
72

© 2006 Pearson Education, Inc. All rights reserved.

5.7 break and continue Statements

•break/continue statements
– Alter flow of control

•break statement
– Causes immediate exit from control structure
– Used in while, for, do…while or switch statements

•continue statement
– Skips remaining statements in loop body

• Proceeds to increment and condition test in for loops
• Proceeds to condition test in while/do…while loops

– Then performs next iteration (if not terminating)
– Used in while, for or do…while statements

73

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 5.13: fig05_13.cpp

 2 // break statement exiting a for statement.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 int main()

 8 {

 9 int count; // control variable also used after loop terminates

10
11 for (count = 1; count <= 10; count++) // loop 10 times
12 {
13 if (count == 5)
14 break; // break loop only if x is 5
15
16 cout << count << " ";
17 } // end for
18
19 cout << "\nBroke out of loop at count = " << count << endl;
20 return 0; // indicate successful termination
21 } // end main

1 2 3 4
Broke out of loop at count = 5

Outline

fig05_13.cpp

(1 of 1)

Loop 10 times

Exit for statement (with a
break) when count equals 5

74

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 5.14: fig05_14.cpp

 2 // continue statement terminating an iteration of a for statement.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 int main()

 8 {

 9 for (int count = 1; count <= 10; count++) // loop 10 times

10 {
11 if (count == 5) // if count is 5,
12 continue; // skip remaining code in loop
13
14 cout << count << " ";
15 } // end for
16
17 cout << "\nUsed continue to skip printing 5" << endl;
18 return 0; // indicate successful termination
19 } // end main

1 2 3 4 6 7 8 9 10
Used continue to skip printing 5

Outline

fig05_14.cpp

(1 of 1)

Loop 10 times

Skip line 14 and proceed to
line 9 when count equals 5

75

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 5.12

Some programmers feel that break and
continue violate structured programming.
The effects of these statements can be achieved
by structured programming techniques we
soon will learn, so these programmers do not
use break and continue. Most
programmers consider the use of break in
switch statements acceptable.

76

© 2006 Pearson Education, Inc. All rights reserved.

Performance Tip 5.5

The break and continue statements, when
used properly, perform faster than do the
corresponding structured techniques.

77

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 5.2

There is a tension between achieving quality
software engineering and achieving the best-
performing software. Often, one of these goals
is achieved at the expense of the other. For all
but the most performance-intensive situations,
apply the following rule of thumb: First, make
your code simple and correct; then make it fast
and small, but only if necessary.

78

© 2006 Pearson Education, Inc. All rights reserved.

5.8 Logical Operators

• Logical operators
– Allows for more complex conditions

• Combines simple conditions into complex conditions

• C++ logical operators
– && (logical AND)
– || (logical OR)
– ! (logical NOT)

79

© 2006 Pearson Education, Inc. All rights reserved.

5.8 Logical Operators (Cont.)

• Logical AND (&&) Operator
– Consider the following if statement

if (gender == 1 && age >= 65)

seniorFemales++;

– Combined condition is true
• If and only if both simple conditions are true

– Combined condition is false
• If either or both of the simple conditions are false

80

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 5.13

Although 3 < x < 7 is a mathematically correct
condition, it does not evaluate as you might expect
in C++. Use (3 < x && x < 7) to get the proper
evaluation in C++.

81

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 5.15 | && (logical AND) operator truth table.

expression1 expression2 expression1 && expression2

 false false false

 false true false

 true false false

 true true true

82

© 2006 Pearson Education, Inc. All rights reserved.

5.8 Logical Operators (Cont.)

• Logical OR (||) Operator
– Consider the following if statement

if ((semesterAverage >= 90) || (finalExam >= 90)

cout << “Student grade is A” << endl;

– Combined condition is true
• If either or both of the simple conditions are true

– Combined condition is false
• If both of the simple conditions are false

83

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 5.16 | || (logical OR) operator truth table.

 expression1 expression2 expression1 || expression2

 false false false

 false true true

 true false true

 true true true

84

© 2006 Pearson Education, Inc. All rights reserved.

5.8 Logical Operators (Cont.)

• Short-Circuit Evaluation of Complex Conditions
– Parts of an expression containing && or || operators are

evaluated only until it is known whether the condition is
true or false

– Example
• (gender == 1) && (age >= 65)

– Stops immediately if gender is not equal to 1
• Since the left-side is false, the entire expression

must be false

85

© 2006 Pearson Education, Inc. All rights reserved.

Performance Tip 5.6

In expressions using operator &&, if the separate
conditions are independent of one another, make
the condition most likely to be false the leftmost
condition. In expressions using operator ||, make
the condition most likely to be true the leftmost
condition. This use of short-circuit evaluation can
reduce a program’s execution time.

86

© 2006 Pearson Education, Inc. All rights reserved.

5.8 Logical Operators (Cont.)

• Logical Negation (!) Operator
– Unary operator
– Returns true when its operand is false, and vice versa
– Example

• if (!(grade == sentinelValue))
cout << "The next grade is " << grade << endl;

is equivalent to:
if (grade != sentinelValue)

cout << "The next grade is " << grade << endl;

• Stream manipulator boolalpha
– Display bool expressions in words, “true” or “false”

87

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 5.17 | ! (logical negation) operator truth table.

 Expression !expression

 false true

 true false

88

© 2006 Pearson Education, Inc. All rights reserved.

 1 // Fig. 5.18: fig05_18.cpp

 2 // Logical operators.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6 using std::boolalpha; // causes bool values to print as "true" or "false"

 7
 8 int main()

 9 {

10 // create truth table for && (logical AND) operator
11 cout << boolalpha << "Logical AND (&&)"
12 << "\nfalse && false: " << (false && false)
13 << "\nfalse && true: " << (false && true)
14 << "\ntrue && false: " << (true && false)
15 << "\ntrue && true: " << (true && true) << "\n\n";
16
17 // create truth table for || (logical OR) operator
18 cout << "Logical OR (||)"
19 << "\nfalse || false: " << (false || false)
20 << "\nfalse || true: " << (false || true)
21 << "\ntrue || false: " << (true || false)
22 << "\ntrue || true: " << (true || true) << "\n\n";
23
24 // create truth table for ! (logical negation) operator
25 cout << "Logical NOT (!)"
26 << "\n!false: " << (!false)
27 << "\n!true: " << (!true) << endl;
28 return 0; // indicate successful termination
29 } // end main

Outline

fig05_18.cpp

(1 of 2)

Stream manipulator boolalpha causes bool
values to display as the words “true” or “false”

Output logical AND truth table

Output logical OR truth table

Output logical NOT truth table

Use boolalpha stream
manipulator in cout

89

© 2006 Pearson Education, Inc. All rights reserved.

Logical AND (&&)
false && false: false
false && true: false
true && false: false
true && true: true

Logical OR (||)
false || false: false
false || true: true
true || false: true
true || true: true

Logical NOT (!)
!false: true
!true: false

Outline

fig05_18.cpp

(2 of 2)

90

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 5.19 | Operator precedence and associativity.

 Operators Associativity Type

 () left to right parentheses

 ++ -- static_cast< type >() left to right unary (postfix)

 ++ -- + - ! right to left unary (prefix)
 * / % left to right multiplicative
 + - left to right additive
 << >> left to right insertion/extraction

 < <= > >= left to right relational

 == != left to right equality

 && left to right logical AND

 || left to right logical OR

 ?: right to left conditional

 = += -= *= /= %= right to left assignment
 , left to right comma

91

© 2006 Pearson Education, Inc. All rights reserved.

5.9 Confusing Equality (==) and
Assignment (=) Operators

• Accidentally swapping the operators ==
(equality) and = (assignment)

– Common error
• Assignment statements produce a value (the value to be

assigned)
• Expressions that have a value can be used for decision

– Zero = false, nonzero = true
– Does not typically cause syntax errors

• Some compilers issue a warning when = is used in a context
normally expected for ==

92

© 2006 Pearson Education, Inc. All rights reserved.

5.9 Confusing Equality (==) and
Assignment (=) Operators (Cont.)

• Example
if (payCode == 4)

cout << "You get a bonus!" << endl;

– If paycode is 4, bonus is given

• If == was replaced with =
if (payCode = 4)

cout << "You get a bonus!" << endl;

– paycode is set to 4 (no matter what it was before)
– Condition is true (since 4 is non-zero)

• Bonus given in every case

93

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 5.14

Using operator == for assignment and using
operator = for equality are logic errors.

94

© 2006 Pearson Education, Inc. All rights reserved.

Error-Prevention Tip 5.3

Programmers normally write conditions such as x
== 7 with the variable name on the left and the
constant on the right. By reversing these so that
the constant is on the left and the variable name is
on the right, as in 7 == x, the programmer who
accidentally replaces the == operator with = will
be protected by the compiler. The compiler treats
this as a compilation error, because you can’t
change the value of a constant. This will prevent
the potential devastation of a runtime logic error.

95

© 2006 Pearson Education, Inc. All rights reserved.

5.9 Confusing Equality (==) and
Assignment (=) Operators (Cont.)

• Lvalues
– Expressions that can appear on left side of equation
– Can be changed (i.e., variables)

• x = 4;

• Rvalues
– Only appear on right side of equation
– Constants, such as numbers (i.e. cannot write 4 = x;)

• Lvalues can be used as rvalues, but not vice versa

96

© 2006 Pearson Education, Inc. All rights reserved.

Error-Prevention Tip 5.4

Use your text editor to search for all occurrences
of = in your program and check that you have the
correct assignment operator or logical operator in
each place.

97

© 2006 Pearson Education, Inc. All rights reserved.

5.10 Structured Programming Summary

• Structured programming
– Produces programs that are easier to understand, test,

debug and modify

• Rules for structured programming
– Only use single-entry/single-exit control structures
– Rules (Fig. 5.21)

• Rule 2 is the stacking rule
• Rule 3 is the nesting rule

98

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 5.20 | C++’s single-entry/single-exit sequence, selection and repetition statements.

99

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 5.21 | Rules for forming structured programs.

Rules for Forming Structured Programs
1) Begin with the “simplest activity diagram” (Fig. 5.22).

2) Any action state can be replaced by two action states in sequence.

3) Any action state can be replaced by any control statement (sequence, if, if...else,
switch, while, do...while or for).

4) Rules 2 and 3 can be applied as often as you like and in any order.

100

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 5.22 | Simplest activity diagram.

101

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 5.23 | Repeatedly applying Rule 2 of Fig. 5.21 to the simplest activity diagram.

102

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 5.24 | Applying Rule 3 of Fig. 5.21 to the simplest activity diagram several times.

103

© 2006 Pearson Education, Inc. All rights reserved.

5.10 Structured Programming Summary
(Cont.)

• Sequence structure
– “built-in” to C++

• Selection structure
– if, if…else and switch

• Repetition structure
– while, do…while and for

104

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 5.25 | Activity diagram with illegal syntax.

105

© 2006 Pearson Education, Inc. All rights reserved.

5.11 (Optional) Software Engineering Case Study:
Identifying Object’s State and Activities in the ATM System

• State Machine Diagrams
– Commonly called state diagrams
– Model several states of an object

• Show under what circumstances the object changes state
• Focus on system behavior

– UML representation
• Initial state

– Solid circle
• State

– Rounded rectangle
• Transitions

– Arrows with stick arrowheads

106

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 5.26 | State diagram for the ATM object.

107

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 5.3

Software designers do not generally create state
diagrams showing every possible state and state
transition for all attributes—there are simply too
many of them. State diagrams typically show only
the most important or complex states and state
transitions.

108

© 2006 Pearson Education, Inc. All rights reserved.

5.11 (Optional) Software Engineering Case Study :
Identifying Object’s State and Activities in the ATM System
(Cont.)

• Activity Diagrams
– Focus on system behavior
– Model an object’s workflow during program execution

• Actions the object will perform and in what order
– UML representation

• Initial state
– Solid circle

• Action state
– Rectangle with outward-curving sides

• Action order
– Arrow with a stick arrowhead

• Final state
– Solid circle enclosed in an open circle

109

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 5.27 | Activity diagram for a BalanceInquiry transaction.

110

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 5.28 | Activity diagram for a Withdrawal transaction.

111

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 5.29 | Activity diagram for a Deposit transaction.

