
1

© 2006 Pearson Education, Inc. All rights reserved.

66
Functions and an

Introduction
to Recursion

2

© 2006 Pearson Education, Inc. All rights reserved.

Form ever follows function.
— Louis Henri Sullivan

E pluribus unum. (One composed of many.)
— Virgil

O! call back yesterday, bid time return.
— William Shakespeare

Call me Ishmael.
— Herman Melville

3

© 2006 Pearson Education, Inc. All rights reserved.

When you call me that, smile!
— Owen Wister

Answer me in one word.
— William Shakespeare

There is a point at which methods devour
themselves.

— Frantz Fanon

Life can only be understood backwards; but it must
be lived forwards.

— Soren Kierkegaard

4

© 2006 Pearson Education, Inc. All rights reserved.

OBJECTIVES
In this chapter you will learn:

To construct programs modularly from functions.
To use common math functions available in the C++ Standard
Library.
To create functions with multiple parameters.
The mechanisms for passing information between functions and
returning results.
How the function call/return mechanism is supported by the
function call stack and activation records.
To use random number generation to implement game-playing
applications.
How the visibility of identifiers is limited to specific regions of
programs.
To write and use recursive functions, i.e., functions that call
themselves.

5

© 2006 Pearson Education, Inc. All rights reserved.

6.1 Introduction
6.2 Program Components in C++
6.3 Math Library Functions
6.4 Function Definitions with Multiple Parameters
6.5 Function Prototypes and Argument Coercion
6.6 C++ Standard Library Header Files
6.7 Case Study: Random Number Generation
6.8 Case Study: Game of Chance and Introducing enum
6.9 Storage Classes
6.10 Scope Rules
6.11 Function Call Stack and Activation Records
6.12 Functions with Empty Parameter Lists

6

© 2006 Pearson Education, Inc. All rights reserved.

6.13 Inline Functions
6.14 References and Reference Parameters
6.15 Default Arguments
6.16 Unary Scope Resolution Operator
6.17 Function Overloading
6.18 Function Templates
6.19 Recursion
6.20 Example Using Recursion: Fibonacci Series
6.21 Recursion vs. Iteration
6.22 (Optional) Software Engineering Case Study:

Identifying Class Operations in the ATM System
6.23 Wrap-Up

7

© 2006 Pearson Education, Inc. All rights reserved.

6.1 Introduction

• Divide and conquer technique
– Construct a large program from small, simple pieces (e.g.,

components)

• Functions
– Facilitate the design, implementation, operation and

maintenance of large programs

• C++ Standard Library math functions

8

© 2006 Pearson Education, Inc. All rights reserved.

6.2 Program Components in C++

• C++ Standard Library
– Rich collection of functions for performing common

operations, such as:
• Mathematical calculations
• String manipulations
• Character manipulations
• Input/Output
• Error checking

– Provided as part of the C++ programming
environment

9

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 6.1

Read the documentation for your compiler
to familiarize yourself with the functions
and classes in the C++ Standard Library.

10

© 2006 Pearson Education, Inc. All rights reserved.

6.2 Program Components in C++ (Cont.)

• Functions
– Called methods or procedures in other languages
– Allow programmers to modularize a program by

separating its tasks into self-contained units
• Statements in function bodies are written only once

– Reused from perhaps several locations in a program
– Hidden from other functions
– Avoid repeating code

• Enable the divide-and-conquer approach
• Reusable in other programs
• User-defined or programmer-defined functions

11

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 6.2

To promote software reusability, every function
should be limited to performing a single, well-
defined task, and the name of the function should
express that task effectively. Such functions
make programs easier to write, test, debug and
maintain.

12

© 2006 Pearson Education, Inc. All rights reserved.

Error-Prevention Tip 6.1

A small function that performs one task is
easier to test and debug than a larger function
that performs many tasks.

13

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 6.3

If you cannot choose a concise name that
expresses a function’s task, your function
might be attempting to perform too many
diverse tasks. It is usually best to break such
a function into several smaller functions.

14

© 2006 Pearson Education, Inc. All rights reserved.

6.2 Program Components in C++ (cont.)

• Function (Cont.)
– A function is invoked by a function call

• Called function either returns a result or simply returns to
the caller

• Function calls form hierarchical relationships

15

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 6.1 | Hierarchical boss function/worker function relationship.

16

© 2006 Pearson Education, Inc. All rights reserved.

6.3 Math Library Functions

• Global functions
– Do not belong to a particular class
– Have function prototypes placed in header files

• Can be reused in any program that includes the header file
and that can link to the function’s object code

– Example: sqrt in <cmath> header file
• sqrt(900.0)

• All functions in <cmath> are global functions

17

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 6.2 | Math library functions.

 Function Description Example

 ceil(x) rounds x to the smallest
integer not less than x

 ceil(9.2) is 10.0
 ceil(-9.8) is -9.0

 cos(x) trigonometric cosine of x
(x in radians)

 cos(0.0) is 1.0

 exp(x) exponential function ex exp(1.0) is 2.71828
 exp(2.0) is 7.38906

 fabs(x) absolute value of x fabs(5.1) is 5.1
 fabs(0.0) is 0.0
 fabs(-8.76) is 8.76

 floor(x) rounds x to the largest integer not
greater than x

 floor(9.2) is 9.0
 floor(-9.8) is -10.0

 fmod(x, y) remainder of x/y as a floating-point
number

 fmod(2.6, 1.2) is 0.2

 log(x) natural logarithm of x
(base e)

 log(2.718282) is 1.0
 log(7.389056) is 2.0

 log10(x) logarithm of x (base 10) log10(10.0) is 1.0
 log10(100.0) is 2.0

 pow(x, y) x raised to power y (xy) pow(2, 7) is 128
 pow(9, .5) is 3

 sin(x) trigonometric sine of x
(x in radians)

 sin(0.0) is 0

 sqrt(x) square root of x (where x is a
nonnegative value)

 sqrt(9.0) is 3.0

 tan(x) trigonometric tangent of x
(x in radians)

 tan(0.0) is 0

18

© 2006 Pearson Education, Inc. All rights reserved.

6.4 Function Definitions with Multiple
Parameters

• Multiple parameters
– Functions often require more than one piece of

information to perform their tasks
– Specified in both the function prototype and the function

header as a comma-separated list of parameters

19

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 6.3: GradeBook.h

 2 // Definition of class GradeBook that finds the maximum of three grades.

 3 // Member functions are defined in GradeBook.cpp

 4 #include <string> // program uses C++ standard string class

 5 using std::string;

 6
 7 // GradeBook class definition

 8 class GradeBook

 9 {

10 public:
11 GradeBook(string); // constructor initializes course name
12 void setCourseName(string); // function to set the course name
13 string getCourseName(); // function to retrieve the course name
14 void displayMessage(); // display a welcome message
15 void inputGrades(); // input three grades from user
16 void displayGradeReport(); // display a report based on the grades
17 int maximum(int, int, int); // determine max of 3 values
18 private:
19 string courseName; // course name for this GradeBook
20 int maximumGrade; // maximum of three grades
21 }; // end class GradeBook

Outline

GradeBook.h

(1 of 1)

Prototype for a member function
that takes three arguments

Data member to store maximum grade

20

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 6.4: GradeBook.cpp

 2 // Member-function definitions for class GradeBook that

 3 // determines the maximum of three grades.

 4 #include <iostream>

 5 using std::cout;

 6 using std::cin;

 7 using std::endl;

 8
 9 #include "GradeBook.h" // include definition of class GradeBook

10
11 // constructor initializes courseName with string supplied as argument;
12 // initializes studentMaximum to 0
13 GradeBook::GradeBook(string name)
14 {
15 setCourseName(name); // validate and store courseName
16 maximumGrade = 0; // this value will be replaced by the maximum grade
17 } // end GradeBook constructor
18
19 // function to set the course name; limits name to 25 or fewer characters
20 void GradeBook::setCourseName(string name)
21 {
22 if (name.length() <= 25) // if name has 25 or fewer characters
23 courseName = name; // store the course name in the object
24 else // if name is longer than 25 characters
25 { // set courseName to first 25 characters of parameter name
26 courseName = name.substr(0, 25); // select first 25 characters
27 cout << "Name \"" << name << "\" exceeds maximum length (25).\n"
28 << "Limiting courseName to first 25 characters.\n" << endl;
29 } // end if...else
30 } // end function setCourseName

Outline

GradeBook.cpp

(1 of 3)

21

© 2006 Pearson Education,
Inc. All rights reserved.

31
32 // function to retrieve the course name
33 string GradeBook::getCourseName()
34 {
35 return courseName;
36 } // end function getCourseName
37
38 // display a welcome message to the GradeBook user
39 void GradeBook::displayMessage()
40 {
41 // this statement calls getCourseName to get the
42 // name of the course this GradeBook represents
43 cout << "Welcome to the grade book for\n" << getCourseName() << "!\n"
44 << endl;
45 } // end function displayMessage
46
47 // input three grades from user; determine maximum
48 void GradeBook::inputGrades()
49 {
50 int grade1; // first grade entered by user
51 int grade2; // second grade entered by user
52 int grade3; // third grade entered by user
53
54 cout << "Enter three integer grades: ";
55 cin >> grade1 >> grade2 >> grade3;
56
57 // store maximum in member studentMaximum
58 maximumGrade = maximum(grade1, grade2, grade3);
59 } // end function inputGrades

Outline

GradeBook.cpp

(2 of 3)

Call to function maximum
passes three arguments

22

© 2006 Pearson Education,
Inc. All rights reserved.

60
61 // returns the maximum of its three integer parameters
62 int GradeBook::maximum(int x, int y, int z)
63 {
64 int maximumValue = x; // assume x is the largest to start
65
66 // determine whether y is greater than maximumValue
67 if (y > maximumValue)
68 maximumValue = y; // make y the new maximumValue
69
70 // determine whether z is greater than maximumValue
71 if (z > maximumValue)
72 maximumValue = z; // make z the new maximumValue
73
74 return maximumValue;
75 } // end function maximum
76
77 // display a report based on the grades entered by user
78 void GradeBook::displayGradeReport()
79 {
80 // output maximum of grades entered
81 cout << "Maximum of grades entered: " << maximumGrade << endl;
82 } // end function displayGradeReport

Outline

GradeBook.cpp

(3 of 3)

maximum member function header

Comma-separated parameter list

Returning a value to the caller

23

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 6.5: fig06_05.cpp

 2 // Create GradeBook object, input grades and display grade report.

 3 #include "GradeBook.h" // include definition of class GradeBook

 4
 5 int main()

 6 {

 7 // create GradeBook object

 8 GradeBook myGradeBook("CS101 C++ Programming");

 9
10 myGradeBook.displayMessage(); // display welcome message
11 myGradeBook.inputGrades(); // read grades from user
12 myGradeBook.displayGradeReport(); // display report based on grades
13 return 0; // indicate successful termination
14 } // end main

Welcome to the grade book for
CS101 C++ Programming!

Enter three integer grades: 86 67 75
Maximum of grades entered: 86

Welcome to the grade book for
CS101 C++ Programming!

Enter three integer grades: 67 86 75
Maximum of grades entered: 86

Welcome to the grade book for
CS101 C++ Programming!

Enter three integer grades: 67 75 86
Maximum of grades entered: 86

Outline

fig06_05.cpp

(1 of 1)

24

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 6.4

The commas used in line 58 of Fig. 6.4 to separate
the arguments to function maximum are not
comma operators as discussed in Section 5.3. The
comma operator guarantees that its operands are
evaluated left to right. The order of evaluation of
a function’s arguments, however, is not specified
by the C++ standard. Thus, different compilers
can evaluate function arguments in different
orders. The C++ standard does guarantee that all
arguments in a function call are evaluated before
the called function executes.

25

© 2006 Pearson Education, Inc. All rights reserved.

6.4 Function Definitions with Multiple
Parameters (Cont.)

• Compiler uses a function prototype to:
– Check that calls to the function contain the correct number

and types of arguments in the correct order
– Ensure that the value returned by the function is used

correctly in the expression that called the function

• Each argument must be consistent with the type
of the corresponding parameter

– Parameters are also called formal parameters

26

© 2006 Pearson Education, Inc. All rights reserved.

Portability Tip 6.1

Sometimes when a function’s arguments are
more involved expressions, such as those with
calls to other functions, the order in which the
compiler evaluates the arguments could affect
the values of one or more of the arguments. If
the evaluation order changes between compilers,
the argument values passed to the function
could vary, causing subtle logic errors.

27

© 2006 Pearson Education, Inc. All rights reserved.

Error-Prevention Tip 6.2

If you have doubts about the order of evaluation
of a function’s arguments and whether the order
would affect the values passed to the function,
evaluate the arguments in separate assignment
statements before the function call, assign the
result of each expression to a local variable, then
pass those variables as arguments to the function.

28

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 6.1

Declaring method parameters of the same type
as double x, y instead of double x,
double y is a syntax error—an explicit type
is required for each parameter in the
parameter list.

29

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 6.2

Compilation errors occur if the function
prototype, function header and function
calls do not all agree in the number, type
and order of arguments and parameters,
and in the return type.

30

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 6.5

A function that has many parameters may
be performing too many tasks. Consider
dividing the function into smaller functions
that perform the separate tasks. Limit the
function header to one line if possible.

31

© 2006 Pearson Education, Inc. All rights reserved.

6.4 Function Definitions with Multiple
Parameters (Cont.)

• Three ways to return control to the calling
statement:

– If the function does not return a result:
• Program flow reaches the function-ending right brace or
• Program executes the statement return;

– If the function does return a result:
• Program executes the statement return expression;

– expression is evaluated and its value is returned to the
caller

