
1

© 2006 Pearson Education, Inc. All rights reserved.

22
Introduction

to C++
Programming

2

© 2006 Pearson Education, Inc. All rights reserved.

What’s in a name? that which we call a rose
By any other name would smell as sweet.

— William Shakespeare

When faced with a decision, I always ask,
“What would be the most fun?”

— Peggy Walker

3

© 2006 Pearson Education, Inc. All rights reserved.

High thoughts must have high language.
— Aristophanes

“Take some more tea,” the March Hare said to
Alice, very earnestly. “I’ve had nothing yet, “Alice
replied in an offended tone: “so I can’t take more.”
“You mean you can’t take less,” said the Hatter:
“it’s very easy to take more than nothing.”

— Lewis Carroll

4

© 2006 Pearson Education, Inc. All rights reserved.

OBJECTIVES
In this chapter you will learn:
To write simple computer programs in C++.
To write simple input and output statements.
To use fundamental types.
Basic computer memory concepts.
To use arithmetic operators.
The precedence of arithmetic operators.
To write simple decision-making statements.

5

© 2006 Pearson Education, Inc. All rights reserved.

2.1 Introduction
2.2 First Program in C++: Printing a Line of Text
2.3 Modifying Our First C++ Program
2.4 Another C++ Program: Adding Integers
2.5 Memory Concepts
2.6 Arithmetic
2.7 Decision Making: Equality and Relational Operators
2.8 (Optional) Software Engineering Case Study:

Examining the ATM Requirements Document
2.9 Wrap-Up

6

© 2006 Pearson Education, Inc. All rights reserved.

2.1 Introduction

• C++ programming
– Facilitates disciplined approach to computer program

design
– Programs process information and display results

• Five examples demonstrate
– How to display messages
– How to obtain information from the user
– How to perform arithmetic calculations
– How to make decisions

7

© 2006 Pearson Education, Inc. All rights reserved.

2.2 First Program in C++: Printing a Line
of Text

• Simple program
– Prints a line of text
– Illustrates several important features of C++

8

© 2006 Pearson Education, Inc. All rights reserved.

2.2 First Program in C++: Printing a Line
of Text (Cont.)

• Comments
– Explain programs to other programmers

• Improve program readability
– Ignored by compiler
– Single-line comment

• Begin with //
• Example

– // This is a text-printing program.
– Multi-line comment

• Start with /*
• End with */

9

© 2006 Pearson Education,
Inc. All rights reserved.

Outline
 1 // Fig. 2.1: fig02_01.cpp

 2 // Text-printing program.

 3 #include <iostream> // allows program to output data to the screen

 4
 5 // function main begins program execution

 6 int main()

 7 {

 8 std::cout << "Welcome to C++!\n"; // display message

 9
10 return 0; // indicate that program ended successfully
11

12 } // end function main

Welcome to C++!

fig02_01.cpp

(1 of 1)

 fig02_01.cpp

output (1 of 1)

Single-line comments

Preprocessor directive to
include input/output stream
header file <iostream>Function main appears

exactly once in every C++
program

Function main returns an
integer valueLeft brace { begins function

body

Corresponding right brace }
ends function body

Statements end with a
semicolon ;

Name cout belongs to
namespace std

Stream insertion operator

Keyword return is one of
several means to exit a
function; value 0 indicates
that the program terminated
successfully

10

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 2.1

Every program should begin with a comment
that describes the purpose of the program,
author, date and time. (We are not showing the
author, date and time in this book’s programs
because this information would be redundant.)

11

© 2006 Pearson Education, Inc. All rights reserved.

2.2 First Program in C++: Printing a Line
of Text (Cont.)

• Preprocessor directives
– Processed by preprocessor before compiling
– Begin with #
– Example

•

#include <iostream>

– Tells preprocessor to include the input/output stream
header file <iostream>

• White space
– Blank lines, space characters and tabs
– Used to make programs easier to read
– Ignored by the compiler

12

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 2.1

Forgetting to include the <iostream>

header
file in a program that inputs data from the
key-board or outputs data to the screen causes
the compiler to issue an error message, because
the compiler cannot recognize references to the
stream components (e.g., cout).

13

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 2.2

Use blank lines and space characters to enhance
program readability.

14

© 2006 Pearson Education, Inc. All rights reserved.

2.2 First Program in C++: Printing a Line
of Text (Cont.)

• Function main
– A part of every C++ program

• Exactly one function in a program must be main
– Can “return” a value
– Example

•

int

main()

– This main

function returns an integer (whole number)
– Body is delimited by braces ({})

• Statements
– Instruct the program to perform an action
– All statements end with a semicolon (;)

15

© 2006 Pearson Education, Inc. All rights reserved.

2.2 First Program in C++: Printing a Line
of Text (Cont.)

• Namespace
– std::

• Specifies using a name that belongs to “namespace” std
• Can be removed through use of using

statements

• Standard output stream object
– std::cout

• “Connected” to screen
• Defined in input/output stream header file <iostream>

16

© 2006 Pearson Education, Inc. All rights reserved.

2.2 First Program in C++: Printing a Line
of Text (Cont.)

• Stream insertion operator <<
– Value to right (right operand) inserted into left operand
– Example

•

std::cout

<< "Hello";

– Inserts the string "Hello"

into the standard output
• Displays to the screen

• Escape characters
– A character preceded by "\"

• Indicates “special” character output
– Example

•

"\n"

– Cursor moves to beginning of next line on the screen

17

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 2.2

Omitting the semicolon at the end of a C++
statement is a syntax error. (Again, preprocessor
directives do not end in a semicolon.) The syntax
of a programming language specifies the rules for
creating a proper program in that language. A
syntax error occurs when the compiler
encounters code that violates C++’s language
rules (i.e., its syntax). The compiler normally
issues an error message to help the programmer
locate and fix the incorrect code. (cont…)

18

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 2.2

Syntax errors are also called compiler errors,
compile-time errors or compilation errors,
because the compiler detects them during the
compilation phase. You will be unable to execute
your program until you correct all the syntax
errors in it. As you will see, some compilation
errors are not syntax errors.

19

© 2006 Pearson Education, Inc. All rights reserved.

2.2 First Program in C++: Printing a Line
of Text (Cont.)

•return

statement
– One of several means to exit a function
– When used at the end of main

• The value 0

indicates the program terminated successfully
• Example

– return 0;

20

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 2.3

Many programmers make the last character
printed by a function a newline (\n). This
ensures that the function will leave the screen
cursor positioned at the beginning of a new
line. Conventions of this nature encourage
software reusability—a key goal in software
development.

21

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 2.2 | Escape sequences.

Escape
sequence

Description

\n Newline. Position the screen cursor to the beginning of the next line.

\t Horizontal tab. Move the screen cursor to the next tab stop.

\r
Carriage return. Position the screen cursor to the beginning of the current
line; do not advance to the next line.

\a Alert. Sound the system bell.
\\ Backslash. Used to print a backslash character.
\' Single quote. Use to print a single quote character.
\" Double quote. Used to print a double quote character.

22

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 2.4

Indent the entire body of each function one level
within the braces that delimit the body of the
function. This makes a program’s functional
structure stand out and helps make the program
easier to read.

23

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 2.5

Set a convention for the size of indent you
prefer, then apply it uniformly. The tab key
may be used to create indents, but tab stops
may vary. We recommend using either 1/4-
inch tab stops or (preferably) three spaces to
form a level of indent.

24

© 2006 Pearson Education, Inc. All rights reserved.

2.3 Modifying Our First C++ Program

• Two examples
– Print text on one line using multiple statements (Fig. 2.3)

• Each stream insertion resumes printing where the previous
one stopped

– Print text on several lines using a single statement (Fig. 2.4)
• Each newline escape sequence positions the cursor to the

beginning of the next line
• Two newline characters back to back outputs a blank line

25

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig02_03.cpp

(1 of 1)

fig02_03.cpp

output

(1 of 1)

 1 // Fig. 2.3: fig02_03.cpp

 2 // Printing a line of text with multiple statements.

 3 #include <iostream> // allows program to output data to the screen

 4
 5 // function main begins program execution

 6 int main()

 7 {

 8 std::cout << "Welcome ";

 9 std::cout << "to C++!\n";

10
11 return 0; // indicate that program ended successfully
12

13 } // end function main

Welcome to C++!

Multiple stream insertion
statements produce one line
of output

26

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig02_04.cpp

(1 of 1)

fig02_04.cpp

output

(1 of 1)

 1 // Fig. 2.4: fig02_04.cpp

 2 // Printing multiple lines of text with a single statement.

 3 #include <iostream> // allows program to output data to the screen

 4
 5 // function main begins program execution

 6 int main()

 7 {

 8 std::cout << "Welcome\nto\n\nC++!\n";

 9
10 return 0; // indicate that program ended successfully
11

12 } // end function main

Welcome
to

C++!

Use newline characters to
print on multiple lines

27

© 2006 Pearson Education, Inc. All rights reserved.

2.4 Another C++ Program: Adding
Integers

• Variables
– Location in memory where value can be stored
– Common data types (fundamental, primitive or built-in)

•

int

– integer numbers

•

char

– characters

•

double

– floating point numbers

– Declare variables with name and data type before use
•

int

integer1;

•

int

integer2;

•

int

sum;

28

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig02_05.cpp

(1 of 1)

fig02_05.cpp

output (1 of 1)

 1 // Fig. 2.5: fig02_05.cpp

 2 // Addition program that displays the sum of two numbers.

 3 #include <iostream> // allows program to perform input and output

 4
 5 // function main begins program execution

 6 int main()

 7 {

 8 // variable declarations

 9 int number1; // first integer to add

10 int number2; // second integer to add
11 int sum; // sum of number1 and number2
12
13 std::cout << "Enter first integer: "; // prompt user for data
14 std::cin >> number1; // read first integer from user into number1
15
16 std::cout << "Enter second integer: "; // prompt user for data
17 std::cin >> number2; // read second integer from user into number2
18
19 sum = number1 + number2; // add the numbers; store result in sum
20
21 std::cout << "Sum is " << sum << std::endl; // display sum; end line
22
23 return 0; // indicate that program ended successfully
24
25 } // end function main

Enter first integer: 45
Enter second integer: 72
Sum is 117

Declare integer variables

Use stream extraction
operator with standard input
stream to obtain user input

Stream manipulator
std::endl outputs a
newline, then “flushes output
buffer”

Concatenating, chaining or
cascading stream insertion
operations

29

© 2006 Pearson Education, Inc. All rights reserved.

2.4 Another C++ Program: Adding
Integers (Cont.)

• Variables (Cont.)
– Can declare several variables of same type in one

declaration
• Comma-separated list
•

int

integer1, integer2, sum;

– Variable names
• Valid identifier

– Series of characters (letters, digits, underscores)
– Cannot begin with digit
– Case sensitive

30

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 2.6

Place a space after each comma (,) to make
programs more readable.

31

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 2.7

Some programmers prefer to declare each
variable on a separate line. This format allows
for easy insertion of a descriptive comment next
to each declaration.

32

© 2006 Pearson Education, Inc. All rights reserved.

Portability Tip 2.1

C++ allows identifiers of any length, but your C++
implementation may impose some restrictions on
the length of identifiers. Use identifiers of 31
characters or fewer to ensure portability.

33

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 2.8

Choosing meaningful identifiers helps make a
program self-documenting—a person can
understand the program simply by reading it
rather than having to refer to manuals or
comments.

34

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 2.9

Avoid using abbreviations in identifiers. This
promotes program readability.

35

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 2.10

Avoid identifiers that begin with underscores
and double underscores, because C++ compilers
may use names like that for their own purposes
internally. This will prevent names you choose
from being confused with names the compilers
choose.

36

© 2006 Pearson Education, Inc. All rights reserved.

Error-Prevention Tip 2.1

Languages like C++ are “moving targets.” As
they evolve, more keywords could be added to
the language. Avoid using “loaded” words like
“object” as identifiers. Even though “object” is
not currently a keyword in C++, it could become
one; therefore, future compiling with new
compilers could break existing code.

37

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 2.11

Always place a blank line between a declaration
and adjacent executable statements. This makes
the declarations stand out in the program and
contributes to program clarity.

38

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 2.12

If you prefer to place declarations at the
beginning of a function, separate them from the
executable statements in that function with one
blank line to highlight where the declarations
end and the executable statements begin.

39

© 2006 Pearson Education, Inc. All rights reserved.

2.4 Another C++ Program: Adding
Integers (Cont.)

• Input stream object
– std::cin

from <iostream>

• Usually connected to keyboard
• Stream extraction operator >>

– Waits for user to input value, press Enter (Return) key
– Stores value in variable to right of operator

• Converts value to variable data type
• Example

– std::cin

>> number1;

• Reads an integer typed at the keyboard
• Stores the integer in variable number1

40

© 2006 Pearson Education, Inc. All rights reserved.

Error-Prevention Tip 2.2

Programs should validate the correctness of all
input values to prevent erroneous information
from affecting a program’s calculations.

41

© 2006 Pearson Education, Inc. All rights reserved.

2.4 Another C++ Program: Adding
Integers (Cont.)

• Assignment operator =
– Assigns value on left to variable on right
– Binary operator (two operands)
– Example:

•

sum = variable1 + variable2;

– Add the values of variable1

and variable2
– Store result in sum

• Stream manipulator std::endl
– Outputs a newline
– Flushes the output buffer

42

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 2.13

Place spaces on either side of a binary operator.
This makes the operator stand out and makes
the program more readable.

43

© 2006 Pearson Education, Inc. All rights reserved.

2.4 Another C++ Program: Adding
Integers (Cont.)

• Concatenating stream insertion operations
– Use multiple stream insertion operators in a single statement

• Stream insertion operation knows how to output each type of data
– Also called chaining or cascading
– Example

•

std::cout

<< "Sum is "

<< number1 + number2

<< std::endl;

– Outputs "Sum is “

– Then, outputs sum of number1

and number2
– Then, outputs newline and flushes output buffer

44

© 2006 Pearson Education, Inc. All rights reserved.

2.5 Memory Concept

• Variable names
– Correspond to actual locations in computer's memory

• Every variable has name, type, size and value
– When new value placed into variable, overwrites old value

• Writing to memory is destructive
– Reading variables from memory nondestructive
– Example

•

sum = number1 + number2;

– Value of sum

is overwritten
– Values of number1

and number2

remain intact

45

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 2.6 | Memory location showing the name and value of variable number1.

46

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 2.7 | Memory locations after storing values for number1

and number2.

47

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 2.8 | Memory locations after calculating and storing the sum

of number1

and
number2.

48

© 2006 Pearson Education, Inc. All rights reserved.

2.6 Arithmetic

• Arithmetic operators
– *

• Multiplication
– /

• Division
• Integer division truncates remainder

– 7 / 5

evaluates to 1
– %

• Modulus operator returns remainder
– 7 % 5

evaluates to 2

49

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 2.3

Attempting to use the modulus operator (%

) with
noninteger operands is a compilation error.

50

© 2006 Pearson Education, Inc. All rights reserved.

2.6 Arithmetic (Cont.)

• Straight-line form
– Required for arithmetic expressions in C++
– All constants, variables and operators appear in a straight

line

• Grouping subexpressions
– Parentheses are used in C++ expressions to group

subexpressions
• Same manner as in algebraic expressions

– Example
•

a * (b + c)

– Multiple a

times the quantity b + c

51

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 2.9 | Arithmetic operators.

C++ operation C++ arithmetic
operator

Algebraic
expression

C++
expression

Addition + f + 7 f + 7

Subtraction - p – c p - c

Multiplication * bm or b · m b * m

Division / x / y or x
y

 or x ÷ y x / y

Modulus % r mod s r % s

52

© 2006 Pearson Education, Inc. All rights reserved.

2.6 Arithmetic (Cont.)

• Rules of operator precedence
– Operators in parentheses evaluated first

• Nested/embedded parentheses
– Operators in innermost pair first

– Multiplication, division, modulus applied next
• Operators applied from left to right

– Addition, subtraction applied last
• Operators applied from left to right

53

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 2.10 | Precedence of arithmetic operators.

Operator(s) Operation(s) Order of evaluation (precedence)

() Parentheses Evaluated first. If the parentheses are nested, the
expression in the innermost pair is evaluated first.
If there are several pairs of parentheses “on the
same level” (i.e., not nested), they are evaluated left
to right.

*

/

%

Multiplication

Division

Modulus

Evaluated second. If there are several, they are
evaluated left to right.

+
-

Addition
Subtraction

Evaluated last. If there are several, they are
evaluated left to right.

54

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 2.4

Some programming languages use operators **
 or ^

to represent exponentiation. C++ does not

support these exponentiation operators; using
them for exponentiation results in errors.

55

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 2.14

Using redundant parentheses in complex
arithmetic expressions can make the
expressions clearer.

56

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 2.11 | Order in which a second-degree polynomial is evaluated.

57

© 2006 Pearson Education, Inc. All rights reserved.

2.7 Decision Making: Equality and
Relational Operators

• Condition
– Expression can be either true

or false

– Can be formed using equality or relational operators

•if

statement
– If condition is true, body of the if

statement executes

– If condition is false, body of the if

statement does not
execute

58

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 2.12 | Equality and relational operators.

Standard algebraic
equality or relational
operator

C++ equality
or relational
operator

Sample
C++
condition

Meaning of
C++ condition

Relational operators
 > > x > y x is greater than y
 < < x < y x is less than y

 ≥ >= x >= y x is greater than or equal to y

 ≤ <= x <= y x is less than or equal to y
 Equality operators
 = == x == y x is equal to y
 ≠ != x != y x is not equal to y

59

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 2.5

A syntax error will occur if any of the operators
==, !=, >=

and <=

appears with spaces between

its pair of symbols.

60

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 2.6

Reversing the order of the pair of symbols in any
of the operators !=, >= and <= (by writing them
as =!, => and =<, respectively) is normally a
syntax error. In some cases, writing != as =! will
not be a syntax error, but almost certainly will be
a logic error that has an effect at execution time.
(cont…)

61

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 2.6

You will understand why when you learn
about logical operators in Chapter 5. A fatal
logic error causes a program to fail and
terminate prematurely. A nonfatal logic
error allows a program to continue executing,
but usually produces incorrect results.

62

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 2.7
Confusing the equality operator ==

with the
assignment operator =

results in logic errors. The
equality operator should be read “is equal to,”
and the assignment operator should be read
“gets” or “gets the value of” or “is assigned the
value of.” Some people prefer to read the equality
operator as “double equals.” As we discuss in
Section 5.9, confusing these operators may not
necessarily cause an easy-to-recognize syntax
error, but may cause extremely subtle logic errors.

63

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig02_13.cpp

(1 of 2)

 1 // Fig. 2.13: fig02_13.cpp

 2 // Comparing integers using if statements, relational operators

 3 // and equality operators.

 4 #include <iostream> // allows program to perform input and output

 5
 6 using std::cout; // program uses cout

 7 using std::cin; // program uses cin

 8 using std::endl; // program uses endl

 9
10 // function main begins program execution
11 int main()
12 {
13 int number1; // first integer to compare
14 int number2; // second integer to compare
15
16 cout << "Enter two integers to compare: "; // prompt user for data
17 cin >> number1 >> number2; // read two integers from user
18
19 if (number1 == number2)
20 cout << number1 << " == " << number2 << endl;
21
22 if (number1 != number2)
23 cout << number1 << " != " << number2 << endl;
24
25 if (number1 < number2)
26 cout << number1 << " < " << number2 << endl;
27
28 if (number1 > number2)
29 cout << number1 << " > " << number2 << endl;
30

using declarations eliminate
need for std:: prefix

Can write cout and cin
without std:: prefix

Declare variables

if statement compares values
of number1 and number2 to
test for equality

If condition is true (i.e.,
values are equal), execute this
statementif statement compares values

of number1 and number2 to
test for inequality

If condition is true (i.e.,
values are not equal), execute
this statement

Compares two numbers using
relational operator < and >

64

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig02_13.cpp

(2 of 2)

fig02_13.cpp

output (1 of 3)

(2 of 3)

(3 of 3)

31 if (number1 <= number2)
32 cout << number1 << " <= " << number2 << endl;
33
34 if (number1 >= number2)
35 cout << number1 << " >= " << number2 << endl;
36
37 return 0; // indicate that program ended successfully
38
39 } // end function main

Enter two integers to compare: 3 7
3 != 7
3 < 7
3 <= 7

Enter two integers to compare: 22 12
22 != 12
22 > 12
22 >= 12

Enter two integers to compare: 7 7
7 == 7
7 <= 7
7 >= 7

Compares two numbers using
relational operators <= and >=

65

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 2.15

Place using

declarations immediately after the
#include

to which they refer.

66

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 2.16

Indent the statement(s) in the body of an if
 statement to enhance readability.

67

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 2.17

For readability, there should be no more than
one statement per line in a program.

68

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 2.8

Placing a semicolon immediately after the right
parenthesis after the condition in an if

statement is

often a logic error (although not a syntax error).
The semicolon causes the body of the if

statement

to be empty, so the if

statement performs no action,
regardless of whether or not its condition is true.
Worse yet, the original body statement of the if

 statement now would become a statement in
sequence with the if

statement and would always

execute, often causing the program to produce
incorrect results.

69

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 2.9

It is a syntax error to split an identifier by
inserting white-space characters (e.g., writing
main

as ma in).

70

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 2.18

A lengthy statement may be spread over several
lines. If a single statement must be split across
lines, choose meaningful breaking points, such
as after a comma in a comma-separated list, or
after an operator in a lengthy expression. If a
statement is split across two or more lines,
indent all subsequent lines and left-align the
group.

71

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 2.14 | Precedence and associativity of the operators discussed so far.

Operators Associativity Type

() left to right parentheses
* / % left to right multiplicative
+ - left to right additive

<< >> left to right stream insertion/extraction

< <= > >= left to right relational
== != left to right equality
= right to left assignment

72

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 2.19
Refer to the operator precedence and associativity
chart when writing expressions containing many
opera-tors. Confirm that the operators in the
expression are performed in the order you expect.
If you are uncertain about the order of evaluation
in a complex expression, break the expression into
smaller statements or use parentheses to force the
order of evaluation, exactly as you would do in an
algebraic expression. Be sure to ob-serve that some
operators such as assignment (=) associate right to
left rather than left to right.

73

© 2006 Pearson Education, Inc. All rights reserved.

2.8 (Optional) Software Engineering Case Study:
Examining the ATM Requirements Document

• Object-oriented design (OOD) process using
UML

– Performed in chapters 3 to 7, 9 and 13
– Requirements document

• Specifies overall purpose and what the system must do

• Object-oriented programming (OOP)
implementation

– Complete implementation in appendix G

74

© 2006 Pearson Education, Inc. All rights reserved.

2.8 (Optional) Software Engineering Case
Study (Cont.)

• Requirements document
– New automated teller machine (ATM)
– Allows basic financial transaction

• View balance, withdraw cash, deposit funds
– User interface

• Display screen, keypad, cash dispenser, deposit slot
– ATM session

• Authenticate user, execute financial transaction

75

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 2.15 | Automated teller machine user interface.

76

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 2.16 | ATM main menu.

77

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 2.17 | ATM withdrawal menu.

78

© 2006 Pearson Education, Inc. All rights reserved.

2.8 (Optional) Software Engineering Case
Study (Cont.)

• Analyzing the ATM system
– Requirements gathering
– Software life cycle

• Waterfall model
• Iteractive model

– Use case modeling

• Use case diagram
– Model the interactions between clients and its use cases
– Actor

• External entity

79

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 2.18 | Use case diagram for the ATM system from the user’s perspective.

80

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 2.19 | Use case diagram for a modified version of our ATM system that also allows
users to transfer money between accounts.

81

© 2006 Pearson Education, Inc. All rights reserved.

2.8 (Optional) Software Engineering Case
Study (Cont.)

• UML diagram types
– Model system structure

• Class diagram
– Models classes, or “building blocks” of a system
– Screen, keypad, cash dispenser, deposit slot.

82

© 2006 Pearson Education, Inc. All rights reserved.

2.8 (Optional) Software Engineering Case
Study (Cont.)

– Model system behavior
• Use case diagrams

– Model interactions between user and the system
• State machine diagrams

– Model the ways in which an object changes state
• Activity diagrams

– Model an object’s activity during program execution
• Communication diagrams (collaboration diagrams)

– Model the interactions among objects
– Emphasize what interactions occur

• Sequence diagrams
– Model the interactions among objects
– Emphasize when interactions occur

	2
	슬라이드 번호 2
	슬라이드 번호 3
	OBJECTIVES
	슬라이드 번호 5
	2.1 Introduction
	2.2 First Program in C++: Printing a Line of Text
	2.2 First Program in C++: Printing a Line of Text (Cont.)
	Outline
	Good Programming Practice 2.1
	2.2 First Program in C++: Printing a Line of Text (Cont.)
	Common Programming Error 2.1
	Good Programming Practice 2.2
	2.2 First Program in C++: Printing a Line of Text (Cont.)
	2.2 First Program in C++: Printing a Line of Text (Cont.)
	2.2 First Program in C++: Printing a Line of Text (Cont.)
	Common Programming Error 2.2
	Common Programming Error 2.2
	2.2 First Program in C++: Printing a Line of Text (Cont.)
	Good Programming Practice 2.3
	Fig. 2.2 | Escape sequences.
	Good Programming Practice 2.4
	Good Programming Practice 2.5
	2.3 Modifying Our First C++ Program
	Outline
	Outline
	2.4 Another C++ Program: Adding Integers
	Outline
	2.4 Another C++ Program: Adding Integers (Cont.)
	Good Programming Practice 2.6
	Good Programming Practice 2.7
	Portability Tip 2.1
	Good Programming Practice 2.8
	Good Programming Practice 2.9
	Good Programming Practice 2.10
	Error-Prevention Tip 2.1
	Good Programming Practice 2.11
	Good Programming Practice 2.12
	2.4 Another C++ Program: Adding Integers (Cont.)
	Error-Prevention Tip 2.2
	2.4 Another C++ Program: Adding Integers (Cont.)
	Good Programming Practice 2.13
	2.4 Another C++ Program: Adding Integers (Cont.)
	2.5 Memory Concept
	Fig. 2.6 | Memory location showing the name and value of variable number1.
	Fig. 2.7 | Memory locations after storing values for number1 and number2.
	Fig. 2.8 | Memory locations after calculating and storing the sum of number1 and number2.
	2.6 Arithmetic
	Common Programming Error 2.3
	2.6 Arithmetic (Cont.)
	Fig. 2.9 | Arithmetic operators.
	2.6 Arithmetic (Cont.)
	Fig. 2.10 | Precedence of arithmetic operators.
	Common Programming Error 2.4
	Good Programming Practice 2.14
	Fig. 2.11 | Order in which a second-degree polynomial is evaluated.
	2.7 Decision Making: Equality and Relational Operators
	Fig. 2.12 | Equality and relational operators.
	Common Programming Error 2.5
	Common Programming Error 2.6
	Common Programming Error 2.6
	Common Programming Error 2.7
	Outline
	Outline
	Good Programming Practice 2.15
	Good Programming Practice 2.16
	Good Programming Practice 2.17
	Common Programming Error 2.8
	Common Programming Error 2.9
	Good Programming Practice 2.18
	Fig. 2.14 | Precedence and associativity of the operators discussed so far.
	Good Programming Practice 2.19
	2.8 (Optional) Software Engineering Case Study: Examining the ATM Requirements Document
	2.8 (Optional) Software Engineering Case Study (Cont.)
	Fig. 2.15 | Automated teller machine user interface.
	Fig. 2.16 | ATM main menu.
	Fig. 2.17 | ATM withdrawal menu.
	2.8 (Optional) Software Engineering Case Study (Cont.)
	Fig. 2.18 | Use case diagram for the ATM system from the user’s perspective.
	Fig. 2.19 | Use case diagram for a modified version of our ATM system that also allows users to transfer money between accounts.
	2.8 (Optional) Software Engineering Case Study (Cont.)
	2.8 (Optional) Software Engineering Case Study (Cont.)

