
1

© 2006 Pearson Education, Inc. All rights reserved.

33
Introduction to

Classes and
Objects

2

© 2006 Pearson Education, Inc. All rights reserved.

You will see something new. Two things. And
I call them Thing One and Thing Two.

— Dr. Theodor Seuss Geisel

Nothing can have value without being an
object of utility.

— Karl Marx

Your public servants serve you right.
— Adlai E. Stevenson

Knowing how to answer one who speaks, To reply
to one who sends a message.

— Amenemope

3

© 2006 Pearson Education, Inc. All rights reserved.

OBJECTIVES
In this chapter you will learn:
What classes, objects, member functions and data
members are.
How to define a class and use it to create an object.
How to define member functions in a class to implement the
class's behaviors.
How to declare data members in a class to implement the
class's attributes.
How to call a member function of an object to make that
member function perform its task.
The differences between data members of a class and local
variables of a function.
How to use a constructor to ensure that an object's data is
initialized when the object is created.
How to engineer a class to separate its interface from its
implementation and encourage reuse.

4

© 2006 Pearson Education, Inc. All rights reserved.

3.1 Introduction
3.2 Classes, Objects, Member Functions and Data Members
3.3 Overview of the Chapter Examples
3.4 Defining a Class with a Member Function
3.5 Defining a Member Function with a Parameter
3.6 Data Members, set Functions and get Functions
3.7 Initializing Objects with Constructors
3.8 Placing a Class in a Separate File for Reusability
3.9 Separating Interface from Implementation
3.10 Validating Data with set Functions
3.11 (Optional) Software Engineering Case Study: Identifying

the Classes in the ATM Requirements Document
3.12 Wrap-Up

5

© 2006 Pearson Education, Inc. All rights reserved.

3.1 Introduction

• Programs from Chapter 2
– All statements were located in function main

• Typically
– Programs will consist of

• Function main and
• One or more classes

– Each containing data members and member functions

6

© 2006 Pearson Education, Inc. All rights reserved.

3.2 Classes, Objects, Member Functions
and Data Members

• Review of classes: Car example
– Functions describe the mechanisms that perform a

tasks, such as acceleration
• Hides complex tasks from user, just as a driver can use

the pedal to accelerate without needing to know how
the acceleration is performed

– Classes must be defined before they can be used, car
must be built before it can be driven

– Many car objects created from same class, many cars
built from same engineering drawing

7

© 2006 Pearson Education, Inc. All rights reserved.

3.2 Classes, Objects, Member Functions
and Data Members (Cont.)

• Review of classes: Car example (Cont.)
– Member-function calls send messages to an object to

perform tasks, just like pressing the gas pedal sends a
message to the car to accelerate

– Objects and cars both have attributes, like color and
miles driven

8

© 2006 Pearson Education, Inc. All rights reserved.

3.3 Overview of the Chapter Examples

• Seven simple examples
– Examples used to build a GradeBook class

• Topics covered:
– Member functions
– Data members
– Clients of a class

• Other classes or functions that call the member functions of this
class’s objects

– Separating interface from implementation
– Data validation

• Ensures that data in an object is in a particular format or range

9

© 2006 Pearson Education, Inc. All rights reserved.

3.4 Defining a Class With a Member
Function

• Class definition
– Tells compiler what member functions and data members

belong to the class
– Keyword class followed by the class’s name
– Class body is enclosed in braces ({})

• Specifies data members and member functions
• Access-specifier public:

– Indicates that a member function or data member is
accessible to other functions and member functions of
other classes

10

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig03_01.cpp

(1 of 1)

 1 // Fig. 3.1: fig03_01.cpp

 2 // Define class GradeBook with a member function displayMessage;

 3 // Create a GradeBook object and call its displayMessage function.

 4 #include <iostream>

 5 using std::cout;

 6 using std::endl;

 7
 8 // GradeBook class definition

 9 class GradeBook

10 {
11 public:
12 // function that displays a welcome message to the GradeBook user
13 void displayMessage()
14 {
15 cout << "Welcome to the Grade Book!" << endl;
16 } // end function displayMessage
17 }; // end class GradeBook
18
19 // function main begins program execution
20 int main()
21 {
22 GradeBook myGradeBook; // create a GradeBook object named myGradeBook
23 myGradeBook.displayMessage(); // call object's displayMessage function
24 return 0; // indicate successful termination

25 } // end main

Welcome to the Grade Book!

Beginning of class definition
for class GradeBook

Beginning of class body

End of class body

Access specifier public; makes
members available to the publicMember function displayMessge

returns nothing

Use dot operator to call
GradeBook’s member function

11

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 3.1

Forgetting the semicolon at the end of a class
definition is a syntax error.

12

© 2006 Pearson Education, Inc. All rights reserved.

3.4 Defining a Class With a Member
Function (Cont.)

• Member function definition
– Return type of a function

• Indicates the type of value returned by the function when it
completes its task

• void indicates that the function does not return any value
– Function names must be a valid identifier
– Parentheses after function name indicate that it is a

function
– Function body contains statements that perform the

function’s task
• Delimited by braces ({})

13

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 3.2

Returning a value from a function whose return
type has been declared void is a compilation
error.

14

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 3.3

Defining a function inside another function is a
syntax error.

15

© 2006 Pearson Education, Inc. All rights reserved.

3.4 Defining a Class With a Member
Function (Cont.)

• Using a class
– A class is a user-defined type (or programmer-defined type)

• Can be used to create objects
– Variables of the class type

• C++ is an extensible language
– Dot operator (.)

• Used to access an object’s data members and member functions
• Example

– myGradeBook.displayMessage()
• Call member function displayMessage of GradeBook

object myGradeBook

16

© 2006 Pearson Education, Inc. All rights reserved.

Fig.3.2 | UML class diagram indicating that class GradeBook has a public
displayMessage operation.

17

© 2006 Pearson Education, Inc. All rights reserved.

3.4 Defining a Class With a Member
Function (Cont.)

• UML class diagram
– A rectangle with three compartments

• Top compartment contains the name of the class
• Middle compartment contains the class’s attributes
• Bottom compartment contains the class’s operations

– A (+) in front of an operation indicates it is public

18

© 2006 Pearson Education, Inc. All rights reserved.

3.5 Defining a Member Function with a
Parameter

• Function parameter(s)
– Information needed by a function to perform its task

• Function argument(s)
– Values supplied by a function call for each of the function’s

parameters
• Argument values are copied into function parameters

19

© 2006 Pearson Education, Inc. All rights reserved.

3.5 Defining a Member Function with a
Parameter (Cont.)

• A string
– Represents a string of characters
– An object of C++ Standard Library class std::string

• Defined in header file <string>

• Library function getline
– Used to retrieve input until newline is encountered
– Example

• getline(cin, nameOfCourse);

– Inputs a line from standard input into string object
nameOfCourse

20

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig03_03.cpp

(1 of 2)

 1 // Fig. 3.3: fig03_03.cpp

 2 // Define class GradeBook with a member function that takes a parameter;

 3 // Create a GradeBook object and call its displayMessage function.

 4 #include <iostream>

 5 using std::cout;

 6 using std::cin;

 7 using std::endl;

 8
 9 #include <string> // program uses C++ standard string class

10 using std::string;
11 using std::getline;
12
13 // GradeBook class definition
14 class GradeBook
15 {
16 public:
17 // function that displays a welcome message to the GradeBook user
18 void displayMessage(string courseName)
19 {
20 cout << "Welcome to the grade book for\n" << courseName << "!"
21 << endl;
22 } // end function displayMessage
23 }; // end class GradeBook
24
25 // function main begins program execution
26 int main()
27 {
28 string nameOfCourse; // string of characters to store the course name
29 GradeBook myGradeBook; // create a GradeBook object named myGradeBook
30

Include string class definition

Member function parameter

Use the function
parameter as a variable

21

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig03_03.cpp

(2 of 2)

31 // prompt for and input course name
32 cout << "Please enter the course name:" << endl;
33 getline(cin, nameOfCourse); // read a course name with blanks
34 cout << endl; // output a blank line
35
36 // call myGradeBook's displayMessage function
37 // and pass nameOfCourse as an argument
38 myGradeBook.displayMessage(nameOfCourse);
39 return 0; // indicate successful termination
40 } // end main

Please enter the course name:
CS101 Introduction to C++ Programming

Welcome to the grade book for
CS101 Introduction to C++ Programming!

Passing an argument to
the member function

22

© 2006 Pearson Education, Inc. All rights reserved.

3.5 Defining a Member Function with a
Parameter (Cont.)

• Parameter Lists
– Additional information needed by a function
– Located in parentheses following the function name
– Function may have any number of parameters

• Parameters separated by commas
– Number, order and types of arguments in a function call

must match the number, order and types of parameters in
the called function’s parameter list

– Modeled in UML
• Parameter name, followed by a colon and the parameter type

in the member function’s parentheses

23

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 3.4

4 Placing a semicolon after the right parenthesis
enclosing the parameter list of a function
definition is a syntax error.

24

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 3.5

Defining a function parameter again as a local
variable in the function is a compilation error.

25

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 3.1

To avoid ambiguity, do not use the same
names for the arguments passed to a function
and the corresponding parameters in the
function definition.

26

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 3.2

Choosing meaningful function names and
meaningful parameter names makes programs
more readable and helps avoid excessive use of
comments.

27

© 2006 Pearson Education, Inc. All rights reserved.

Fig.3.4 | UML class diagram indicating that class GradeBook has a displayMessage
operation with a courseName parameter of UML type String.

28

© 2006 Pearson Education, Inc. All rights reserved.

3.6 Data Members, set Functions and get
Functions

• Local variables
– Variables declared in a function definition’s body

• Cannot be used outside of that function body
– When a function terminates

• The values of its local variables are lost

• Attributes
– Exist throughout the life of the object
– Represented as data members

• Variables in a class definition
– Each object of class maintains its own copy of attributes

29

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig03_05.cpp

(1 of 3)

 1 // Fig. 3.5: fig03_05.cpp

 2 // Define class GradeBook that contains a courseName data member

 3 // and member functions to set and get its value;

 4 // Create and manipulate a GradeBook object with these functions.

 5 #include <iostream>

 6 using std::cout;

 7 using std::cin;

 8 using std::endl;

 9
10 #include <string> // program uses C++ standard string class
11 using std::string;
12 using std::getline;
13
14 // GradeBook class definition
15 class GradeBook
16 {
17 public:
18 // function that sets the course name
19 void setCourseName(string name)
20 {
21 courseName = name; // store the course name in the object
22 } // end function setCourseName
23
24 // function that gets the course name
25 string getCourseName()
26 {
27 return courseName; // return the object's courseName
28 } // end function getCourseName
29

set function modifies private data

get function accesses private data

30

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig03_05.cpp

(2 of 3)

30 // function that displays a welcome message
31 void displayMessage()
32 {
33 // this statement calls getCourseName to get the
34 // name of the course this GradeBook represents
35 cout << "Welcome to the grade book for\n" << getCourseName() << "!"
36 << endl;
37 } // end function displayMessage
38 private:
39 string courseName; // course name for this GradeBook
40 }; // end class GradeBook
41
42 // function main begins program execution
43 int main()
44 {
45 string nameOfCourse; // string of characters to store the course name
46 GradeBook myGradeBook; // create a GradeBook object named myGradeBook
47
48 // display initial value of courseName
49 cout << "Initial course name is: " << myGradeBook.getCourseName()
50 << endl;
51

Use set and get functions,
even within the class

Accessing private data outside class definition

private members accessible only
to member functions of the class

31

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig03_05.cpp

(3 of 3)

52 // prompt for, input and set course name
53 cout << "\nPlease enter the course name:" << endl;
54 getline(cin, nameOfCourse); // read a course name with blanks
55 myGradeBook.setCourseName(nameOfCourse); // set the course name
56
57 cout << endl; // outputs a blank line
58 myGradeBook.displayMessage(); // display message with new course name
59 return 0; // indicate successful termination
60 } // end main

Initial course name is:

Please enter the course name:
CS101 Introduction to C++ Programming

Welcome to the grade book for
CS101 Introduction to C++ Programming!

Modifying private data outside class definition

32

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 3.3

Place a blank line between member-function
definitions to enhance program readability.

33

© 2006 Pearson Education, Inc. All rights reserved.

3.6 Data Members, set Functions and get
Functions (Cont.)

• Access-specifier private
– Makes a data member or member function accessible only

to member functions of the class
– private is the default access for class members
– Data hiding

• Returning a value from a function
– A function that specifies a return type other than void

• Returns a value to its calling function

34

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 3.1

As a rule of thumb, data members should be
declared private and member functions
should be declared public. (We will see that it
is appropriate to declare certain member
functions private, if they are to be accessed
only by other member functions of the class.)

35

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 3.6

An attempt by a function, which is not a member
of a particular class (or a friend of that class, as
we will see in Chapter 10), to access a private
member of that class is a compilation error.

36

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 3.4

Despite the fact that the public and
private access specifiers may be repeated
and intermixed, list all the public members
of a class first in one group and then list all the
private mem-bers in another group. This
focuses the client’s attention on the class’s
public interface, rather than on the class’s
implementation.

37

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 3.5

If you choose to list the private members first
in a class definition, explicitly use the private
access specifier despite the fact that private is
assumed by default. This improves pro-gram
clarity.

38

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 3.2

We will learn in Chapter 10, Classes: Part 2,
that functions and classes declared by a class to
be friends can access the private members
of the class.

39

© 2006 Pearson Education, Inc. All rights reserved.

Error-Prevention Tip 3.1

Making the data members of a class private
and the member functions of the class public
facilitates debugging because problems with data
manipulations are localized to either the class’s
member functions or the friends of the class.

40

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 3.7

Forgetting to return a value from a function that
is supposed to return a value is a compilation
error.

41

© 2006 Pearson Education, Inc. All rights reserved.

3.6 Data Members, set Functions and get
Functions (Cont.)

• Software engineering with set and get functions
– public member functions that allow clients of a class to

set or get the values of private data members
– set functions sometimes called mutators and get functions

sometimes called accessors
– Allows the creator of the class to control how clients access
private data

– Should also be used by other member functions of the same
class

42

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 3.6

Always try to localize the effects of changes to a
class’s data members by accessing and
manipulating the data members through their
get and set functions. Changes to the name of a
data member or the data type used to store a
data member then affect only the corresponding
get and set functions, but not the callers of those
functions.

43

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 3.3

It is important to write programs that are
understandable and easy to maintain. Change is
the rule rather than the exception. Programmers
should anticipate that their code will be modified.

44

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 3.4

The class designer need not provide set or get
functions for each private data item; these
capabilities should be provided only when
appropriate. If a service is useful to the client
code, that service should typically be provided
in the class’s public interface.

45

© 2006 Pearson Education, Inc. All rights reserved.

3.6 Data Members, set Functions and get
Functions (Cont.)

• UML diagram
– Indicating the return type of an operation

• Place a colon and the return type after the parentheses
following the operation name

– Minus sign used to indicate private members

46

© 2006 Pearson Education, Inc. All rights reserved.

Fig.3.6 | UML class diagram for class GradeBook with a private courseName attribute
and public operations setCourseName, getCourseName and displayMessage.

47

© 2006 Pearson Education, Inc. All rights reserved.

3.7 Initializing Objects with Constructors

• Constructors
– Functions used to initialize an object’s data when it is

created
• Call made implicitly when object is created
• Must be defined with the same name as the class
• Cannot return values

– Not even void
– Default constructor has no parameters

• The compiler will provide one when a class does not explicitly
include a constructor

– Compiler’s default constructor only calls constructors of
data members that are objects of classes

48

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig03_07.cpp

(1 of 3)

 1 // Fig. 3.7: fig03_07.cpp

 2 // Instantiating multiple objects of the GradeBook class and using

 3 // the GradeBook constructor to specify the course name

 4 // when each GradeBook object is created.

 5 #include <iostream>

 6 using std::cout;

 7 using std::endl;

 8
 9 #include <string> // program uses C++ standard string class

10 using std::string;
11
12 // GradeBook class definition
13 class GradeBook
14 {
15 public:
16 // constructor initializes courseName with string supplied as argument
17 GradeBook(string name)
18 {
19 setCourseName(name); // call set function to initialize courseName
20 } // end GradeBook constructor
21
22 // function to set the course name
23 void setCourseName(string name)
24 {
25 courseName = name; // store the course name in the object
26 } // end function setCourseName
27

Constructor has same name as
class and no return type

Initialize data member

49

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig03_07.cpp

(2 of 3)

28 // function to get the course name
29 string getCourseName()
30 {
31 return courseName; // return object's courseName
32 } // end function getCourseName
33
34 // display a welcome message to the GradeBook user
35 void displayMessage()
36 {
37 // call getCourseName to get the courseName
38 cout << "Welcome to the grade book for\n" << getCourseName()
39 << "!" << endl;
40 } // end function displayMessage
41 private:
42 string courseName; // course name for this GradeBook
43 }; // end class GradeBook
44

50

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig03_07.cpp

(3 of 3)

45 // function main begins program execution
46 int main()
47 {
48 // create two GradeBook objects
49 GradeBook gradeBook1("CS101 Introduction to C++ Programming");
50 GradeBook gradeBook2("CS102 Data Structures in C++");
51
52 // display initial value of courseName for each GradeBook
53 cout << "gradeBook1 created for course: " << gradeBook1.getCourseName()
54 << "\ngradeBook2 created for course: " << gradeBook2.getCourseName()
55 << endl;
56 return 0; // indicate successful termination
57 } // end main

gradeBook1 created for course: CS101 Introduction to C++ Programming
gradeBook2 created for course: CS102 Data Structures in C++

Creating objects implicitly calls the constructor

51

© 2006 Pearson Education, Inc. All rights reserved.

Error-Prevention Tip 3.2

Unless no initialization of your class’s data
members is necessary (almost never), provide a
constructor to ensure that your class’s data
members are initialized with meaningful values
when each new object of your class is created.

52

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 3.5

Data members can be initialized in a constructor
of the class or their values may be set later after
the object is created. However, it is a good
software engineering practice to ensure that an
object is fully initialized before the client code
invokes the object’s member functions. In general,
you should not rely on the client code to ensure
that an object gets initialized properly.

53

© 2006 Pearson Education, Inc. All rights reserved.

3.7 Initializing Objects with Constructors
(Cont.)

• Constructors in a UML class diagram
– Appear in third compartment, with operations
– To distinguish a constructor from a class’s operations

• UML places the word “constructor” between guillemets
before the constructor’s name

– <<constructor>>
– Usually placed before other operations

54

© 2006 Pearson Education, Inc. All rights reserved.

Fig.3.8 | UML class diagram indicating that class GradeBook has a constructor with a
name parameter of UML type String.

