education, Inc. All rights reserved.

72

4.11 Confusing Equality (==) and
Assignment (=) OperatorsAssignment (=) Operators

lvalues
– Expressions that can appear on the left side of an equation
– Their values can be changed, such as variable names

- x = 4;

rvalues
E i th t l th i ht id f ti– Expressions that can only appear on the right side of an equation

– Constants, such as numbers
- Cannot write 4 = x;Cannot write 4 x;

- Must write x = 4;
– lvalues can be used as rvalues, but not vice versa

- y = x;

© 2007 Pearson Education, Inc. All rights reserved.

73

Good Programming Practice 4.11

When an equality expression has a variable and
t t i x 1a constant, as in x == 1, some programmers

prefer to write the expression with the constant
on the left and the variable name on the righton the left and the variable name on the right
(e.g. 1 == x as protection against the logic error
that occurs when you accidentally replace
operator == with =.

© 2007 Pearson Education, Inc. All rights reserved.

74

Error-Prevention Tip 4.6

After you write a program, text search it
f d h k th t it i b i dfor every = and check that it is being used
properly.

© 2007 Pearson Education, Inc. All rights reserved.

75

Fig. 4.17 | C’s single-entry/single-exit sequence, selection and repetition statements.

© 2007 Pearson Education, Inc. All rights reserved.

76

4.12 Structured Programming Summaryg g y

Structured programmingp g g
– Easier than unstructured programs to understand, test,

debug and, modify programs

© 2007 Pearson Education, Inc. All rights reserved.

77

Rules for Forming Structured Programs

 1) Begin with the “simplest flowchart” (Fig. 4.19).
2) Any rectangle (action) can be replaced by two rectangles (actions) in sequence.
3) Any rectangle (action) can be replaced by any control statement (sequence, if,

if else switch while do while or for) if...else, switch, while, do...while or for).
4) Rules 2 and 3 may be applied as often as you like and in any order.

Fig. 4.18 | Rules for forming structured programs.

© 2007 Pearson Education, Inc. All rights reserved.

78

Fig. 4.19 | Simplest flowchart.

© 2007 Pearson Education, Inc. All rights reserved.

79

Fig. 4.20 | Repeatedly applying rule 2 of Fig. 4.18 to the simplest flowchart.

© 2007 Pearson Education, Inc. All rights reserved.

80

Fig. 4.21 | Applying rule 3 of Fig. 4.18 to the simplest flowchart.

© 2007 Pearson Education, Inc. All rights reserved.

81

Fig. 4.22 | Stacked, nested and overlapped building blocks.

© 2007 Pearson Education, Inc. All rights reserved.

82

Fig. 4.23 | An unstructured flowchart.

© 2007 Pearson Education, Inc. All rights reserved.

83

4.12 Structured Programming Summaryg g y

All programs can be broken down into 3 controlsp g
– Sequence – handled automatically by compiler
– Selection – if, if…else or switch,
– Repetition – while, do…while or for

- Can only be combined in two waysy y
Nesting (rule 3)
Stacking (rule 2)

– Any selection can be rewritten as an if statement, and any
repetition can be rewritten as a while statement

© 2007 Pearson Education, Inc. All rights reserved.

