
© 2007 Pearson Education, Inc. All rights reserved.

1

5
C Functions

© 2007 Pearson Education, Inc. All rights reserved.

함수선언의필요성

2

Error!
변수 a의타입을
컴파일러가알수없다!

변수의선언을해주어야함

© 2007 Pearson Education, Inc. All rights reserved.

함수선언의필요성

3

컴파일러는

함수 sum에대해알지못함!

프로그래머는

컴파일러에게함수 sum에
대해알려주어야한다

© 2007 Pearson Education,
Inc. All rights reserved.

4 1 /* Fig. 5.4: fig05_04.c

 2 Finding the maximum of three integers */

 3 #include <stdio.h>

 4
 5 int maximum(int x, int y, int z); /* function prototype */

 6
 7 /* function main begins program execution */

 8 int main(void)

 9 {

10 int number1; /* first integer */
11 int number2; /* second integer */
12 int number3; /* third integer */
13
14 printf("Enter three integers: ");
15 scanf("%d%d%d", &number1, &number2, &number3);
16
17 /* number1, number2 and number3 are arguments
18 to the maximum function call */
19 printf("Maximum is: %d\n", maximum(number1, number2, number3));
20
21 return 0; /* indicates successful termination */
22
23 } /* end main */
24

Outline

fig05_04.c

(1 of 2)

Function prototype

Function call

© 2007 Pearson Education,
Inc. All rights reserved.

525 /* Function maximum definition */
26 /* x, y and z are parameters */
27 int maximum(int x, int y, int z)
28 {
29 int max = x; /* assume x is largest */
30
31 if (y > max) { /* if y is larger than max, assign y to max */
32 max = y;
33 } /* end if */
34
35 if (z > max) { /* if z is larger than max, assign z to max */
36 max = z;
37 } /* end if */
38
39 return max; /* max is largest value */
40
41 } /* end function maximum */

 Enter three integers: 22 85 17

 Maximum is: 85

 Enter three integers: 85 22 17

 Maximum is: 85

 Enter three integers: 22 17 85

 Maximum is: 85

Outline

fig05_04.c

(2 of 2)

Function definition

© 2007 Pearson Education, Inc. All rights reserved.

6

5.6 Function Prototypes

Function prototype
– Function name
– Parameters – what the function takes in
– Return type – data type function returns (default int)
– Used to validate functions
– Prototype only needed if function definition comes after use in

program
– The function with the prototype

int maximum(int x, int y, int z);

- Takes in 3 ints
- Returns an int

Promotion rules and conversions
– Converting to lower types can lead to errors

© 2007 Pearson Education, Inc. All rights reserved.

Prototype 필요없는경우
7

Main에서 sum을 call하기전에
Sum이정의되어있으므로,
컴파일러는 sum에대해미리
알고있다.
이경우따로, prototype이
필요하지는않다!

© 2007 Pearson Education, Inc. All rights reserved.

Prototype을써야되는이유
8

© 2007 Pearson Education, Inc. All rights reserved.

9

Good Programming Practice 5.7

Include function prototypes for all functions to
take advantage of C’s type-checking
capabilities. Use #include preprocessor
directives to obtain function prototypes for the
standard library functions from the headers
for the appropriate libraries, or to obtain
headers containing function prototypes for
functions developed by you and/or your group
members.

© 2007 Pearson Education, Inc. All rights reserved.

10

Good Programming Practice 5.8

Parameter names are sometimes included
in function prototypes (our preference) for
documentation purposes. The compiler
ignores these names.

© 2007 Pearson Education, Inc. All rights reserved.

11

Common Programming Error 5.8

Forgetting the semicolon at the end of a
function prototype is a syntax error.

© 2007 Pearson Education, Inc. All rights reserved.

12

Fig. 5.5 | Promotion hierarchy for data types.

 Data type printf conversion
specification

scanf conversion
specification

 Long double %Lf %Lf

 double %f %lf

 float %f %f

 Unsigned long int %lu %lu

 long int %ld %ld

 unsigned int %u %u

 int %d %d

 unsigned short %hu %hu

 short %hd %hd

 char %c %c

© 2007 Pearson Education, Inc. All rights reserved.

13

Common Programming Error 5.9

Converting from a higher data type in the
promotion hierarchy to a lower type can
change the data value.

© 2007 Pearson Education, Inc. All rights reserved.

14

Common Programming Error 5.9

a 00000000 00000000 00000001 00000001

b 00000001

© 2007 Pearson Education, Inc. All rights reserved.

15

Common Programming Error 5.9

© 2007 Pearson Education, Inc. All rights reserved.

16

Common Programming Error 5.10

Forgetting a function prototype causes a
syntax error if the return type of the function
is not int and the function definition appears
after the function call in the program.
Otherwise, forgetting a function prototype
may cause a runtime error or an unexpected
result.

© 2007 Pearson Education, Inc. All rights reserved.

17

Software Engineering Observation 5.9

A function prototype placed outside any
function definition applies to all calls to the
function appearing after the function
prototype in the file. A function prototype
placed in a function applies only to calls made
in that function.

© 2007 Pearson Education, Inc. All rights reserved.

18

5.7 Function Call Stack and Activation
Records

Program execution stack
– A stack is a last-in, first-out (LIFO) data structure

- Anything put into the stack is placed “on top”
- The only data that can be taken out is the data on top

– C uses a program execution stack to keep track of which
functions have been called

- When a function is called, it is placed on top of the stack
- When a function ends, it is taken off the stack and control

returns to the function immediately below it
– Calling more functions than C can handle at once is known

as a “stack overflow error”

© 2007 Pearson Education, Inc. All rights reserved.

19

5.7 Function Call Stack and Activation
Records

main main
a

main
a
b

main
a
b
c

main
a
b

main
a

main

© 2007 Pearson Education, Inc. All rights reserved.

20

5.8 Headers

Header files
– Contain function prototypes for library functions
– <stdlib.h> , <math.h> , etc
– Load with #include <filename>

#include <math.h>

Custom header files
– Create file with functions
– Save as filename.h
– Load in other files with #include "filename.h"
– Reuse functions

© 2007 Pearson Education, Inc. All rights reserved.

21

 Standard library header Explanation

 <assert.h> Contains macros and information for adding diagnostics that aid
program debugging.

 <ctype.h> Contains function prototypes for functions that test characters for
certain properties, and function prototypes for functions that can
be used to convert lowercase letters to uppercase letters and vice
versa.

 <errno.h> Defines macros that are useful for reporting error conditions.
 <float.h> Contains the floating-point size limits of the system.
 <limits.h> Contains the integral size limits of the system.
 <locale.h> Contains function prototypes and other information that enables a

program to be modified for the current locale on which it is
running. The notion of locale enables the computer system to
handle different conventions for expressing data like dates, times,
dollar amounts and large numbers throughout the world.

Fig. 5.6 | Some of the standard library headers. (Part 1 of 3.)

© 2007 Pearson Education, Inc. All rights reserved.

22

 Standard library header Explanation

 <math.h> Contains function prototypes for math library functions.
 <setjmp.h> Contains function prototypes for functions that allow bypassing of

the usual function call and return sequence.
 <signal.h> Contains function prototypes and macros to handle various

conditions that may arise during program execution.
 <stdarg.h> Defines macros for dealing with a list of arguments to a function

whose number and types are unknown.
 <stddef.h> Contains common definitions of types used by C for performing

certain calculations.

Fig. 5.6 | Some of the standard library headers. (Part 2 of 3.)

© 2007 Pearson Education, Inc. All rights reserved.

23

 Standard library header Explanation

 <stdio.h> Contains function prototypes for the standard input/output library
functions, and information used by them.

 <stdlib.h> Contains function prototypes for conversions of numbers to text
and text to numbers, memory allocation, random numbers, and
other utility functions.

 <string.h> Contains function prototypes for string-processing functions.
 <time.h> Contains function prototypes and types for manipulating the time

and date.

Fig. 5.6 | Some of the standard library headers. (Part 3 of 3.)

© 2007 Pearson Education, Inc. All rights reserved.

24

5.9 Calling Functions: Call-by-Value and
Call-by-Reference

Call by value
– Copy of argument passed to function
– Changes in function do not effect original
– Use when function does not need to modify argument

- Avoids accidental changes

Call by reference
– Passes original argument
– Changes in function effect original
– Only used with trusted functions

For now, we focus on call by value

© 2007 Pearson Education, Inc. All rights reserved.

25

5.9 Calling Functions: Call-by-Value and
Call-by-Reference

Call by value

© 2007 Pearson Education, Inc. All rights reserved.

26

5.9 Calling Functions: Call-by-Value and
Call-by-Reference

Call by reference

	5
	함수 선언의 필요성
	함수 선언의 필요성
	Slide Number 4
	Slide Number 5
	5.6 Function Prototypes
	Prototype 필요 없는 경우
	Prototype을 써야 되는 이유
	Good Programming Practice 5.7
	Good Programming Practice 5.8
	Common Programming Error 5.8
	Slide Number 12
	Common Programming Error 5.9
	Common Programming Error 5.9
	Common Programming Error 5.9
	Common Programming Error 5.10
	Software Engineering Observation 5.9
	5.7 Function Call Stack and Activation Records
	5.7 Function Call Stack and Activation Records
	5.8 Headers
	Slide Number 21
	Slide Number 22
	Slide Number 23
	5.9 Calling Functions: Call-by-Value and Call-by-Reference
	5.9 Calling Functions: Call-by-Value and Call-by-Reference
	5.9 Calling Functions: Call-by-Value and Call-by-Reference

