Object-Oriented
Programming:
Polymorphism

One Ring to rulethem all, One Ring to find them,
One Ring to bring them all and in the darkness bind them.
— John Ronald Reuel Tolkien

The silence often of pureinnocence
Persuades when speaking fails.

— William Shakespeare

General propositions do not decide concrete cases.
— Oliver Wendell Holmes

A philosopher of imposing stature doesn’t think in a
vacuum. Even his most abstract ideas are, to some extent,
conditioned by what is or is not known in the time when he
lives.

— Alfred North Whitehead

© 2006 Pearson Education, Inc. All rights reserved.

In this chapter you will learn:

What polymorphism is, how it makes programming more
convenient, and how it makes systems more extensible and
maintainable.

To declare and use virtual functions to effect polymorphism.
The distinction between abstract and concrete classes.
To declare pure virtual functions to create abstract classes.

How to use run-time type information (RTTI) with downcasting,
dynamic_cast, typeid and type_ info.

How C++ implements virtual functions and dynamic
binding "under the hood."

How to use virtual destructors to ensure that all appropriate
destructors run on an object.

< >

© 2006 Pearson Education, Inc. All rights reserved.

Introduction
Polymorphism Examples
Relationships Among Objects in an Inheritance Hierarchy

Invoking Base-Class Functions from Derived-
Class Objects

Aiming Derived-Class Pointers at Base-Class
Objects

Derived-Class Member-Function Calls via Base-
Class Pointers

Virtual Functions

Summary of the Allowed Assignments Between
Base-Class and Derived-Class Objects and
Pointers

Type Fields and switch Statements
Abstract Classes and Pure virtual Functions

(< >

© 2006 Pearson Education, Inc. All rights reserved.

Case Study: Payroll System Using Polymorphism
Creating Abstract Base Class Employee
Creating Concrete Derived Class salariedEmployee
Creating Concrete Derived Class HourlyEmployee
Creating Concrete Derived Class commissionEmployee

Creating Indirect Concrete Derived Class
BasePlusCommissionEmployee

Demonstrating Polymorphic Processing

(Optional) Polymorphism, Virtual Functions and Dynamic
Binding "Under the Hood"

Case Study: Payroll System Using Polymorphism and Run-Time

Type Information with Downcasting, dynamic_cast, typeid and
type_info

Virtual Destructors

(Optional) Software Engineering Case Study: Incorporating
Inheritance into the ATM System

Wrap-Up

(< >

© 2006 Pearson Education, Inc. All rights reserved.

* Polymor phism with inheritance hierarchies

— “Program in the general” vs. “program in the specific”

— Process objectsof classesthat are part of the same
hierarchy asif they are all objects of the base class

— Each object performsthe correct tasksfor that object’s
type
 Different actionsoccur depending on thetype of object

— New classes can be added with little or not modification to
existing code

(< >

© 2006 Pearson Education, Inc. All rights reserved.

« Example: Animal hierarchy

— Animal base class— every derived class has function move

— Different animal objects maintained asa vector of
Animal pointers

— Program issues same message (move) to each animal
generically
— Proper function gets called
* A Fish will move by swimming
* A Frog will move by jumping
« A Bird will move by flying

(< >

© 2006 Pearson Education, Inc. All rights reserved.

 Polymor phism occurswhen a program invokes a virtual
function through a base-class pointer or reference

C++ dynamically chooses the correct function for the class from
which the object wasinstantiated

« Example: SpaceObjects

Video game manipulates obj ects of typesthat inherit from
SpaceObject, which contains member function draw

Function draw implemented differently for the different classes

Screen-manager program maintains a container of
SpaceObject pointers

Call draw on each object using SpaceObject pointers
* Proper draw function is called based on object’stype

A new classderived from SpaceObject can be added without
affecting the screen manager < >

© 2006 Pearson Education, Inc. All rights reserved.

With virtual functionsand polymorphism, you
can deal in generalities and let the execution-time
environment concern itself with the specifics. You
can direct avariety of objectsto behavein
manners appropriate to those objects without
even knowing their types (aslong as those objects
belong to the same inheritance hierarchy and are
being accessed off a common base-class pointer).

(< >

© 2006 Pearson Education, Inc. All rights reserved.

10

Polymor phism promotes extensibility: Software
written to invoke polymor phic behavior is
written independently of the types of the objects
to which messages ar e sent. Thus, new types of
objectsthat can respond to existing messages
can be incor porated into such a system without
modifying the base system. Only client code
that instantiates new objects must be modified
to accommodate new types.

(< >

© 2006 Pearson Education, Inc. All rights reserved.

11

e Demonstration

— Invoking base-class functions from derived-class objects
— Aiming derived-class pointers at base-class objects
— Derived-class member-function calls via base-class pointers
— Demonstrating polymor phism using virtual functions
e Base-class pointersaimed at derived-class objects
e Key concept

— An object of aderived class can betreated as an object of
Its base class

(< >

© 2006 Pearson Education, Inc. All rights reserved.

12

o Aim base-class pointer at base-class object
— Invoke base-class functionality
o Aim derived-class pointer at derived-class object
— Invoke derived-class functionality
« Aim base-class pointer at derived-class object
— Because derived-class object isan object of base class

— Invoke base-class functionality

* Invoked functionality depends on type of the handle used to invoke
the function, not type of the object to which the handle points

— virtual functions

« Makeit possibleto invoke the object type's functionality, rather
than invoke the handle type’'s functionality

e Crucial to implementing polymor phic behavior
(< >

© 2006 Pearson Education, Inc. All rights reserved.

© 0 N OO O B W DN PP

N NN NNDNRRRRRRRERR R R
O A W NP O ©O ®~N O U0l D WN B O

// Fig. 13.1: CommissionEmployee.h

// CommissionEmployee class definition represents a commission employee.
#ifndef COMMISSION_H

#define COMMISSION_H

#include <string> // C++ standard string class
using std::string;

class CommissionEmployee
{
public:
CommissionEmployee(const string &, const string &, const string &,
double = 0.0, double = 0.0);

void setFirstName(const string &); // set Tirst name
string getFirstName() const; // return first name

void setLastName(const string &); // set last name
string getLastName() const; // return last name

void setSocialSecurityNumber(const string &); // set SSN
string getSocialSecurityNumber() const; // return SSN

void setGrossSales(double); // set gross sales amount
double getGrossSales() const; // return gross sales amount

_ 13
Qutline

Commission
Employee.h

(10f 2)

<« |

© 2006 Pearson Education,
Inc. All rights reserved.

26 14
27 void setCommissionRate(double); // set commission rate Out”ne

28 double getCommissionRate() const; // return commission rate
29
30 double earnings() const; // calculate earnings

Function ear ni ngs will be
redefined in derived classesto
calculate the employee’ s earnings

31 void print() const; // print CommissionEmployee object

32 private: Employee.h
33 string firstName;

34 string lastName; (2 of 2)

35 string socialSecurityNumber; : : . ;

36 double grossSales; // gross weekly sales Function pri nt will be redefined
37 double commissionRate; // commission percentage in derived classto print the

38 }; // end class CommissionEmployee employee’s information

39

40 #endif

<« >

© 2006 Pearson Education,
Inc. All rights reserved.

© 0O N O O b W DN P

NN DNMNNNMNNNNNRRRRRRR R R R
®~No U AWNREPRO®OO-NOOUNMNWDINR O

// Fig. 13.2: CommissionEmployee.cpp

// Class CommissionEmployee member-function definitions.
#include <iostream>

using std::cout;

#include "CommissionEmployee.h"™ // CommissionEmployee class definition

// constructor
CommissionEmployee: :CommissionEmployee(
const string &First, const string &last, const string &ssn,
double sales, double rate)
: FirstName(first), lastName(last), socialSecurityNumber(ssn)

setGrossSales(sales); // validate and store gross sales
setCommissionRate(rate); // validate and store commission rate
} 7/ end CommissionEmployee constructor

// set Tirst name
void CommissionEmployee: :setFirstName(const string &First)
{
FirstName = first; // should validate
} 7/ end function setFirstName

// return first name
string CommissionEmployee: :getFirstName() const
{
return firstName;
} // end function getFirstName

_ 15
Qutline

Commission
Employee.cpp

(1 of 4)

<« |

© 2006 Pearson Education,
Inc. All rights reserved.

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
a7
48
49
50
51
52
53
54
55
56
57
58

// set last name

void CommissionEmployee: :setLastName(const string &last)

{

lastName = last; // should validate
} 7/ end function setLastName

// return last name
string CommissionEmployee: :getLastName() const

{

return lastName;
} // end function getLastName

// set social security number

void CommissionEmployee: :setSocialSecurityNumber(const string &ssn)

{

socialSecurityNumber = ssn; // should validate

} // end function setSocialSecurityNumber

// return social security number

string CommissionEmployee: :getSocialSecurityNumber() const

{

return socialSecurityNumber;
} 7/ end function getSocialSecurityNumber

// set gross sales amount

void CommissionEmployee: :setGrossSales(double sales)

{

grossSales = ((sales < 0.0) ? 0.0 : sales;
} // end function setGrossSales

_ 16
Qutline

Commission
Employee.cpp

(2 of 4)

<« |

© 2006 Pearson Education,
Inc. All rights reserved.

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

// return gross sales amount
double CommissionEmployee: :getGrossSales() const
{
return grossSales;
} // end function getGrossSales

// set commission rate
void CommissionEmployee: :setCommissionRate(double rate)
{

commissionRate = (rate > 0.0 & rate < 1.0) ? rate :
} // end function setCommissionRate

// return commission rate
double CommissionEmployee: :getCommissionRate() const
{
return commissionRate;
} 7/ end function getCommissionRate

_ 17
Qutline

Commission
Employee.cpp

(3 of 4)

0.0;

// calculate earnings

Calculate earnings based on
commission rate and gross sales

double CommissionEmployee: :earnings() const
{

return getCommissionRate() * getGrossSales();
} // end function earnings

<« >

© 2006 Pearson Education,
Inc. All rights reserved.

83 18

84 // print CommissionEmployee object Out”ne

85 void CommissionEmployee: ::print() const

86 {

87 cout << "commission employee: "

88 << getFirstName() << " " << getLastName() Commission
89 << "\nsocial security number: " << getSocialSecurityNumber() Employee.cpp
90 << "\ngross sales: " << getGrossSales()

91 << "\ncommission rate: " << getCommissionRate(); (4 of 4)

92 } // end function print

Display name, social
security number, gross
sales and commission rate

<« |

© 2006 Pearson Education,
Inc. All rights reserved.

© 0 N O O B W DN PP

NN NN RE R P R R R R R R R
W N P O © 0 ~N O Ul M W N P O

24
25
26
27

// Fig. 13_.3: BasePlusCommissionEmployee.h

// BasePlusCommissionEmployee class derived from class
// CommissionEmployee.

#ifndef BASEPLUS H

#define BASEPLUS H

#include <string> // C++ standard string class
using std::string;

#include "CommissionEmployee._h" // CommissionEmployee class declaration

class BasePlusCommissionEmployee : public CommissionEmployee

{
public:
BasePlusCommissionEmployee(const string &, const string &,
const string &, double = 0.0, double = 0.0, double = 0.0);

void setBaseSalary(double); // set base salary

_ 19
Qutline

BasePlus
Commission
Employee.h

(1of 1)

double getBaseSalary() const; // return base salary

double earnings() const; // arnings

ear ni ngs and pri nt

Redefine functions

void print() const; // print BasePlusCommissionEmployee object
private:

double baseSalary; // base salary
}:; 7/ end class BasePlusCommissionEmployee

#endi f

<« |

© 2006 Pearson Education,
Inc. All rights reserved.

© 0 N O O b WDN P

N NN RNNMNRNONNNRNNRRRRRRER R R
© 0 N0 U WNERO®OODNOUDMWNLERO

// Fig. 13_4: BasePlusCommissionEmployee.cpp

// Class BasePlusCommissionEmployee member-function definitions.
#include <iostream>

using std::cout;

// BasePlusCommissionEmployee class definition
#include "BasePlusCommissionEmployee.h"

// constructor
BasePlusCommissionEmployee: :BasePlusCommissionEmployee(
const string &fFirst, const string &last, const string &ssn,
double sales, double rate, double salary)
// explicitly call base-class constructor
: CommissionEmployee(first, last, ssn, sales, rate)
{
setBaseSalary(salary); // validate and store base salary
} // end BasePlusCommissionEmployee constructor

// set base salary
void BasePlusCommissionEmployee: :setBaseSalary(double salary)
{
baseSalary = (salary < 0.0) ? 0.0 : salary;
} // end function setBaseSalary

// return base salary
double BasePlusCommissionEmployee: :getBaseSalary() const
{
return baseSalary;
} 7/ end function getBaseSalary

_ 20
Qutline

BasePlus
Commission
Employee.cpp

(10f 2)

<« |

© 2006 Pearson Education,
Inc. All rights reserved.

30

31 // calculate earnings Out”ne
32 double BasePlusCommissionEmployee: :earnings() const

33 {

34 return getBaseSalary() CommissionEmployee: :earnings(Q);

35 } // end function earnings BasePlus

36 Commission

37 // print BasePlusCommissionEmployee object Redefined earnings function -Cpp
38 void BasePlusCommissionEmployee::print() const incorporat&s base salary

39 { ==y

40 cout << "base-salaried ";

a1 Redefined print function displays additional

42 // invoke CommissionEmployee®s print function

BasePl usComm ssi onEnpl oyee details

43 CommissionEmployee: :print();
44
45 cout << "\nbase salary: " << getBaseSalary(Q);:

46 } // end function print

<« >

21

© 2006 Pearson Education,
Inc. All rights reserved.

© 00 N O o WON PP

NN NN P R R R R R R R R
W N P O © 0 ~N O Ul D WN B O

// Fig. 13.5: figl3_05.cpp

// Aiming base-class and derived-class pointers at base-class

// and derived-class objects, respectively.
#include <iostream>

using std::cout;

using std::endl;

using std::fixed;

#include <iomanip>
using std::setprecision;

// include class definitions
#include "CommissionEmployee.h"
#include "BasePlusCommissionEmployee.h"

int mainQ)
{
// create base-class object
CommissionEmployee commissionEmployee(
"Sue', "Jones", "222-22-2222", 10000, .06);

// create base-class pointer
CommissionEmployee *commissionEmployeePtr = 0O;

_ 22
Qutline

Ffigl3 05.cpp

(1 of 5)

<« |

© 2006 Pearson Education,
Inc. All rights reserved.

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

// create derived-class object

_ 23
Qutline

BasePlusCommissionEmployee basePlusCommissionEmployee(
"Bob", "Lewis", "333-33-3333", 5000, -04, 300);

// create derived-class pointer

Ffigl3 05.cpp

BasePlusCommissionEmployee *basePlusCommissionEmployeePtr = O;

// set floating-point output formatting

cout << fixed << setprecision(2);

(2 of 5)

// output objects commissionEmployee and basePlusCommissionEmployee

cout << "Print base-class and derived-class objects:\n\n";

commissionEmployee.print(); // invokes base-class print

cout << "\n\n";

basePlusCommissionEmployee.print(); // invokes derived-class print

// aim base-class pointer at base-class object and print

commissionEmployeePtr = &commissionEmployee;

// perfectly natural

cout << "\n\n\nCalling print with base-class \pointer to "

<< "\nbase-class object invokes base-class

commissionEmployeePtr->print();

int function:\n\n";

/ invokes base-cla:

Aiming base-class pointer at base-class object
and invoking base-class functionality

<« |

© 2006 Pearson Education,
Inc. All rights reserved.

46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61

62 } // end main

// aim derived-class pointer at derived-class object and print

_ 24
Qutline

basePlusCommissionEmployeePtr = &basePlusCommissionEmployee; // natural

cout << "\n\n\nCalling print with derived-class pointer to "
<< "\nderived-class object invokes derived-class "
<< "print function:\n\n";
basePlusCommissionEmployeePtr->print(); £/ invokes derived-cla

// aim base-class pointer at derived-class object and print
commissionEmployeePtr = &basePlusCommissionEmployee;
cout << "\n\n\nCalling print with base-class pointer\to "
<< "derived-class object\ninvokes base-class print X\
<< "function on that derived-class object:\n\n";
commissionEmployeePtr->print(); // invokes base-class prin
cout << endl;

Ffigl3 05.cpp
print

(30of 5)
Aiming derived-class pointer at
derived-class object and invoking
derived-class functionality

return O;

Aiming base-class pointer at
derived-class object and
invoking base-class functionality

<« |

© 2006 Pearson Education,
Inc. All rights reserved.

Print base-class and derived-class objects:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 10000.00

commission rate: 0.06

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 300.00

Calling print with base-class pointer to

base-class object invokes base-class print function:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 10000.00

commission rate: 0.06

(Continued at top of next dide...)

_ 25
Qutline

Ffigl3 05.cpp

(4 of 5)

<« >

© 2006 Pearson Education,
Inc. All rights reserved.

(...Continued from bottom of previous dlide)

Calling print with derived-class pointer to
derived-class object invokes derived-class print function:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 300.00

Calling print with base-class pointer to derived-class object
invokes base-class print function on that derived-class object:

commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00

commission rate: 0.04

_ 26
Qutline

Ffigl3 05.cpp

(5 of 5)

<« >

© 2006 Pearson Education,
Inc. All rights reserved.

27

 Aim aderived-class pointer at a base-class object

— C++ compiler generateserror

e CommissionEmployee (base-classobject) isnot a
BasePlusCommissionEmployee (derived-class object)

— If thiswereto be allowed, programmer could then attempt
to access derived-class member swhich do not exist

e Could modify memory being used for other data

(< >

© 2006 Pearson Education, Inc. All rights reserved.

// Fig. 13.6: figl3 _06-cpp 28
// Aiming a derived-class pointer at a base-class object. Out”ne

#include "CommissionEmployee.h™

#include "BasePlusCommissionEmployee.h"

int mainQ Ffigl3 06.cpp
{
CommissionEmployee commissionEmployee((1 of 2)
“Sue', "Jones'", "222-22-2222'", 10000, -06);
BasePlusCommissionEmployee *basePlusCommissionEmployeePtr = O;

© 0 N o 0o A WODN PP

e
N B O

// aim derived-class pointer at base-class object

=
w

// Error: a CommissionEmployee is not a BasePlusCommissionEmployee

[EY
SN

basePlusCommissionEmployeePtr = &commissionEmployee;
15 return O;
16 } // end main

Cannot assign base-class object to derived-class
pointer because is-a relationship does not apply

<« |

© 2006 Pearson Education,
Inc. All rights reserved.

Borland C++ command-line compiler error messages:

Error E2034 Figl3_06\figl3 06.cpp 14: Cannot convert "CommissionEmployee **
to "BasePlusCommissionEmployee ** in function main()

GNU C++ compiler error messages:

Figl3 _06.cpp:14: error: invalid conversion from ~CommissionEmployee*" to
~“BasePlusCommissionEmployee**"

Microsoft Visual C++.NET compiler error messages.

C: \cpphtp5 examples\ch1l3\Figl3 06\figl3 06.cpp(14) : error C2440:
=" : cannot convert from "CommissionEmployee *_ w64 " to

"BasePlusCommissionEmployee **
Cast from base to derived requires dynamic_cast or static_cast

_ 29
Qutline

Ffigl3 06.cpp

(2 of 2)

<« >

© 2006 Pearson Education,
Inc. All rights reserved.

30

* Aiming base-class pointer at derived-class object

— Calling functionsthat exist in base class causes base-class
functionality to be invoked

— Calling functionsthat do not exist in base class (may exist
In derived class) will result in error

» Derived-class members cannot be accessed from base-class
pointers

 However, they can be accomplished using downcasting
(Section 13.8)

(< >

© 2006 Pearson Education, Inc. All rights reserved.

© 0O N O Ol WON -

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

// Fig. 13.7: figl3_07.cpp

// Attempting to invoke derived-class-only member functions
// through a base-class pointer.

#include "CommissionEmployee.h"

#include "BasePlusCommissionEmployee_h"

int mainQ

{
CommissionEmployee *commissionEmployeePtr = 0; // base class
BasePlusCommissionEmployee basePlusCommissionEmployee(

_ 31
Qutline

Figl3_07.cpp

(10f 2)

"Bob", "Lewis', "333-33-3333", 5000, .04, 300); // derived class

// aim base-class pointer at derived-class object
commissionEmployeePtr = &basePlusCommissionEmployee;

// invoke base-class member functions on derived-class

// object through base-class pointer

string firstName = commissionEmployeePtr->getFirstName();
string lastName = commissionEmployeePtr->getLastName();

string ssn = commissionEmployeePtr->getSocialSecurityNumber();
double grossSales = commissionEmployeePtr->getGrossSales();

Cannot invoke derived-class-only
members from base-class pointer

double commissionRate = commissionEmployeePtr->getCommissionRate();

// attempt to invoke derived-class-only member functions
// on derived-class object through base-class pointer
double baseSalary = commissionEmployeePtr->getBaseSalary();
commissionEmployeePtr->setBaseSalary(500);
return O;

} /7 end main

<« |

© 2006 Pearson Education,
Inc. All rights reserved.

Borland C++ command-line compiler error messages: 32

Qutline

Error E2316 Figl3_07\figl3_07.cpp 26: "getBaseSalary” is not a member of
"CommissionEmployee™ in function main()

Error E2316 Figl3 07\figl3 07.cpp 27: "setBaseSalary” is not a member of
"CommissionEmployee® in function main()

Figl3_07.cpp

Microsoft Visual C++.NET compiler error messages. (2 of 2)

C:\cpphtp5 examples\ch13\Figl3 07\Figl3 07.cpp(26) : error C2039:
"getBaseSalary”™ : is not a member of "CommissionEmployee*

C:\cpphtp5_examples\chl1l3\Figl3_07\CommissionEmployee_h(10) :
see declaration of "CommissionEmployee”
C:\cpphtp5 examples\ch13\Figl3 07\Figl3 07.cpp(27) : error C2039:
"setBaseSalary”™ : is not a member of "CommissionEmployee*

C:\cpphtp5 examples\chl13\Figl3 07\CommissionEmployee_h(10) :
see declaration of "CommissionEmployee*

GNU C++ compiler error messages:

Figl3_07.cpp:26: error: "getBaseSalary® undeclared (first use this function)
Ffigl3 07.cpp:26: error: (Each undeclared identifier is reported only once for
each function it appears in.)

figl3 07.cpp:27: error: “setBaseSalary™ undeclared (Ffirst use this function)

<« >

© 2006 Pearson Education,
Inc. All rights reserved.

33

|f the address of a derived-class object has been
assigned to a pointer of one of itsdirect or indirect
nase classes, it Is acceptableto cast that base-class
pointer back to a pointer of the derived-classtype.
n fact, thismust be done to send that derived-
class object messages that do not appear in the
base class.

(< >

© 2006 Pearson Education, Inc. All rights reserved.

34

e Which class'sfunction to invoke

— Normally
 Handledetermineswhich class'sfunctionality to invoke
— With virtual functions

* Type of the object being pointed to, not type of the handle,
deter mines which version of avirtual function to invoke

e Allows program to dynamically (at runtimerather than
compiletime) determine which function to use

— Called dynamic binding or late binding

(< >

© 2006 Pearson Education, Inc. All rights reserved.

evirtual functions
Declared by preceding the function’s prototype with the

keyword virtual in base class

35

Derived classes override function as appropriate
Oncedeclared virtual, afunction remainsvirtual all

the way down the hierarchy
Static binding

 When calling avirtual function using specific object with
dot operator, function invocation resolved at compile time

Dynamic binding

e Dynamic binding occursonly off pointer and reference

handles

(< >

© 2006 Pearson Education, Inc. All rights reserved.

36

Onceafunction isdeclared virtual, it remains
virtual all theway down theinheritance
hierarchy from that point, even if that function is
not explicitly declared virtual when aclass
overridesit.

(< >

© 2006 Pearson Education, Inc. All rights reserved.

37

Even though certain functions are implicitly
virtual because of a declaration made
higher in the class hierarchy, explicitly declare
thesefunctionsvirtual at every level of the
hierarchy to promote program clarity.

(< >

© 2006 Pearson Education, Inc. All rights reserved.

38

When a programmer browses a class hierarchy to
locate a classto reuse, it ispossible that a function
In that class will exhibit virtual function
behavior even though it isnot explicitly declared
virtual. Thishappenswhen theclassinheritsa
virtual function from itsbaseclass, and it can
lead to subtlelogic errors. Such errorscan be
avoided by explicitly declaring all virtual
functionsvirtual throughout theinheritance
hierarchy.

(< >

© 2006 Pearson Education, Inc. All rights reserved.

39

When a derived class chooses not to override
avirtual function from its base class, the
derived class smply inheritsitsbaseclass's
virtual function implementation.

(< >

© 2006 Pearson Education, Inc. All rights reserved.

© 0 N OO O B W DN P

NN NN B PR P R R R R R R
W N P O © 0 ~N O Ul M W N P O

N N
() NN

// Fig. 13.8: CommissionEmployee.h

// CommissionEmployee class definition represents a commission employee.
#ifndef COMMISSION_H

#define COMMISSION_H

#include <string> // C++ standard string class
using std::string;

class CommissionEmployee
{
public:
CommissionEmployee(const string &, const string &, const string &,
doublle = 0.0, doublle = 0.0);

void setFirstName(const string &); // set First name
string getFirstName() const; // return first name

void setLastName(const string &); // set last name
string getLastName() const; // return last name

void setSocialSecurityNumber(const string &); // set SSN
string getSocialSecurityNumber() const; // return SSN

void setGrossSales(double); // set gross sales amount
double getGrossSales() const; // return gross sales amount

_ 40
Qutline

Commission
Employee.h

(10f 2)

<« |

© 2006 Pearson Education,
Inc. All rights reserved.

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

41

void setCommissionRate(double); // set commission rate C)lJtI"1E§

double getCommissionRate() const; // return commission rate

virtual _double earnings() const; // calculate earnings

virtual
private:
string
string
string
double
double
}; // end

#endif

const; // print CommissionEmployee object Commission

firstName;
lastName;

Declaring ear ni ngs andpri nt asvi rt ual

Emnllnviap h
oS =

alows them to be overridden, not redefined

socialSecurityNumber;
grossSales; // gross weekly sales

commissionRate; // commission percentage

class CommissionEmployee

<« >

© 2006 Pearson Education,
Inc. All rights reserved.

© 00 N O O b W DN PP

NN NN RE R P R R R R R R R
W N P O © 0 ~N O Ul M W N PP O

24
25
26
27

// Fig. 13.9: BasePlusCommissionEmployee.h

// BasePlusCommissionEmployee class derived from class
// CommissionEmployee.

#ifndef BASEPLUS H

#define BASEPLUS H

#include <string> // C++ standard string class
using std::string;

#include "CommissionEmployee._h"™ // CommissionEmployee class declaration

class BasePlusCommissionEmployee : public CommissionEmployee

_ 42
Qutline

BasePlus
Commission
Employee.h

(1of 1)

Functionsear ni ngs andpri nt are
aready vi r t ual —good practice to declare
vi rt ual even when overriding function

{
public:

BasePlusCommissionEmployee(const string &, const string &,

const string &, double = 0.0, double = 0.0, double = 0.0);

void setBaseSalary(double); // set base salary

double getBaseSalary() const; // return base salary

virtual / calculate earnings

virtual“void print() const; // print BasePlusCommissionEmployee object
private:

double baseSalary; // base salary
}:; 7/ end class BasePlusCommissionEmployee

#endi f

<« |

© 2006 Pearson Education,
Inc. All rights reserved.

// Fig. 13.10: figl3 _10.cpp 43
// Introducing polymorphism, virtual functions and dynamic binding. ()l]t”f]EB

#include <iostream> -

using std::cout;

using std::endl;

using std::fixed; Ffigl3 10.cpp

© 0O N O O b W DN P

#include <iomanip>
_ ctomanip> - (1 of 5)
using std::setprecision;

=
o

// include class definitions
#include "CommissionEmployee.h"
#include "BasePlusCommissionEmployee.h"

i e
Aw N R

15 int mainQ)

16 {

17 // create base-class object

18 CommissionEmployee commissionEmployee(

19 "Sue', ""Jones', ''222-22-2222", 10000, .06);

20

21 // create base-class pointer

22 CommissionEmployee *commissionEmployeePtr = 0;

23

24 // create derived-class object

25 BasePlusCommissionEmployee basePlusCommissionEmployee(
26 "Bob"™, "Lewis'", "333-33-3333", 5000, .04, 300);

27

28 // create derived-class pointer

29 BasePlusCommissionEmployee *basePlusCommissionEmployeePtr = 0O;

<« |

© 2006 Pearson Education,
Inc. All rights reserved.

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
a7
48
49
50

44
// set floating-point output formatting Out”ne

cout << fixed << setprecision(2);

// output objects using static binding

cout << "Invoking print function on base-class and derived-class " figl3_10-cpp
<< "\nobjects with static binding\n\n";

commissionEmployee.print(); // static binding (2 of 5)

cout << "\n\n"';

basePlusCommissionEmployee.print(); // static binding

// output objects using dynamic binding
cout << "\n\n\nlnvoking print function on base-class and "'

<< "derived-class \nobjects with dynamic binding'; —)
Aiming base-class pointer at
// aim base-class pointer at base-class object and print base-class object and invoking
commissionEmployeePtr = &commissionEmployee; < base-class functionality
cout << "\n\nCalling virtual function print with e-class pointer™

<< '"\nto base-class object invokes base-efass
<< "print function:\n\n";
commissionEmployeePtr->print(); // invokes base-class print

<« >

© 2006 Pearson Education,
Inc. All rights reserved.

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

70 } // end main

// aim derived-class pointer at derived-class object and print
basePlusCommissionEmployeePtr = &basePlusCommissionEmployee;

cout << "\n\nCalling virtual function print with derived-class
<< "pointer\nto derived-class object invokes derived-class "
<< "print function:\n\n";

basePlusCommissionEmployeePtr->print(); ¢/ _invokes derived-class print

// aim base-class pointer at derived-class object and print
commissionEmployeePtr = &basePlusCommissionEmployee;
cout << "\n\nCalling virtual function print with baSe-class poi
<< "\nto derived-class object invokes derived-class "
<< "print function:\n\n";

// polymorphism; invokes BasePlusCommissionEmployee”s \print;
// base-class pointer to derived-class object
commissionEmployeePtr->print();
cout << endl;

_ 45
Qutline

Figl3_10.cpp

(2 ~nf BN

Aiming derived-class pointer at
derived-class object and invoking
derived-class functionality

return O;

Aiming base-class pointer at derived-class
object and invoking derived-class functionality
viapolymorphism and vi r t ual functions

<« |

© 2006 Pearson Education,
Inc. All rights reserved.

Invoking print function on base-class and derived-class
objects with static binding

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 10000.00

commission rate: 0.06

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 300.00

Invoking print function on base-class and derived-class
objects with dynamic binding

Calling virtual function print with base-class pointer
to base-class object invokes base-class print function:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 10000.00

commission rate: 0.06

Calling virtual function print with derived-class pointer
to derived-class object invokes derived-class print function:

(Coninued at the top of next dide ...)

_ 46
Qutline

Figl3_10.cpp

(4 of 5)

<« >

© 2006 Pearson Education,
Inc. All rights reserved.

a7

(...Continued from the bottom of previous dide)

base-salaried commission employee: Bob Lewis OLIIne
social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 300.00 Figl3_10.cpp
Calling virtual function print with base-class pointer (5 of 5)

to derived-class object invokes derived-class print function:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 300.00

<« >

© 2006 Pearson Education,
Inc. All rights reserved.

48

e Four waysto aim base-class and derived-class
pointers at base-class and derived-class objects

— Aiming a base-class pointer at a base-class object
e |sstraightforward

— Aiming a derived-class pointer at a derived-class object
e |sstraightforward

— Aiming a base-class pointer at a derived-class object

 |ssafe, but can be used to invoke only member functionsthat
base-class declar es (unless downcasting is used)

e Can achieve polymor phism with virtual functions
— Aiming aderived-class pointer at a base-class object
 Generatesacompilation error

(< >

© 2006 Pearson Education, Inc. All rights reserved.

49

After aiming a base-class pointer at a derived-class

object, attempting to reference derived-class-only
member swith the base-class pointer isa
compilation error.

(< >

© 2006 Pearson Education, Inc. All rights reserved.

50

Treating a base-class object asa derived-class
object can causeerrors.

(< >

© 2006 Pearson Education, Inc. All rights reserved.

51

eswitch statement could be used to deter minethe
type of an object at runtime

— Include atypefield asa data member in the base class

— Enables programmer to invoke appropriate action for a
particular object

— Causes problems
* A typetest may beforgotten
 May forget to add new types

(< >

© 2006 Pearson Education, Inc. All rights reserved.

52

Polymor phic programming can eliminate the
need for unnecessary switch logic. By using
the C++ polymor phism mechanism to perform
the equivalent logic, programmers can avoid
the kindsof errorstypically associated with

switch logic.

(< >

© 2006 Pearson Education, Inc. All rights reserved.

53

An interesting conseguence of using
polymor phism isthat programstake on a
simplified appearance. They contain less
branching logic and more simple, sequential
code. Thissimplification facilitatestesting,
debugging and program maintenance.

(< >

© 2006 Pearson Education, Inc. All rights reserved.

54

e Abstract classes

— Classes from which the programmer never intendsto
Instantiate any objects

* |ncomplete—derived classes must define the “ missing pieces’
 Too genericto definereal objects
— Normally used as base classes, called abstract base classes

* Providesan appropriate base class from which other classes
can inherit

» Classesused to instantiate objects are called concrete classes

— Must provide implementation for every member
function they define

(< >

© 2006 Pearson Education, Inc. All rights reserved.

55

 Purevirtual function
— A classismade abstract by declaring one or more of its
virtual functionsto be“pure”
 Placing“= 0" initsdeclaration
— Example
e virtual void draw() const = 0;
— “= 0" iIsknown as a pure specifier
— Do not provide implementations

 Every concretederived class must override all base-class pure
virtual functionswith concrete implementations

— |If not overridden, derived-class will also be abstract

— Used when it does not make sense for base classto have an
Implementation of a function, but the programmer wants all
concrete derived classesto implement the function

(< >

© 2006 Pearson Education, Inc. All rights reserved.

An abstract class definesa common public
Interface for the various classesin a class
hierarchy. An abstract class containsone or

more purevirtual functionsthat concrete
derived classes must override.

(< >

© 2006 Pearson Education, Inc. All rights reserved.

56

57

Attempting to instantiate an object of an abstract
class causes a compilation error.

(< >

© 2006 Pearson Education, Inc. All rights reserved.

58

Failluretooverridea purevirtual functionin
a derived class, then attempting to instantiate
objects of that class, isa compilation error.

(< >

© 2006 Pearson Education, Inc. All rights reserved.

59

An abstract class has at least one purevirtual
function. An abstract class also can have data
member s and concrete functions (including
constructors and destructors), which are subject

to the normal rules of inheritance by derived
classes.

(< >

© 2006 Pearson Education, Inc. All rights reserved.

60

 We can usethe abstract base classto declare pointers and
references

— Can refer to objects of any concrete class derived from the
abstract class

— Programstypically use such pointersand referencesto
manipulate derived-class objects polymor phically

« Polymor phism particularly effective for implementing
layer ed softwar e systems

— Reading or writing data from and to devices
* |[terator class
— Can traverseall the objectsin a container

(< >

© 2006 Pearson Education, Inc. All rights reserved.

61

 Enhanced CommissionEmployee-
BasePlusCommissionEmployee hierarchy
using an abstract base class

— Abstract classEmployee representsthe general concept
of an employee

* Declaresthe“interface” tothe hierarchy

e Each employee hasa first name, last name and social security
number

— Earnings calculated differently and objects printed
differently for each derived classe

(< >

© 2006 Pearson Education, Inc. All rights reserved.

62

A derived class can inherit interface or |
Implementation from a base class. Hierarchies

C
t
C

esigned for implementation inheritance tend to have
nelr functionality high in the hierarchy—each new
erived classinherits one or more member functions

t

nat wer e defined in a base class, and the derived class

uses the base-class definitions. Hierar chies designed
for interface inheritance tend to have their
functionality lower in the hierarchy—a base class
gpecifies one or mor e functionsthat should be defined
for each classin the hierarchy (i.e.,, they have the same
prototype), but theindividual derived classes provide
their own implementations of the function(s).

(< >

© 2006 Pearson Education, Inc. All rights reserved.

63

Employee Emplovee cass is abstract;
/ T \ displaved in italics
SalariedEmployee CommissionEmployee HourlyEmployee

T

BasePlusCommissionEmployee

| Employee hierarchy UML class diagram.

(< >

© 2006 Pearson Education, Inc. All rights reserved.

64

e ClassEmployee

— Providesvarious get and set functions

— Providesfunctionsearnings and print

* Function earnings dependson type of employee, so
declared purevirtual

— Not enough information in class Employee for a default
Implementation

* Function printisvirtual, but not purevirtual
— Default implementation provided in Employee
— Example maintainsa vector of Employee pointers

e Polymorphically invokes proper earnings and print
functions

(< >

© 2006 Pearson Education, Inc. All rights reserved.

Employee

salaried-
Employee

HourT -
Employee

Commi ssion-
Employee

BasePlus-
Comml ssion-
Employes

earnings

weaklySalary

If hiours <= 40
wage % hours

If hiours = 40
C 40 F wage 3 +
¢ ¢ hours - 40 O
Towage ¥ 1.5 0

commi ss1onfate
grosssales

basesalary +
{ commissionfate #
grosssales 3

65

print

firstidarne lostMame

social security number: 55N

salaried employesa:

firstMName lastMame

social security number: 55N
waekly salary: weeklsalony

hourly empl oyee: fimstName lostNams
social security number: 55N

hourly wage: wags;

hours worked: hours

commission employee: firstMame lastiNams
social security number: S5M
gross sales: grossSoles;

commission rate:

commissioniates

base salaried commission employes:

firstiarme lastName

social security number: 55N
gross sales: grossholes;
commission rate: commissionfate;
base salary: bassfulany

| Polymorphic interface for the Employee hierarchy classes.

< >

© 2006 Pearson Education, Inc. All rights reserved.

© 0 N OO O B W DN P

I R N = S S
B ©O © 0 N O U M W N R O

// Fig. 13.13: Employee.h

// Employee abstract base class.
#ifndef EMPLOYEE_H

#define EMPLOYEE_H

#include <string> // C++ standard string class
using std::string;

class Employee

{
public:
Employee(const string &, const string &, const string &);

void setFirstName(const string &); // set first name
string getFirstName() const; // return first name

void setLastName(const string &); // set last name
string getLastName() const; // return last name

void setSocialSecurityNumber(const string &); // set SSN
string getSocialSecurityNumber() const; // return SSN

_ 66
Qutline

Employee.h

(10f 2)

<« |

© 2006 Pearson Education,
Inc. All rights reserved.

22

23 // pure virtual function makes Employee abstract base class Outline o7
24 virtual double earnings() const = 0; // pure virtual -

25 virtual void print() const; // virtuZﬁ\

26 private: Function ear ni ngs ispurevi rt ual , not enough
2y Sty UHTSHESE data to provide a default, concrete implementation

28 string lastName;

29 string socialSecurityNumber;

30 }; // end class Employee
31
32 #endif // EMPLOYEE_H

(2 of 2)

Function pri nt isvi rt ual , default implementation
provided but derived-classes may override

4 > |
© 2006 Pearson Education,
Inc. All rights reserved.

© 0O N O O b W DN P

NN RN NRNNNNNRRRRRRR R R R
W ~N o U D WNREPROOONOOOUDMNWNDNR O

// Fig. 13.14: Employee.cpp

// Abstract-base-class Employee member-function definitions.
// Note: No definitions are given for pure virtual functions.
#include <iostream>

using std::cout;

#include "Employee.h"™ // Employee class definition

// constructor
Employee: :Employee(const string &first, const string &last,
const string &ssn)
: FirstName(Ffirst), lastName(last), socialSecurityNumber(ssn)
{
// empty body
} // end Employee constructor

// set Tirst name
void Employee::setFirstName(const string &first)
{
firstName = first;
} // end function setFirstName

// return First name
string Employee: :getFirstName() const
{
return firstName;
} // end function getFirstName

_ 68
Qutline

Employee.cpp

(10f 2)

<« |

© 2006 Pearson Education,
Inc. All rights reserved.

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
a7
48
49
50
51
52
53
54
55
56
57
58

// set last name
void Employee: :setLastName(const string &last)
{
lastName = last;
} 7/ end function setLastName

// return last name
string Employee: :getLastName() const
{
return lastName;
} // end function getLastName

// set social security number
void Employee: :setSocialSecurityNumber(const string &ssn)
{
socialSecurityNumber = ssn; // should validate
} // end function setSocialSecurityNumber

// return social security number
string Employee: :getSocialSecurityNumber() const
{
return socialSecurityNumber;
} 7/ end function getSocialSecurityNumber

// print Employee®s information (virtual, but not pure virtual)
void Employee::print() const

{
cout << getFirstName() << " " << getLastName()
<< "\nsocial security number: * << getSocialSecurityNumber();
} // end function print

_ 69
Qutline

Employee.cpp

(2 of 2)

<« |

© 2006 Pearson Education,
Inc. All rights reserved.

70

eSalariedEmployee inheritsfrom Employee

— Includesa weekly salary
e Overridden earnings function incor porates weekly salary
e Overridden print function incorporates weekly salary

— Isaconcrete class (implements all purevirtual
functionsin abstract base class)

(< >

© 2006 Pearson Education, Inc. All rights reserved.

1 // Fig. 13.15: SalariedEmployee.h 71
2 // SalariedEmployee class derived from Employee. Out”ne

3 #ifndef SALARIED H

4 #define SALARIED H

5

6 #include "Employee.h" // Employee class definition Salaried

7 Employee.h

2 :Iass salariedenployee = public Enployee '\ Sal ar i edErrpI oyee i_nheritsfrom Enpl oyee,
10 public: must override ear ni ngs to be concrete

11 SalariedEmployee(const string &, const string &,

12 const string &, double = 0.0);

13

14 void setWeeklySalary(double); // set weekly salary
15 double getWeeklySalary() const; // return weekly salary

16
17 // keyword virtual signals intent to override
18 virtual double earnings() const; // calculate earnings

19 virtual void print() const;_// printQalariedeEmployee object
20 private:

21 double weeklySalary; // salary per week

22 }; // end class SalariedEmployee
23
24 #endif // SALARIED_H

Functions will be overridden
(or defined for the first time)

<« |

© 2006 Pearson Education,
Inc. All rights reserved.

// Fig. 13.16: SalariedEmployee.cpp 72
// SalariedEmployee class member-function definitions. ()lJtI"1E§

#include <iostream>

using std::cout;

#include "SalariedEmployee.h" // SalariedEmployee class definition Salaried
Employee.cpp
// constructor
SalariedEmployee: :SalariedEmployee(const string &first, (]-Cﬁ 2)
const string &last, const string &ssn, double salary)
: Employee(first, last, ssn)

© 0 N O O b W DN PP

e ol =
w N Rk O
~

setWeeklySalary(salary);
} 7/ end SalariedEmployee constructor

el e
o o1 b~

// set salary
void SalariedEmployee: :setWeeklySalary(double salary)

{

B
o ~

=
©

weeklySalary = (salary < 0.0) ? 0.0 : salary; Maintain new data member

weekl ySal ary

N
o

} 7/ end function setWeeklySalary

N
[y

N
N

// return salary

N
w

double SalariedEmployee::getWeeklySalary() const
24 {

25 return weeklySalary;

26 } // end function getWeeklySalary

<« |

© 2006 Pearson Education,
Inc. All rights reserved.

27 73
28 // calculate earnings; Out”ne

29 // override pure virtual function earnings in Employee

30 double SalariedEmployee::earnings() const

31 {

32 return getWeeklySalary(Q); Salaried
33 } // end function earnings Employee.cpp
34

35 // print SalariedEmployee®s information

(1 nf 2\
Overridden earnings and print
functions incorporate weekly salary

36 void SalariedEmployee::print() const

37 {
38 cout << "salaried employee: ';
39 Employee: :print(); // reuse abstract base-class print function

40 cout << "\nweekly salary: " << getWeeklySalary(Q);
41 } // end function print

<« |

© 2006 Pearson Education,
Inc. All rights reserved.

74

eHour lyEmployee inheritsfrom Employee

— Includes a wage and hoursworked

« Overridden earnings function incor poratesthe employee's
wages multiplied by hours (taking time-and-a-half pay into
account)

* Overridden print function incor por ates wage and hours
wor ked

— Isaconcrete class (implements all purevirtual
functionsin abstract base class)

(< >

© 2006 Pearson Education, Inc. All rights reserved.

© 00N O Ol B WN -

NN NDNRRRRRERRR R R
W NP OOO®MNOOU D WNDN R O

24
25
26
27
28

// Fig. 13.17: HourlyEmployee.h 75
// HourlyEmployee class definition. ()l]t”f]EB

#ifndef HOURLY_H -

#define HOURLY_H

#include "Employee_h" // Employee class definition

Hourly
Employee.h

class HourlyEmployee : public Employee))
c \ Hour | yEnpl oyee inheritsfrom Enpl oyee,

public: must override ear ni ngs to be concrete

HourlyEmployee(const string &, const string &,
const string &, double = 0.0, double = 0.0);

void setWage(double); // set hourly wage
double getWage() const; // return hourly wage

void setHours(double); // set hours worked
double getHours() const; // return hours worked

// keyword virtual signals intent to override

virtual double earnings() const; // calculate earnings

virtual void print() const;_// pri HourlyEmployee object
private:

double wage; // wage per hour

double hours; // hours worked for week
}; // end class HourlyEmployee

Functions will be overridden
(or defined for first time)

#endif // HOURLY_H

<« |

© 2006 Pearson Education,
Inc. All rights reserved.

© 0O N O O b W DN P

NN NNNRERRPRERRRERRPR R
N WNPRPO®OOWNOOUMOWNIEO

25
26
27

// Fig. 13.18: HourlyEmployee.cpp

// HourlyEmployee class member-function definitions.
#include <iostream>

using std::cout;

#include "HourlyEmployee._h" // HourlyEmployee class definition

// constructor

HourlyEmployee: :HourlyEmployee(const string &first, const string &last,
const string &ssn, double hourlyWage, double hoursWorked)
: Employee(first, last, ssn)

setWage(hourlyWage); // validate hourly wage
setHours(hoursWorked); // validate hours worked
} 7/ end HourlyEmployee constructor

// set wage
void HourlyEmployee: :setWage(double hourlyWage)

{

wage = (hourlyWage < 0.0 ? 0.0 : hourlyWage);

_ 76
Qutline

Hourly
Employee.cpp

(10f 2)

} 7/ end function setWage

Maintain new data member, hour | yWage

// return wage
double HourlyEmployee::getWage() const
{
return wage;
} 7/ end function getWage

<« |

© 2006 Pearson Education,
Inc. All rights reserved.

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

// set hours worked
void HourlyEmployee: :setHours(double hoursWorked)
{
hours = (((hoursWorked >= 0.0) && (hoursWorked <= 168.0)) ?
hoursWorked : 0.0);
} // end function setHours

// return hours worked
double HourlyEmployee::getHours() const
{
return hours;
} 7/ end Ffunction getHours

// calculate earnings;
// override pure virtual function earnings in Employee
double HourlyEmployee::earnings() const
{
if (getHours() <= 40) // no overtime
return getWage() * getHours();
else
return 40 * getWage() + ((getHours() - 40) * getWwage() * 1.5
} 7/ end Ffunction earnings

_ 77
Qutline

Maintain new data member,
hour sWr ked

(2 of 2)

):

// print HourlyEmployee"s information
void HourlyEmployee: :print() const
{

cout << "hourly employee: ";

Overridden ear ni ngs and
pri nt functions
incorporate wage and hours

Employee: :print(); // code reuse
cout << "\nhourly wage: " << getWage() <<
": hours worked: " << getHours();
} // end function print

<« >

© 2006 Pearson Education,
Inc. All rights reserved.

78

eCommissionEmployee inheritsfrom
Employee
— Includes gross sales and commission rate

e Overridden earnings function incor porates gross sales and
commission rate

e Overridden print function incorporates gross sales and
commission rate

— Concreteclass (implementsall purevirtual functionsin
abstract base class)

(< >

© 2006 Pearson Education, Inc. All rights reserved.

© 00N O Ol B WN -

NN NDNRRRRRERRR R R
W NP OOO®MNOOU D WNDN R O

24
25
26
27
28

// Fig. 13.19: CommissionEmployee.h

// CommissionEmployee class derived from Employee.
#ifndef COMMISSION_H

#define COMMISSION_H

#include "Employee_h" // Employee class definition

_ 79
Qutline

Commission
Employee.h

class CommissionEmployee : public Employee
{ \

public:
CommissionEmployee(const string &, const string &,

Comm ssi onEnpl oyee inherits
from Enpl oyee, must override
ear ni ngs to be concrete

const string &, double = 0.0, double = 0.0);

void setCommissionRate(double); // set commission rate

double getCommissionRate() const; // return commission rate

void setGrossSales(double); // set gross sales amount
double getGrossSales() const; // return gross sales amount

// keyword virtual signals intent to override

virtual double earnings() const; // calculate earnings

virtual void print() const;_// print
private:

double grossSales; // gross weekly sales

double commissionRate; // commission percentage
}; // end class CommissionEmployee

#endif // COMMISSION_H

missionEmployee object

Functions will be overridden
(or defined for first time)

<« |

© 2006 Pearson Education,
Inc. All rights reserved.

© 0O N O O b W DN P

NN NNNRERRPRERRRERRPR R
N WNPRPO®OOWNOOUMOWNIEO

25
26
27

// Fig. 13_.20: CommissionEmployee.cpp

// CommissionEmployee class member-function definitions.
#include <iostream>

using std::cout;

#include "CommissionEmployee._h" // CommissionEmployee class definition

// constructor

CommissionEmployee: :CommissionEmployee(const string &First,
const string &last, const string &ssn, double sales, double rate)
: Employee(first, last, ssn)

setGrossSales(sales);
setCommissionRate(rate);
} // end CommissionEmployee constructor

// set commission rate
void CommissionEmployee: :setCommissionRate(double rate)

_ 80
Qutline

Commission
Employee.cpp

(10f 2)

{

commissionRate = ((rate > 0.0 & rate < 1.0) ? rate - 0.0);
} 7/ end function setCommissionRate

Maintain new data member,
comm SsSi onRat e

// return commission rate
double CommissionEmployee: :getCommissionRate() const
{
return commissionRate;
} 7/ end function getCommissionRate

<« >

© 2006 Pearson Education,
Inc. All rights reserved.

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

81
// set gross sales amount Outline
void CommissionEmployee: :setGrossSales(double sales) -
{
grossSales = (((sales < 0.0) ?2 0.0 : sales);
} 7/ end function setGrossSales Maintain new data sion
member, gr ossSal es jee.cpp
// return gross sales amount

double CommissionEmployee::getGrossSales() const (2 of 2)
{

return grossSales;
} 7/ end function getGrossSales

// calculate earnings;
// override pure virtual function earnings in Employee
double CommissionEmployee::earnings() const
{
return getCommissionRate() * getGrossSales();
} /7 end function earnings

// print CommissionEmployee"s information O\(er“dden e_ar n_l g and
void CommissionEmployee::print() const pri nt functlonsmcorporate
{ commission rate and gross sales

cout << "commission employee: "';

Employee: :print(); // code reuse

cout << "\ngross sales: " << getGrossSales()

<< ""; commission rate: " << getCommissionRate();

} 7/ end function print

<« |

© 2006 Pearson Education,
Inc. All rights reserved.

82

eBasePlusCommissionEmployee inherits
from CommissionEmployee

— Includesbase salary

e Overridden earnings function that incor porates base
salary

* Overridden print function that incorporates base salary
— Concrete class, because derived classis concrete

* Not necessary to override earnings to makeit concrete, can
inherit implementation from CommissionEmployee

— Although we do override earnings to incor por ate base
salary

(< >

© 2006 Pearson Education, Inc. All rights reserved.

© 0O N O O B W DN PP

=
o

11
12
13
14
15
16
17
18
19
20
21
22
23
24

// Fig. 13.21: BasePlusCommissionEmployee_h

83

// BasePlusCommissionEmployee class derived from Employee. ()l]t”f]EB

#ifndef BASEPLUS H
#define BASEPLUS H

#include "CommissionEmployee._h" // CommissionEmployee class definition BasePlus
Commission
class BasePlusCommissionEmployee : public CommissignEmnlavee Employee.h

¢ N

public:

BasePl usComm ssi onEnpl oyee inherits
from Conm ssi onEnpl oyee, aready concrete

BasePlusCommissionEmployee(const string &, const string &,
const string &, double = 0.0, double = 0.0, double = 0.0);

void setBaseSalary(double); // set base salary

double getBaseSalary() const; // return base sal

// keyword virtual signals intent to override
virtual double earnings() const;

virtual void print() const;
private:

ary

/ calculate earnings
asePlusCommissionEmployee object

double baseSalary; // base salary per week

}:; // end class BasePlusCommissionEmployee

Functions will be overridden

#endif // BASEPLUS_H

<« |

© 2006 Pearson Education,
Inc. All rights reserved.

© 0O N O O b W DN P

NN DNNNMNNNNNRRRRRRR R R R
® N0 UsWNRPRO®OO-NOOOUNMNWDINR O

// Fig. 13_.22: BasePlusCommissionEmployee.cpp

// BasePlusCommissionEmployee member-function definitions.

#include <iostream>
using std::cout;

// BasePlusCommissionEmployee class definition
#include "BasePlusCommissionEmployee.h™

// constructor

BasePlusCommissionEmployee: :BasePlusCommissionEmployee(
const string &First, const string &last, const string
double sales, double rate, double salary)
: CommissionEmployee(first, last, ssn, sales, rate)

{

&ssn,

setBaseSalary(salary); // validate and store base salary

} 7/ end BasePlusCommissionEmployee constructor

// set base salary

void BasePlusCommissionEmployee: :setBaseSalary(double salary)

{
baseSalary = ((salary < 0.0) ? 0.0 : salary);

} 7/ end function setBaseSalary

// return base salary
double BasePlusCommissionEmployee: :getBaseSalary() const
{
return baseSalary;
} // end function getBaseSalary

_ 84
Qutline

BasePlus
Commission
Employee.cpp

(10f 2)

Maintain new data
member, baseSal ary

\
/

<« |

© 2006 Pearson Education,
Inc. All rights reserved.

29

30 // calculate earnings;
31 // override pure virtual function earnings in Employee

32 double BasePlusCommissionEmployee::earnings() const

33 {

34 return getBaseSalary() 4 CommissionEmployee: :earnings();
35 } // end function earnings
36

_ 85
Qutline

BasePlus
Commission
Employee.cpp

37 // print BasePlusCommissionEmployee®s information
38 void BasePlusCommissionEmployee: :print() const

Overridden ear ni ngs and pri nt
functions incorporate base salary

39 {

40 cout << "base-salaried ";

41 CommissionEmployee: :print(); // code reuse
42 cout << "; base salary: " << getBaseSalary();

43 } // end function print

<« >

© 2006 Pearson Education,
Inc. All rights reserved.

86

» Create objects of types SalariedEmployee,
HourllyEmployee, CommissionEmployee
and BasePlusCommissionEmployee

— Demonstrate manipulating objects with static binding
e Using name handlesrather than pointersor references

« Compiler can identify each object’stypeto deter mine which
print and earnings functionsto call

— Demonstrate manipulating objects polymor phically

 Usesavector of Employee pointers
* Invokevirtual functionsusing pointersand references

(< >

© 2006 Pearson Education, Inc. All rights reserved.

© 0 N OO O B W DN PP

N N NN RE PR R R R R R R R
W N RFP O © 0N O 0o WNRFP O

// Fig. 13.23: figl3_23.cpp

// Processing Employee derived-class objects individually
// and polymorphically using dynamic binding.

#include <iostream>

using std::cout;

using std::endl;

using std::fixed;

#include <iomanip>
using std::setprecision;

#include <vector>
using std::vector;

// include definitions of classes in Employee hierarchy
#include "Employee.h"

#include ""SalariedEmployee.h"

#include ""HourlyEmployee.h"

#include "CommissionEmployee.h"

#include "BasePlusCommissionEmployee.h"

void virtualViaPointer(const Employee * const); // prototype
void virtualViaReference(const Employee &); // prototype

_ 87
Qutline

Figl3_23.cpp

(1 of 7)

<« |

© 2006 Pearson Education,
Inc. All rights reserved.

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
a7
48
49
50
51

88
int mainQ) Outline
{ a1 11817
// set floating-point output formatting
cout << fixed << setprecision(2);
)) Figl3_23.cpp

// create derived-class objects
SalariedEmployee salariedEmployee(20of 7

"John™, "Smith™, "111-11-1111", 800); (0)
HourlyEmployee hourlyEmployee(

"Karen", "Price", '"222-22-2222", 16.75, 40);
CommissionEmployee commissionEmployee(

""Sue', "Jones", "333-33-3333", 10000, -06);
BasePlusCommissionEmployee basePlusCommissionEmployee(

"Bob'™, "Lewis", "444-44-4444", 5000, .04, 300);
cout << "Employees processed individually using static binding:\n\n";
// output each Employee’s information and earnings using static binding
salariedEmployee_print(): Using objects (rather than
cout << "\nearned $" << salariedEmployee.earnings() << "\n\n"; poi nters or references) to
hourlyEmployee.print(); demonstrate static binding
cout << "\nearned $" << hourlyEmployee.earnings() << "\n\n‘;
commissionEmployee.print();
cout << "\nearned $" << commissionEmployee.earnings() << "\n\n";
basePlusCommissionEmployee.print();
cout << "\nearned $" << basePlusCommissionEmployee.earningsQ

<< "\n\n"';

<« |

© 2006 Pearson Education,
Inc. All rights reserved.

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

89
// create vector of four base-class pointers ()ljt”r]eg

vector < Employee * > employees(4);

// initialize vector with Employees
employees[0] &salariedEmployee;
employees[1] &hourlyEmployee; <«
employees[2] = &commissionEmployee;
employees[3] &basePlusCommissionEmployee;

vect or of Enpl oyee
pointers, will be used to
demonstrate dynamic binding

cout << "Employees processed polymorphically via dynamic binding:\n\n";

// call virtualViaPointer to print each Employee®s information
// and earnings using dynamic binding
cout << "Virtual function calls made off base-class pointers:\n\n";

for (size_t i1 = 0; i1 < employees.size(); i1++)
virtualViaPointer(employees[1]);

Demonstrate dynamic
binding using first
pointers, then references

ences:\n\n"';

// call virtualViaReference to print each Employee"s informatio
// and earnings using dynamic binding
cout << "Virtual function calls made off base-class re

for (size_t i = 0; 1 < employees.size(); i+t
virtualViaReference(*employees[i]); // note dereferencing

return O;

79 } // end main

<« |

© 2006 Pearson Education,
Inc. All rights reserved.

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

// call Employee virtual functions print and earnings off a
// base-class pointer using dynamic binding
void virtualViaPointer(const Employee * const baseClassPtr)
{

baseClassPtr->print();

cout << "\nearned $" << baseClassPtr->earnings() << "\n\n";
} 7/ end function virtualViaPointer

// call Employee virtual functions print and earnings off a
// base-class reference using dynamic binding
void virtualViaReference(const Employee &baseClassRef

baseClassRef._print(); <

cout << "\nearned $" << baseClassRef.earnings() << "\n\n"';
} 7/ end function virtualViaReference

_ 90
Qutline

Figl3_23.cpp

(4 of 7)

Using references and pointers
causevi r t ual functionsto

be invoked polymorphically

<« |

© 2006 Pearson Education,
Inc. All rights reserved.

Employees processed individually using static binding:

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: 800.00

earned $800.00

hourly employee: Karen Price

social security number: 222-22-2222
hourly wage: 16.75; hours worked: 40.00
earned $670.00

commission employee: Sue Jones

social security number: 333-33-3333

gross sales: 10000.00; commission rate: 0.06
earned $600.00

base-salaried commission employee: Bob Lewis
social security number: 444-44-4444

gross sales: 5000.00; commission rate: 0.04; base salary: 300.00

earned $500.00

(Continued at top of next dide...)

_ 91
Qutline

Figl3_23.cpp

(50f 7)

<« >

© 2006 Pearson Education,
Inc. All rights reserved.

(...continued from bottom of previous slide)

Employees processed polymorphically using dynamic binding:

Virtual function calls made off base-class pointers:

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: 800.00

earned $800.00

hourly employee: Karen Price

social security number: 222-22-2222
hourly wage: 16.75; hours worked: 40.00
earned $670.00

commission employee: Sue Jones

social security number: 333-33-3333

gross sales: 10000.00; commission rate: 0.06
earned $600.00

base-salaried commission employee: Bob Lewis
social security number: 444-44-4444

gross sales: 5000.00; commission rate: 0.04;
earned $500.00

base salary: 300.00

(Continued at the top of next dide...)

_ 92
Qutline

Figl3_23.cpp

(6 of 7)

<« >

© 2006 Pearson Education,
Inc. All rights reserved.

(...Continued from bottom of previous page)

Virtual function calls made off base-class references:

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: 800.00

earned $800.00

hourly employee: Karen Price

social security number: 222-22-2222
hourly wage: 16.75; hours worked: 40.00
earned $670.00

commission employee: Sue Jones

social security number: 333-33-3333

gross sales: 10000.00; commission rate: 0.06
earned $600.00

base-salaried commission employee: Bob Lewis
social security number: 444-44-4444

gross sales: 5000.00; commission rate: 0.04; base salary: 300.

earned $500.00

00

_ 93
Qutline

Figl3_23.cpp

(7 of 7)

<« >

© 2006 Pearson Education,
Inc. All rights reserved.

94

 How can C++ implement polymorphism, virtual
functions and dynamic binding internally?
— Threelevelsof pointers (“tripleindirection™)

— Virtual function table (vtable) created when C++ compilesa class
that hasone or morevirtual functions

First level of pointers
Containsfunction pointersto virtual functions

Used to select the proper function implementation each timea
virtual function of that classiscalled

If purevirtual, function pointer issetto 0

Any classthat hasone or more null pointersin itsvtableis an
abstract class

(< >

© 2006 Pearson Education, Inc. All rights reserved.

95

 How can C++ implement polymorphism, virtual
functions and dynamic binding internally? (Cont.)
— If anon-purevirtual function werenot overridden by a
derived class

* Thefunction pointer in the vtable for that class would point to the
implemented virtual function up in the hierarchy

— Second level of pointers

 Whenever an object of a classwith one or morevirtual functions
Isinstantiated, the compiler attachesto the object a pointer tothe
vtable for that class

— Third leve of pointers
 Handlesto the objectsthat receivethe virtual function calls

(< >

© 2006 Pearson Education, Inc. All rights reserved.

96

 How atypical virtual function call executes

— Compiler determinesif call isbeing made via a base-class pointer
and that the function isvirtual

— Locatesentry in vtable using offset or displacement
— Compiler generates code that performsfollowing operations:

Select the pointer being used in the function call from the third level
of pointers

Dereferencethat pointer toretrieve underlying object
— Beginswith pointer in second level of pointers

Der efer ence object’s vtable pointer to get to vtable

Skip the offset to select the correct function pointer

Dereference the function pointer to form the “name’ of the actual
function to execute, and use the function call operator to execute the
appropriate function

(< >

© 2006 Pearson Education, Inc. All rights reserved.

(abstract class)
Enmployee wable

earnings 0 (0 indicates

rint
first last 2

s5n:

SalariedEmployee

pure virtual function)

salariedEmp Toyes

John Smith
111-11-1111
FE00. 00

3 hourlyEmplovee

Karen Price
222-22-2222
$16.75
40

comm ssionEmployee

wtabilg
<t
£armings
week]ySa]ary-‘—gO
rint
salaried L
ap loyee
HourlyEmployes
wtabig
wage earnings
hours 7,
print 4
hourly - —————
atrp loyee
5
Commi ssionEmpoyes
wtobilg
-
aarnings
grosssales
¥ commssionRate
. print
<o 551 0n
atrp loyee !

BasePlusCommi ssionErployee
viabie

Sue Jones
333-23-3233
10, 000,00

.06

basePlusCommi ssionEmployes

basesalary +
(grosssales
“ commssionRate)

earnings

rint
base- ‘—p.

salaried
<O S5 0n
atrp loyee

Eob Lewis
444-44-4444
$5,000.00
.04
$300.00

Flow of Virtual Function Call baseClassPtr->print()

When baseCl assPtr Points to Object hol

1 | pass &hourlyEmployee
to baseClassPtr

getto hourl yEmployee
object

urlyEmployee

get to HourlyEmployee
vtable

4 get to print pointer
invtable

wector < Erployee * »
employees(4 3;

dsalaried-
(o] Ermp loyee

[1] &hourly-
Ettp Toyee ™=

& COrmission-
Etrp Toyeae

&hasePlus-
Comm ss1on-
Ermp loyee

haseClassPtr

execute print for

Hourl vEmployee

| How virtual function calls work.

© 2006 Pearson Education, Inc.

97

(< >

All rights reserved.

98

Polymorphism, astypically implemented with
virtual functionsand dynamic bindingin
C++, Isefficient. Programmers may use these
capabilities with nominal impact on
performance.

(< >

© 2006 Pearson Education, Inc. All rights reserved.

99

Virtual functions and dynamic binding enable
polymor phic programming as an alter native to
switch logic programming. Optimizing
compilers normally generate polymor phic code
that runs as efficiently as hand-coded switch-
based logic. The overhead of polymorphism is
acceptable for most applications. But in some
situations—r eal-time applications with stringent
performance requirements, for example—the
over head of polymorphism may betoo high.

(< >

© 2006 Pearson Education, Inc. All rights reserved.

100

Dynamic binding enables independent software
vendors (1SVs) to distribute softwar e without
revealing proprietary secrets. Software
distributions can consist of only header filesand
obj ect files—no sour ce code needsto berevealed.
Softwar e developers can then use inheritanceto
derive new classes from those provided by the I SVs.
Other software that worked with the classesthe
| SV's provided will still work with the derived
classes and will usethe overridden virtual
functions provided in these classes (via dynamic
binding).

(< >

© 2006 Pearson Education, Inc. All rights reserved.

101

e Example: Reward
BasePlusCommissionEmployees by adding
10% tothear base salaries

 Must userun-timetypeinformation (RTTI) and
dynamic casting to “ program in the specific”

— Some compilersrequirethat RTTI be enabled beforeit can
beused in aprogram

o Consult compiler documentation

(< >

© 2006 Pearson Education, Inc. All rights reserved.

102

edynamic_cast operator

— Downcast operation

o Convertsfrom a base-class pointer to a derived-class pointer
— If underlying object isof derived type, cast is performed

e Otherwise, Oisassigned

— If dynamic_castisnot used and attempt ismadeto
assign a base-class pointer to a derived-class pointer

e A compilation error will occur

(< >

© 2006 Pearson Education, Inc. All rights reserved.

103

e typeid operator

— Returnsareferenceto an object of classtype 1nfo
e Containstheinformation about thetype of its operand
e type_info member function name

— Returnsa pointer-based string that containsthetype
name of the argument passed to typeid

— Must include header file<typeinfo>

(< >

© 2006 Pearson Education, Inc. All rights reserved.

© 00N O O B WON -

NN DNMNNNMNNNNNRRRRRRR R R R
W N 0N WNRPOOOOWNOU M WNIRO

// Fig. 13.25: figl3_25.cpp
// Demonstrating downcasting and run-time type information.
// NOTE: For this example to run in Visual C++ _NET,

// you need to enable RTTlI (Run-Time Type Info) for the project.

#include <iostream>
using std::cout;
using std::endl;
using std::fixed;

#include <iomanip>
using std::setprecision;

#include <vector>
using std::vector;

#include <typeinfo>

// include definitions of classes in Employee hierarchy
#include "Employee_h"

#include ""SalariedEmployee.h"

#include ""HourlyEmployee.h"

#include "CommissionEmployee.h"

#include ""BasePlusCommissionEmployee.h"

int mainQ

{
// set Tloating-point output formatting
cout << fixed << setprecision(2);

_ 104
Outline

Figl3_25.cpp

(1 of 4)

<« |

© 2006 Pearson Education,
Inc. All rights reserved.

29 105

30 // create vector of four base-class pointers Out”ne

31 vector < Employee * > employees(4);

32

33 // initialize vector with various kinds of Employees

34 employees[0] = new SalariedEmployee(Ffigl3 25.cpp
35 "John", "Smith", "111-11-1111", 800);

36 employees[1] = new HourlyEmployee((2 of 4)

37 "Karen', '"Price", ""222-22-2222", 16.75, 40);

Create employee objects, only one of type

38 employees[2] = new CommissionEmployee(BasePl usConmi ssi onErrpI oyee
39 "Sue', ""Jones', "333-33-3333", 10000, -06);

40 employees[3] = new BasePlusCommissionEmployee(

41 "Bob", "Lewis', "444-44-4444", 5000, .04, 300);

42

43 // polymorphically process each element in vector employees
44 for (size_t 1 = 0; 1 < employees.size(); i++)

45 {

46 employees[1]->print(); // output employee information
47 cout << endl;

48

49 // downcast pointer

50 BasePlusCommissionEmployee *derivedPtr =

51 dynamic_cast < BasePlusCommissionEmployee * >

52 (employees[1]);
Downcast the Enpl oyee pointer to a

BasePl usComm ssi onEnpl oyee pointer

<« >

© 2006 Pearson Education,
Inc. All rights reserved.

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

// determine whether element points to base-salaried ()lJtl"1E§ 108
// commission employee
if (derivedPtr = 0)J// 0 if not a BasePlusCommissionEmployee
¢ \

double oldBaseSalary = derivedPtr->getBaseSalary(Q; Determine if cast was successful

cout << "old base salary: $" << oldBaseSalary << endl;

derivedPtr->setBaseSalary(1.10 * oldBaseSalary); (3(JfZD

cout << "new base salary with 10% increase is: $" '\\\\\\\\\\\\\

<< derivedPtr->getBaseSalary() << endl;

} // end if If cast was successful, modify base salary

cout << "earned $" << employees[i]->earnings() << “\n\n";
} // end for

// release objects pointed to by vector’s elements
for (size_t j = 0; j < employees.size(); j++)
{
// output class name
cout << "deleting object of ™
<< typeid(*employees[j])-name() << endl;

delete employees[j 1:
} // end for

return O;

79 } // end main

Uset ypei d and function
name to display object types

<« >

© 2006 Pearson Education,
Inc. All rights reserved.

107

salaried employee: John Smith .
social security number: 111-11-1111 Outline
weekly salary: 800.00

earned $800.00

hourly employee: Karen Price

social security number: 222-22-2222 Ffigl3 25.cpp
hourly wage: 16.75; hours worked: 40.00
earned $670.00 (4 of 4)

commission employee: Sue Jones

social security number: 333-33-3333

gross sales: 10000.00; commission rate: 0.06
earned $600.00

base-salaried commission employee: Bob Lewis

social security number: 444-44-4444

gross sales: 5000.00; commission rate: 0.04; base salary: 300.00
old base salary: $300.00

new base salary with 10% increase is: $330.00

earned $530.00

deleting object of class SalariedEmployee

deleting object of class HourlyEmployee

deleting object of class CommissionEmployee
deleting object of class BasePlusCommissionEmployee

<« >

© 2006 Pearson Education,
Inc. All rights reserved.

108

* Nonvirtual destructors
— Destructorsthat are not declared with keyword virtual

— |If aderived-class object isdestroyed explicitly by applying
thedelete operator to a base-class pointer to the object,
the behavior isundefined

evirtual destructors

— Declared with keyword virtual
o All derived-classdestructorsarevirtual
— |If aderived-class object isdestroyed explicitly by applying
thedelete operator to a base-class pointer to the object,
the appropriate derived-class destructor iscalled

o Appropriate base-classdestructor(s) will execute afterwards

(< >

© 2006 Pearson Education, Inc. All rights reserved.

109

If aclasshasvirtual functions, provide a

virtual destructor, even if oneisnot required
for the class. Classesderived from this class may
contain destructorsthat must be called properly.

(< >

© 2006 Pearson Education, Inc. All rights reserved.

110

Constructorscannot bevirtual. Declaring a
constructor virtual isacompilation error.

(< >

© 2006 Pearson Education, Inc. All rights reserved.

111

 UML modéd for inheritance

— Thegeneralization relationship
 Thebaseclassisa generalization of the derived classes
 Thederived classes are specializations of the base class

— Purevirtual functionsare abstract operationsin the UML
— Generalizations and abstract operationsarewritten in italics

e Transactironbase class

— Containsthe functions and data membersBalancelnquiry,
Withdrawal and Deposit havein common
e executefunction
= accountNumber data member

(< >

© 2006 Pearson Education, Inc. All rights reserved.

112

Fig.13.26 | Attributes and operations of classes Balancelnquiry, Withdrawal and
Deposit.

© 2006 Pearson Education, Inc. All rights reserved.

113

Transaction

- accountMumber : Integer

+ zetBccountMumber()
+ axecutsf)

Balancelnquiry wWithdrawal Deposit
—amount : Double —amount - Double
+ executel) + execitel) + execltel)

| Class diagram modeling generalization relationship between base class
Transaction and derived classes Balancelnquiry, Withdrawal and Deposit.

(< >

© 2006 Pearson Education, Inc. All rights reserved.

114

I \L \L I
I I I
Keypad CashDispenser
|
DepositSlot Screen
| Withdrawal
|
0 Q 0l 0l
Executes = .
Transaction <+—— Deposit
I 0.1
I 0.l
Buthenticates user against
Yo
| Balancelnquiry
BankDatabase

-4 Ffccessesimodifies an
account balance through

Contains

' 0.

Account

| Class diagram of the ATM system (incorporating inheritance). Note that
abstract class name Transaction appears in italics.

< >

© 2006 Pearson Education, Inc. All rights reserved.

115

| ncorporating inheritanceintothe ATM system
design
— If class A isa generalization of classB, then classB is
derived from class A

— If class A iIsan abstract class and classB isa derived class
of class A, then class B must implement the purevirtual
functions of class A if classB isto be a concrete class

(< >

© 2006 Pearson Education, Inc. All rights reserved.

116

Fig.13.29 | Class diagram after incorporating inheritance into the system.

© 2006 Pearson Education, Inc. All rights reserved.

117

A complete class diagram shows all the associations
among classes and all the attributes and operations for
each class. When the number of class attributes,

oper ations and associationsis substantial (asin Fig. 13.28
and Fig. 13.29), a good practice that promotes readability
Isto divide thisinformation between two class diagrams—
one focusing on associations and the other on attributes
and oper ations. However, when examining classes
modeled in thisfashion, it iscrucial to consider both class
diagramsto get a complete view of the classes. For
example, one must refer to Fig. 13.28 to observethe
Inheritancerelationship between Transaction and its
derived classesthat isomitted from Fig. 13.29.

(< >

© 2006 Pearson Education, Inc. All rights reserved.

© 0 N O O B~ W DN PP

[o T S
W N R O

// Fig. 13.30: Withdrawal .h

// Definition of class Withdrawal that represents a withdrawal
#ifndef WITHDRAWAL_ H

#define WITHDRAWAL_ H

#include "Transaction.h" // Transaction class definition

// class Withdrawal derives from base class Transaction
class Withdrawal : public Transaction

{

118
transaction Outline

Withdrawal .h

(10f 1)

}: 7/ end class Withdrawal

#endif // WITHDRAWAL_H

ClassW t hdr awal inherits
from Tr ansact i on

<« |

© 2006 Pearson Education,
Inc. All rights reserved.

© 0 N OO O B W DN P

N NN NDNRRRR R R B R R
E W NP O O N 0o W N PR O

// Fig. 13.31: Withdrawal.h

// Definition of class Withdrawal that represents a withdrawal transaction

#ifndef WITHDRAWAL_H
#define WITHDRAWAL_H

#include "Transaction.h" // Transaction class definition

class Keypad; // forward declaration of class Keypad

class CashDispenser; // forward declaration of class CashDispenser

// class Withdrawal derives from base class Transaction
class Withdrawal : public Transaction

_ 119
Outline

Withdrawal .h

(10f 1)

g T

public:

ClassW t hdr awal

from Tr ansact i on

inherits

// member function overriding execute in base class Transaction

virtual void execute(); // perform the transaction
private:

// attributes

double amount; // amount to withdraw

Keypad &keypad; // reference to ATM"s keypad

CashDispenser &cashDispenser; // reference to ATM"s cash dispenser

}; // end class Withdrawal

#endif // WITHDRAWAL_H

<« |

© 2006 Pearson Education,
Inc. All rights reserved.

© 0 N OO O b W DN P

A T i o o =
© O N o U~ W N R O

20
21
22
23
24

// Fig. 13_32: Transaction.h

// Transaction abstract base class definition.
#ifndef TRANSACTION_H

#define TRANSACTION_H

class Screen; // forward declaration of class Screen
class BankDatabase; // forward declaration of class BankDatabase

class Transaction - -
c \ Transact i on isan abstract class,

containsapurevi rt ual function

public:

int getAccountNumber(); // return account number
Screen &getScreen(); // return reference to screen
BankDatabase &getBankDatabase(); // return reference to bank database

// pure virtual function to perform the transaction
// overridden in derived classes

_ 120
Outline

Transaction.h

(10f 1)

virtual void execute() = O;
private: ‘\\\\\\\\“‘\~\\\\\\\\\\\\\\ : :
Declare purevi rt ual functionexecut e

int accountNumber; // indicates account involved

Screen &screen; // reference to the screen of the ATM
BankDatabase &bankDatabase; // reference to the account info database
}; 7/ end class Transaction

#endiT // TRANSACTION_H

<« |

© 2006 Pearson Education,
Inc. All rights reserved.

	13
	슬라이드 번호 2
	OBJECTIVES
	슬라이드 번호 4
	슬라이드 번호 5
	13.1 Introduction
	13.1 Introduction (Cont.)
	13.2 Polymorphism Examples
	Software Engineering Observation 13.1
	Software Engineering Observation 13.2
	13.3 Relationships Among Objects in an Inheritance Hierarchy
	13.3.1 Invoking Base-Class Functions from Derived-Class Objects
	슬라이드 번호 13
	슬라이드 번호 14
	슬라이드 번호 15
	슬라이드 번호 16
	슬라이드 번호 17
	슬라이드 번호 18
	슬라이드 번호 19
	슬라이드 번호 20
	슬라이드 번호 21
	슬라이드 번호 22
	슬라이드 번호 23
	슬라이드 번호 24
	슬라이드 번호 25
	슬라이드 번호 26
	13.3.2 Aiming Derived-Class Pointers at Base-Class Objects
	슬라이드 번호 28
	슬라이드 번호 29
	13.3.3 Derived-Class Member-Function Calls via Base-Class Pointers
	슬라이드 번호 31
	슬라이드 번호 32
	Software Engineering Observation 13.3
	13.3.4 Virtual Functions
	13.3.4 Virtual Functions (Cont.)
	Software Engineering Observation 13.4
	Good Programming Practice 13.1
	Error-Prevention Tip 13.1
	Software Engineering Observation 13.5
	슬라이드 번호 40
	슬라이드 번호 41
	슬라이드 번호 42
	슬라이드 번호 43
	슬라이드 번호 44
	슬라이드 번호 45
	슬라이드 번호 46
	슬라이드 번호 47
	13.3.5 Summary of the Allowed Assignments Between Base-Class and Derived-Class Objects and Pointers
	Common Programming Error 13.1
	Common Programming Error 13.2
	13.4 Type Fields and switch Statements
	Software Engineering Observation 13.6
	Software Engineering Observation 13.7
	13.5 Abstract Classes and Pure virtual Functions
	13.5 Abstract Classes and Pure virtual Functions (Cont.)
	Software Engineering Observation 13.8
	Common Programming Error 13.3
	Common Programming Error 13.4
	Software Engineering Observation 13.9
	13.5 Abstract Classes and Pure virtual Functions (Cont.)
	13.6 Case Study: Payroll System Using Polymorphism
	Software Engineering Observation 13.10
	Fig.13.11 | Employee hierarchy UML class diagram.
	13.6.1 Creating Abstract Base Class Employee
	Fig.13.12 | Polymorphic interface for the Employee hierarchy classes.
	슬라이드 번호 66
	슬라이드 번호 67
	슬라이드 번호 68
	슬라이드 번호 69
	13.6.2 Creating Concrete Derived Class SalariedEmployee
	슬라이드 번호 71
	슬라이드 번호 72
	슬라이드 번호 73
	13.6.3 Creating Concrete Derived Class HourlyEmployee
	슬라이드 번호 75
	슬라이드 번호 76
	슬라이드 번호 77
	13.6.4 Creating Concrete Derived Class CommissionEmployee
	슬라이드 번호 79
	슬라이드 번호 80
	슬라이드 번호 81
	13.6.5 Creating Indirect Concrete Derived Class BasePlusCommissionEmployee
	슬라이드 번호 83
	슬라이드 번호 84
	슬라이드 번호 85
	13.6.6 Demonstrating Polymorphic Processing
	슬라이드 번호 87
	슬라이드 번호 88
	슬라이드 번호 89
	슬라이드 번호 90
	슬라이드 번호 91
	슬라이드 번호 92
	슬라이드 번호 93
	13.7 (Optional) Polymorphism, Virtual Functions and Dynamic Binding “Under the Hood”
	13.7 (Optional) Polymorphism, Virtual Functions and Dynamic Binding “Under the Hood” (Cont.)
	13.7 (Optional) Polymorphism, Virtual Functions and Dynamic Binding “Under the Hood” (Cont.)
	Fig.13.24 | How virtual function calls work.
	Performance Tip 13.1
	Performance Tip 13.2
	Software Engineering Observation 13.11
	13.8 Case Study: Payroll System Using Polymorphism and Run-Time Type Information with Downcasting, dynamic_cast, typeid and type_info
	13.8 Case Study: Payroll System Using Polymorphism and Run-Time Type Information with Downcasting, dynamic_cast, typeid and type_info (Cont.)
	13.8 Case Study: Payroll System Using Polymorphism and Run-Time Type Information with Downcasting, dynamic_cast, typeid and type_info (Cont.)
	슬라이드 번호 104
	슬라이드 번호 105
	슬라이드 번호 106
	슬라이드 번호 107
	13.9 Virtual Destructors
	Good Programming Practice 13.2
	Common Programming Error 13.5
	13.10 (Optional) Software Engineering Case Study: Incorporating Inheritance into the ATM System
	Fig.13.26 | Attributes and operations of classes BalanceInquiry, Withdrawal and Deposit.
	Fig.13.27 | Class diagram modeling generalization relationship between base class Transaction and derived classes BalanceInquiry, Withdrawal and Deposit.
	Fig.13.28 | Class diagram of the ATM system (incorporating inheritance). Note that abstract class name Transaction appears in italics.
	13.10 (Optional) Software Engineering Case Study: Incorporating Inheritance into the ATM System (Cont.)
	Fig.13.29 | Class diagram after incorporating inheritance into the system.
	Software Engineering Observation 13.12
	슬라이드 번호 118
	슬라이드 번호 119
	슬라이드 번호 120

