
1

© 2006 Pearson Education, Inc. All rights reserved.

1313
Object-Oriented

Programming:
Polymorphism

2

© 2006 Pearson Education, Inc. All rights reserved.

A philosopher of imposing stature doesn’t think in a
vacuum. Even his most abstract ideas are, to some extent,
conditioned by what is or is not known in the time when he
lives.

— Alfred North Whitehead

One Ring to rule them all, One Ring to find them,
One Ring to bring them all and in the darkness bind them.

— John Ronald Reuel Tolkien

The silence often of pure innocence
Persuades when speaking fails.

— William Shakespeare

General propositions do not decide concrete cases.
— Oliver Wendell Holmes

3

© 2006 Pearson Education, Inc. All rights reserved.

OBJECTIVES
In this chapter you will learn:

What polymorphism is, how it makes programming more
convenient, and how it makes systems more extensible and
maintainable.
To declare and use virtual functions to effect polymorphism.
The distinction between abstract and concrete classes.
To declare pure virtual functions to create abstract classes.
How to use run-time type information (RTTI) with downcasting,
dynamic_cast, typeid and type_info.
How C++ implements virtual functions and dynamic
binding "under the hood."
How to use virtual destructors to ensure that all appropriate
destructors run on an object.

4

© 2006 Pearson Education, Inc. All rights reserved.

13.1 Introduction
13.2 Polymorphism Examples
13.3 Relationships Among Objects in an Inheritance Hierarchy

13.3.1 Invoking Base-Class Functions from Derived-
Class Objects

13.3.2 Aiming Derived-Class Pointers at Base-Class
Objects

13.3.3 Derived-Class Member-Function Calls via Base-
Class Pointers

13.3.4 Virtual Functions
13.3.5 Summary of the Allowed Assignments Between

Base-Class and Derived-Class Objects and
Pointers

13.4 Type Fields and switch Statements
13.5 Abstract Classes and Pure virtual Functions

5

© 2006 Pearson Education, Inc. All rights reserved.

13.6 Case Study: Payroll System Using Polymorphism
13.6.1 Creating Abstract Base Class Employee
13.6.2 Creating Concrete Derived Class SalariedEmployee
13.6.3 Creating Concrete Derived Class HourlyEmployee
13.6.4 Creating Concrete Derived Class CommissionEmployee
13.6.5 Creating Indirect Concrete Derived Class

BasePlusCommissionEmployee

13.6.6 Demonstrating Polymorphic Processing
13.7 (Optional) Polymorphism, Virtual Functions and Dynamic

Binding "Under the Hood"
13.8 Case Study: Payroll System Using Polymorphism and Run-Time

Type Information with Downcasting, dynamic_cast, typeid and
type_info

13.9 Virtual Destructors
13.10 (Optional) Software Engineering Case Study: Incorporating

Inheritance into the ATM System
13.11 Wrap-Up

6

© 2006 Pearson Education, Inc. All rights reserved.

13.1 Introduction

• Polymorphism with inheritance hierarchies
– “Program in the general” vs. “program in the specific”
– Process objects of classes that are part of the same

hierarchy as if they are all objects of the base class
– Each object performs the correct tasks for that object’s

type
• Different actions occur depending on the type of object

– New classes can be added with little or not modification to
existing code

7

© 2006 Pearson Education, Inc. All rights reserved.

13.1 Introduction (Cont.)

• Example: Animal hierarchy
– Animal base class – every derived class has function move
– Different animal objects maintained as a vector of
Animal pointers

– Program issues same message (move) to each animal
generically

– Proper function gets called
• A Fish will move by swimming
• A Frog will move by jumping
• A Bird will move by flying

8

© 2006 Pearson Education, Inc. All rights reserved.

13.2 Polymorphism Examples

• Polymorphism occurs when a program invokes a virtual
function through a base-class pointer or reference

– C++ dynamically chooses the correct function for the class from
which the object was instantiated

• Example: SpaceObjects
– Video game manipulates objects of types that inherit from
SpaceObject, which contains member function draw

– Function draw implemented differently for the different classes
– Screen-manager program maintains a container of
SpaceObject pointers

– Call draw on each object using SpaceObject pointers
• Proper draw function is called based on object’s type

– A new class derived from SpaceObject can be added without
affecting the screen manager

9

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 13.1

With virtual functions and polymorphism, you
can deal in generalities and let the execution-time
environment concern itself with the specifics. You
can direct a variety of objects to behave in
manners appropriate to those objects without
even knowing their types (as long as those objects
belong to the same inheritance hierarchy and are
being accessed off a common base-class pointer).

10

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 13.2

Polymorphism promotes extensibility: Software
written to invoke polymorphic behavior is
written independently of the types of the objects
to which messages are sent. Thus, new types of
objects that can respond to existing messages
can be incorporated into such a system without
modifying the base system. Only client code
that instantiates new objects must be modified
to accommodate new types.

11

© 2006 Pearson Education, Inc. All rights reserved.

13.3 Relationships Among Objects in an
Inheritance Hierarchy

• Demonstration
– Invoking base-class functions from derived-class objects
– Aiming derived-class pointers at base-class objects
– Derived-class member-function calls via base-class pointers
– Demonstrating polymorphism using virtual functions

• Base-class pointers aimed at derived-class objects

• Key concept
– An object of a derived class can be treated as an object of

its base class

12

© 2006 Pearson Education, Inc. All rights reserved.

13.3.1 Invoking Base-Class Functions
from Derived-Class Objects

• Aim base-class pointer at base-class object
– Invoke base-class functionality

• Aim derived-class pointer at derived-class object
– Invoke derived-class functionality

• Aim base-class pointer at derived-class object
– Because derived-class object is an object of base class
– Invoke base-class functionality

• Invoked functionality depends on type of the handle used to invoke
the function, not type of the object to which the handle points

– virtual functions
• Make it possible to invoke the object type’s functionality, rather

than invoke the handle type’s functionality
• Crucial to implementing polymorphic behavior

13

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Commission
Employee.h

(1 of 2)

 1 // Fig. 13.1: CommissionEmployee.h

 2 // CommissionEmployee class definition represents a commission employee.

 3 #ifndef COMMISSION_H

 4 #define COMMISSION_H

 5
 6 #include <string> // C++ standard string class

 7 using std::string;

 8
 9 class CommissionEmployee

10 {
11 public:
12 CommissionEmployee(const string &, const string &, const string &,
13 double = 0.0, double = 0.0);
14
15 void setFirstName(const string &); // set first name
16 string getFirstName() const; // return first name
17
18 void setLastName(const string &); // set last name
19 string getLastName() const; // return last name
20
21 void setSocialSecurityNumber(const string &); // set SSN
22 string getSocialSecurityNumber() const; // return SSN
23
24 void setGrossSales(double); // set gross sales amount
25 double getGrossSales() const; // return gross sales amount

14

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Commission
Employee.h

(2 of 2)

26
27 void setCommissionRate(double); // set commission rate
28 double getCommissionRate() const; // return commission rate
29
30 double earnings() const; // calculate earnings
31 void print() const; // print CommissionEmployee object
32 private:
33 string firstName;
34 string lastName;
35 string socialSecurityNumber;
36 double grossSales; // gross weekly sales
37 double commissionRate; // commission percentage
38 }; // end class CommissionEmployee
39
40 #endif

Function print will be redefined
in derived class to print the

employee’s information

Function earnings will be
redefined in derived classes to

calculate the employee’s earnings

15

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Commission
Employee.cpp

(1 of 4)

 1 // Fig. 13.2: CommissionEmployee.cpp

 2 // Class CommissionEmployee member-function definitions.

 3 #include <iostream>

 4 using std::cout;

 5
 6 #include "CommissionEmployee.h" // CommissionEmployee class definition

 7
 8 // constructor

 9 CommissionEmployee::CommissionEmployee(

10 const string &first, const string &last, const string &ssn,
11 double sales, double rate)
12 : firstName(first), lastName(last), socialSecurityNumber(ssn)
13 {
14 setGrossSales(sales); // validate and store gross sales
15 setCommissionRate(rate); // validate and store commission rate
16 } // end CommissionEmployee constructor
17
18 // set first name
19 void CommissionEmployee::setFirstName(const string &first)
20 {
21 firstName = first; // should validate
22 } // end function setFirstName
23
24 // return first name
25 string CommissionEmployee::getFirstName() const
26 {
27 return firstName;
28 } // end function getFirstName

16

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Commission
Employee.cpp

(2 of 4)

29
30 // set last name
31 void CommissionEmployee::setLastName(const string &last)
32 {
33 lastName = last; // should validate
34 } // end function setLastName
35
36 // return last name
37 string CommissionEmployee::getLastName() const
38 {
39 return lastName;
40 } // end function getLastName
41
42 // set social security number
43 void CommissionEmployee::setSocialSecurityNumber(const string &ssn)
44 {
45 socialSecurityNumber = ssn; // should validate
46 } // end function setSocialSecurityNumber
47
48 // return social security number
49 string CommissionEmployee::getSocialSecurityNumber() const
50 {
51 return socialSecurityNumber;
52 } // end function getSocialSecurityNumber
53
54 // set gross sales amount
55 void CommissionEmployee::setGrossSales(double sales)
56 {
57 grossSales = (sales < 0.0) ? 0.0 : sales;
58 } // end function setGrossSales

17

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Commission
Employee.cpp

(3 of 4)

59
60 // return gross sales amount
61 double CommissionEmployee::getGrossSales() const
62 {
63 return grossSales;
64 } // end function getGrossSales
65
66 // set commission rate
67 void CommissionEmployee::setCommissionRate(double rate)
68 {
69 commissionRate = (rate > 0.0 && rate < 1.0) ? rate : 0.0;
70 } // end function setCommissionRate
71
72 // return commission rate
73 double CommissionEmployee::getCommissionRate() const
74 {
75 return commissionRate;
76 } // end function getCommissionRate
77
78 // calculate earnings
79 double CommissionEmployee::earnings() const
80 {
81 return getCommissionRate() * getGrossSales();
82 } // end function earnings

Calculate earnings based on
commission rate and gross sales

18

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Commission
Employee.cpp

(4 of 4)

83
84 // print CommissionEmployee object
85 void CommissionEmployee::print() const
86 {
87 cout << "commission employee: "
88 << getFirstName() << ' ' << getLastName()
89 << "\nsocial security number: " << getSocialSecurityNumber()
90 << "\ngross sales: " << getGrossSales()
91 << "\ncommission rate: " << getCommissionRate();
92 } // end function print

Display name, social
security number, gross

sales and commission rate

19

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

BasePlus
Commission
Employee.h

(1 of 1)

 1 // Fig. 13.3: BasePlusCommissionEmployee.h

 2 // BasePlusCommissionEmployee class derived from class

 3 // CommissionEmployee.

 4 #ifndef BASEPLUS_H

 5 #define BASEPLUS_H

 6
 7 #include <string> // C++ standard string class

 8 using std::string;

 9
10 #include "CommissionEmployee.h" // CommissionEmployee class declaration
11
12 class BasePlusCommissionEmployee : public CommissionEmployee
13 {
14 public:
15 BasePlusCommissionEmployee(const string &, const string &,
16 const string &, double = 0.0, double = 0.0, double = 0.0);
17
18 void setBaseSalary(double); // set base salary
19 double getBaseSalary() const; // return base salary
20
21 double earnings() const; // calculate earnings
22 void print() const; // print BasePlusCommissionEmployee object
23 private:
24 double baseSalary; // base salary
25 }; // end class BasePlusCommissionEmployee
26
27 #endif

Redefine functions
earnings and print

20

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

BasePlus
Commission
Employee.cpp

(1 of 2)

 1 // Fig. 13.4: BasePlusCommissionEmployee.cpp

 2 // Class BasePlusCommissionEmployee member-function definitions.

 3 #include <iostream>

 4 using std::cout;

 5
 6 // BasePlusCommissionEmployee class definition

 7 #include "BasePlusCommissionEmployee.h"

 8
 9 // constructor

10 BasePlusCommissionEmployee::BasePlusCommissionEmployee(
11 const string &first, const string &last, const string &ssn,
12 double sales, double rate, double salary)
13 // explicitly call base-class constructor
14 : CommissionEmployee(first, last, ssn, sales, rate)
15 {
16 setBaseSalary(salary); // validate and store base salary
17 } // end BasePlusCommissionEmployee constructor
18
19 // set base salary
20 void BasePlusCommissionEmployee::setBaseSalary(double salary)
21 {
22 baseSalary = (salary < 0.0) ? 0.0 : salary;
23 } // end function setBaseSalary
24
25 // return base salary
26 double BasePlusCommissionEmployee::getBaseSalary() const
27 {
28 return baseSalary;
29 } // end function getBaseSalary

21

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

BasePlus
Commission
Employee.cpp

(2 of 2)

30
31 // calculate earnings
32 double BasePlusCommissionEmployee::earnings() const
33 {
34 return getBaseSalary() + CommissionEmployee::earnings();
35 } // end function earnings
36
37 // print BasePlusCommissionEmployee object
38 void BasePlusCommissionEmployee::print() const
39 {
40 cout << "base-salaried ";
41
42 // invoke CommissionEmployee's print function
43 CommissionEmployee::print();
44
45 cout << "\nbase salary: " << getBaseSalary();
46 } // end function print

Redefined earnings function
incorporates base salary

Redefined print function displays additional
BasePlusCommissionEmployee details

22

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig13_05.cpp

(1 of 5)

 1 // Fig. 13.5: fig13_05.cpp

 2 // Aiming base-class and derived-class pointers at base-class

 3 // and derived-class objects, respectively.

 4 #include <iostream>

 5 using std::cout;

 6 using std::endl;

 7 using std::fixed;

 8
 9 #include <iomanip>

10 using std::setprecision;
11
12 // include class definitions
13 #include "CommissionEmployee.h"
14 #include "BasePlusCommissionEmployee.h"
15
16 int main()
17 {
18 // create base-class object
19 CommissionEmployee commissionEmployee(
20 "Sue", "Jones", "222-22-2222", 10000, .06);
21
22 // create base-class pointer
23 CommissionEmployee *commissionEmployeePtr = 0;

23

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig13_05.cpp

(2 of 5)

24
25 // create derived-class object
26 BasePlusCommissionEmployee basePlusCommissionEmployee(
27 "Bob", "Lewis", "333-33-3333", 5000, .04, 300);
28
29 // create derived-class pointer
30 BasePlusCommissionEmployee *basePlusCommissionEmployeePtr = 0;
31
32 // set floating-point output formatting
33 cout << fixed << setprecision(2);
34
35 // output objects commissionEmployee and basePlusCommissionEmployee
36 cout << "Print base-class and derived-class objects:\n\n";
37 commissionEmployee.print(); // invokes base-class print
38 cout << "\n\n";
39 basePlusCommissionEmployee.print(); // invokes derived-class print
40
41 // aim base-class pointer at base-class object and print
42 commissionEmployeePtr = &commissionEmployee; // perfectly natural
43 cout << "\n\n\nCalling print with base-class pointer to "
44 << "\nbase-class object invokes base-class print function:\n\n";
45 commissionEmployeePtr->print(); // invokes base-class print

Aiming base-class pointer at base-class object

and invoking base-class functionality

24

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig13_05.cpp

(3 of 5)

46
47 // aim derived-class pointer at derived-class object and print
48 basePlusCommissionEmployeePtr = &basePlusCommissionEmployee; // natural
49 cout << "\n\n\nCalling print with derived-class pointer to "
50 << "\nderived-class object invokes derived-class "
51 << "print function:\n\n";
52 basePlusCommissionEmployeePtr->print(); // invokes derived-class print
53
54 // aim base-class pointer at derived-class object and print
55 commissionEmployeePtr = &basePlusCommissionEmployee;
56 cout << "\n\n\nCalling print with base-class pointer to "
57 << "derived-class object\ninvokes base-class print "
58 << "function on that derived-class object:\n\n";
59 commissionEmployeePtr->print(); // invokes base-class print
60 cout << endl;
61 return 0;
62 } // end main

Aiming derived-class pointer at
derived-class object and invoking

derived-class functionality

Aiming base-class pointer at
derived-class object and

invoking base-class functionality

25

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig13_05.cpp

(4 of 5)

Print base-class and derived-class objects:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 10000.00
commission rate: 0.06

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00
commission rate: 0.04
base salary: 300.00

Calling print with base-class pointer to
base-class object invokes base-class print function:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 10000.00
commission rate: 0.06

 (Continued at top of next slide…)

26

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig13_05.cpp

(5 of 5)

 (…Continued from bottom of previous slide)

Calling print with derived-class pointer to
derived-class object invokes derived-class print function:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00
commission rate: 0.04
base salary: 300.00

Calling print with base-class pointer to derived-class object
invokes base-class print function on that derived-class object:

commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00
commission rate: 0.04

27

© 2006 Pearson Education, Inc. All rights reserved.

13.3.2 Aiming Derived-Class Pointers at
Base-Class Objects

• Aim a derived-class pointer at a base-class object
– C++ compiler generates error

• CommissionEmployee (base-class object) is not a
BasePlusCommissionEmployee (derived-class object)

– If this were to be allowed, programmer could then attempt
to access derived-class members which do not exist

• Could modify memory being used for other data

28

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 13.6: fig13_06.cpp

 2 // Aiming a derived-class pointer at a base-class object.

 3 #include "CommissionEmployee.h"

 4 #include "BasePlusCommissionEmployee.h"

 5
 6 int main()

 7 {

 8 CommissionEmployee commissionEmployee(

 9 "Sue", "Jones", "222-22-2222", 10000, .06);

10 BasePlusCommissionEmployee *basePlusCommissionEmployeePtr = 0;
11
12 // aim derived-class pointer at base-class object
13 // Error: a CommissionEmployee is not a BasePlusCommissionEmployee
14 basePlusCommissionEmployeePtr = &commissionEmployee;
15 return 0;
16 } // end main

Outline

fig13_06.cpp

(1 of 2)

Cannot assign base-class object to derived-class
pointer because is-a relationship does not apply

29

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig13_06.cpp

(2 of 2)

Borland C++ command-line compiler error messages:

Error E2034 Fig13_06\fig13_06.cpp 14: Cannot convert 'CommissionEmployee *'
 to 'BasePlusCommissionEmployee *' in function main()

GNU C++ compiler error messages:

fig13_06.cpp:14: error: invalid conversion from `CommissionEmployee*' to
 `BasePlusCommissionEmployee*'

Microsoft Visual C++.NET compiler error messages:

C:\cpphtp5_examples\ch13\Fig13_06\fig13_06.cpp(14) : error C2440:
 '=' : cannot convert from 'CommissionEmployee *__w64 ' to

 'BasePlusCommissionEmployee *'

 Cast from base to derived requires dynamic_cast or static_cast

30

© 2006 Pearson Education, Inc. All rights reserved.

13.3.3 Derived-Class Member-Function
Calls via Base-Class Pointers

• Aiming base-class pointer at derived-class object
– Calling functions that exist in base class causes base-class

functionality to be invoked
– Calling functions that do not exist in base class (may exist

in derived class) will result in error
• Derived-class members cannot be accessed from base-class

pointers
• However, they can be accomplished using downcasting

(Section 13.8)

31

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 13.7: fig13_07.cpp

 2 // Attempting to invoke derived-class-only member functions

 3 // through a base-class pointer.

 4 #include "CommissionEmployee.h"

 5 #include "BasePlusCommissionEmployee.h"

 6
 7 int main()

 8 {

 9 CommissionEmployee *commissionEmployeePtr = 0; // base class

10 BasePlusCommissionEmployee basePlusCommissionEmployee(
11 "Bob", "Lewis", "333-33-3333", 5000, .04, 300); // derived class
12
13 // aim base-class pointer at derived-class object
14 commissionEmployeePtr = &basePlusCommissionEmployee;
15
16 // invoke base-class member functions on derived-class
17 // object through base-class pointer
18 string firstName = commissionEmployeePtr->getFirstName();
19 string lastName = commissionEmployeePtr->getLastName();
20 string ssn = commissionEmployeePtr->getSocialSecurityNumber();
21 double grossSales = commissionEmployeePtr->getGrossSales();
22 double commissionRate = commissionEmployeePtr->getCommissionRate();
23
24 // attempt to invoke derived-class-only member functions
25 // on derived-class object through base-class pointer
26 double baseSalary = commissionEmployeePtr->getBaseSalary();
27 commissionEmployeePtr->setBaseSalary(500);
28 return 0;
29 } // end main

Outline

fig13_07.cpp

(1 of 2)

Cannot invoke derived-class-only
members from base-class pointer

32

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig13_07.cpp

(2 of 2)

Borland C++ command-line compiler error messages:

Error E2316 Fig13_07\fig13_07.cpp 26: 'getBaseSalary' is not a member of
 'CommissionEmployee' in function main()

Error E2316 Fig13_07\fig13_07.cpp 27: 'setBaseSalary' is not a member of
 'CommissionEmployee' in function main()

Microsoft Visual C++.NET compiler error messages:

C:\cpphtp5_examples\ch13\Fig13_07\fig13_07.cpp(26) : error C2039:
 'getBaseSalary' : is not a member of 'CommissionEmployee'

 C:\cpphtp5_examples\ch13\Fig13_07\CommissionEmployee.h(10) :
 see declaration of 'CommissionEmployee'

C:\cpphtp5_examples\ch13\Fig13_07\fig13_07.cpp(27) : error C2039:
 'setBaseSalary' : is not a member of 'CommissionEmployee'

 C:\cpphtp5_examples\ch13\Fig13_07\CommissionEmployee.h(10) :
 see declaration of 'CommissionEmployee'

GNU C++ compiler error messages:

fig13_07.cpp:26: error: `getBaseSalary' undeclared (first use this function)
fig13_07.cpp:26: error: (Each undeclared identifier is reported only once for
 each function it appears in.)

fig13_07.cpp:27: error: `setBaseSalary' undeclared (first use this function)

33

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 13.3

If the address of a derived-class object has been
assigned to a pointer of one of its direct or indirect
base classes, it is acceptable to cast that base-class
pointer back to a pointer of the derived-class type.
In fact, this must be done to send that derived-
class object messages that do not appear in the
base class.

34

© 2006 Pearson Education, Inc. All rights reserved.

13.3.4 Virtual Functions

• Which class’s function to invoke
– Normally

• Handle determines which class’s functionality to invoke
– With virtual functions

• Type of the object being pointed to, not type of the handle,
determines which version of a virtual function to invoke

• Allows program to dynamically (at runtime rather than
compile time) determine which function to use

– Called dynamic binding or late binding

35

© 2006 Pearson Education, Inc. All rights reserved.

13.3.4 Virtual Functions (Cont.)

•virtual functions
– Declared by preceding the function’s prototype with the

keyword virtual in base class
– Derived classes override function as appropriate
– Once declared virtual, a function remains virtual all

the way down the hierarchy
– Static binding

• When calling a virtual function using specific object with
dot operator, function invocation resolved at compile time

– Dynamic binding
• Dynamic binding occurs only off pointer and reference

handles

36

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 13.4

Once a function is declared virtual, it remains
virtual all the way down the inheritance
hierarchy from that point, even if that function is
not explicitly declared virtual when a class
overrides it.

37

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 13.1

Even though certain functions are implicitly
virtual because of a declaration made
higher in the class hierarchy, explicitly declare
these functions virtual at every level of the
hierarchy to promote program clarity.

38

© 2006 Pearson Education, Inc. All rights reserved.

Error-Prevention Tip 13.1

When a programmer browses a class hierarchy to
locate a class to reuse, it is possible that a function
in that class will exhibit virtual function
behavior even though it is not explicitly declared
virtual. This happens when the class inherits a
virtual function from its base class, and it can
lead to subtle logic errors. Such errors can be
avoided by explicitly declaring all virtual
functions virtual throughout the inheritance
hierarchy.

39

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 13.5

When a derived class chooses not to override
a virtual function from its base class, the
derived class simply inherits its base class’s
virtual function implementation.

40

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 13.8: CommissionEmployee.h

 2 // CommissionEmployee class definition represents a commission employee.

 3 #ifndef COMMISSION_H

 4 #define COMMISSION_H

 5
 6 #include <string> // C++ standard string class

 7 using std::string;

 8
 9 class CommissionEmployee

10 {
11 public:
12 CommissionEmployee(const string &, const string &, const string &,
13 double = 0.0, double = 0.0);
14
15 void setFirstName(const string &); // set first name
16 string getFirstName() const; // return first name
17
18 void setLastName(const string &); // set last name
19 string getLastName() const; // return last name
20
21 void setSocialSecurityNumber(const string &); // set SSN
22 string getSocialSecurityNumber() const; // return SSN
23
24 void setGrossSales(double); // set gross sales amount
25 double getGrossSales() const; // return gross sales amount

Outline

Commission
Employee.h

(1 of 2)

41

© 2006 Pearson Education,
Inc. All rights reserved.

26
27 void setCommissionRate(double); // set commission rate
28 double getCommissionRate() const; // return commission rate
29
30 virtual double earnings() const; // calculate earnings
31 virtual void print() const; // print CommissionEmployee object
32 private:
33 string firstName;
34 string lastName;
35 string socialSecurityNumber;
36 double grossSales; // gross weekly sales
37 double commissionRate; // commission percentage
38 }; // end class CommissionEmployee
39
40 #endif

Outline

Commission
Employee.h

(2 of 2)
Declaring earnings and print as virtual

allows them to be overridden, not redefined

42

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 13.9: BasePlusCommissionEmployee.h

 2 // BasePlusCommissionEmployee class derived from class

 3 // CommissionEmployee.

 4 #ifndef BASEPLUS_H

 5 #define BASEPLUS_H

 6
 7 #include <string> // C++ standard string class

 8 using std::string;

 9
10 #include "CommissionEmployee.h" // CommissionEmployee class declaration
11
12 class BasePlusCommissionEmployee : public CommissionEmployee
13 {
14 public:
15 BasePlusCommissionEmployee(const string &, const string &,
16 const string &, double = 0.0, double = 0.0, double = 0.0);
17
18 void setBaseSalary(double); // set base salary
19 double getBaseSalary() const; // return base salary
20
21 virtual double earnings() const; // calculate earnings
22 virtual void print() const; // print BasePlusCommissionEmployee object
23 private:
24 double baseSalary; // base salary
25 }; // end class BasePlusCommissionEmployee
26
27 #endif

Outline

BasePlus
Commission
Employee.h

(1 of 1)

Functions earnings and print are
already virtual – good practice to declare
virtual even when overriding function

43

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 13.10: fig13_10.cpp

 2 // Introducing polymorphism, virtual functions and dynamic binding.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6 using std::fixed;

 7
 8 #include <iomanip>

 9 using std::setprecision;

10
11 // include class definitions
12 #include "CommissionEmployee.h"
13 #include "BasePlusCommissionEmployee.h"
14
15 int main()
16 {
17 // create base-class object
18 CommissionEmployee commissionEmployee(
19 "Sue", "Jones", "222-22-2222", 10000, .06);
20
21 // create base-class pointer
22 CommissionEmployee *commissionEmployeePtr = 0;
23
24 // create derived-class object
25 BasePlusCommissionEmployee basePlusCommissionEmployee(
26 "Bob", "Lewis", "333-33-3333", 5000, .04, 300);
27
28 // create derived-class pointer
29 BasePlusCommissionEmployee *basePlusCommissionEmployeePtr = 0;

Outline

fig13_10.cpp

(1 of 5)

44

© 2006 Pearson Education,
Inc. All rights reserved.

30
31 // set floating-point output formatting
32 cout << fixed << setprecision(2);
33
34 // output objects using static binding
35 cout << "Invoking print function on base-class and derived-class "
36 << "\nobjects with static binding\n\n";
37 commissionEmployee.print(); // static binding
38 cout << "\n\n";
39 basePlusCommissionEmployee.print(); // static binding
40
41 // output objects using dynamic binding
42 cout << "\n\n\nInvoking print function on base-class and "
43 << "derived-class \nobjects with dynamic binding";
44
45 // aim base-class pointer at base-class object and print
46 commissionEmployeePtr = &commissionEmployee;
47 cout << "\n\nCalling virtual function print with base-class pointer"
48 << "\nto base-class object invokes base-class "
49 << "print function:\n\n";
50 commissionEmployeePtr->print(); // invokes base-class print

Outline

fig13_10.cpp

(2 of 5)

Aiming base-class pointer at
base-class object and invoking

base-class functionality

45

© 2006 Pearson Education,
Inc. All rights reserved.

51
52 // aim derived-class pointer at derived-class object and print
53 basePlusCommissionEmployeePtr = &basePlusCommissionEmployee;
54 cout << "\n\nCalling virtual function print with derived-class "
55 << "pointer\nto derived-class object invokes derived-class "
56 << "print function:\n\n";
57 basePlusCommissionEmployeePtr->print(); // invokes derived-class print
58
59 // aim base-class pointer at derived-class object and print
60 commissionEmployeePtr = &basePlusCommissionEmployee;
61 cout << "\n\nCalling virtual function print with base-class pointer"
62 << "\nto derived-class object invokes derived-class "
63 << "print function:\n\n";
64
65 // polymorphism; invokes BasePlusCommissionEmployee's print;
66 // base-class pointer to derived-class object
67 commissionEmployeePtr->print();
68 cout << endl;
69 return 0;
70 } // end main

Outline

fig13_10.cpp

(3 of 5)
Aiming derived-class pointer at

derived-class object and invoking
derived-class functionality

Aiming base-class pointer at derived-class
object and invoking derived-class functionality

via polymorphism and virtual functions

46

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig13_10.cpp

(4 of 5)

Invoking print function on base-class and derived-class

objects with static binding

commission employee: Sue Jones

social security number: 222-22-2222

gross sales: 10000.00

commission rate: 0.06

base-salaried commission employee: Bob Lewis

social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 300.00

Invoking print function on base-class and derived-class

objects with dynamic binding

Calling virtual function print with base-class pointer

to base-class object invokes base-class print function:

commission employee: Sue Jones

social security number: 222-22-2222

gross sales: 10000.00

commission rate: 0.06

Calling virtual function print with derived-class pointer

to derived-class object invokes derived-class print function:

 (Coninued at the top of next slide …)

47

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig13_10.cpp

(5 of 5)

 (…Continued from the bottom of previous slide)
base-salaried commission employee: Bob Lewis

social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 300.00

Calling virtual function print with base-class pointer

to derived-class object invokes derived-class print function:

base-salaried commission employee: Bob Lewis

social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 300.00

48

© 2006 Pearson Education, Inc. All rights reserved.

13.3.5 Summary of the Allowed Assignments
Between Base-Class and Derived-Class
Objects and Pointers

• Four ways to aim base-class and derived-class
pointers at base-class and derived-class objects

– Aiming a base-class pointer at a base-class object
• Is straightforward

– Aiming a derived-class pointer at a derived-class object
• Is straightforward

– Aiming a base-class pointer at a derived-class object
• Is safe, but can be used to invoke only member functions that

base-class declares (unless downcasting is used)
• Can achieve polymorphism with virtual functions

– Aiming a derived-class pointer at a base-class object
• Generates a compilation error

49

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 13.1

After aiming a base-class pointer at a derived-class
object, attempting to reference derived-class-only
members with the base-class pointer is a
compilation error.

50

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 13.2

Treating a base-class object as a derived-class
object can cause errors.

51

© 2006 Pearson Education, Inc. All rights reserved.

13.4 Type Fields and switch Statements

•switch statement could be used to determine the
type of an object at runtime

– Include a type field as a data member in the base class
– Enables programmer to invoke appropriate action for a

particular object
– Causes problems

• A type test may be forgotten
• May forget to add new types

52

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 13.6

Polymorphic programming can eliminate the
need for unnecessary switch logic. By using
the C++ polymorphism mechanism to perform
the equivalent logic, programmers can avoid
the kinds of errors typically associated with
switch logic.

53

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 13.7

An interesting consequence of using
polymorphism is that programs take on a
simplified appearance. They contain less
branching logic and more simple, sequential
code. This simplification facilitates testing,
debugging and program maintenance.

54

© 2006 Pearson Education, Inc. All rights reserved.

13.5 Abstract Classes and Pure virtual
Functions

• Abstract classes
– Classes from which the programmer never intends to

instantiate any objects
• Incomplete—derived classes must define the “missing pieces”
• Too generic to define real objects

– Normally used as base classes, called abstract base classes
• Provides an appropriate base class from which other classes

can inherit
• Classes used to instantiate objects are called concrete classes

– Must provide implementation for every member
function they define

55

© 2006 Pearson Education, Inc. All rights reserved.

13.5 Abstract Classes and Pure virtual
Functions (Cont.)

• Pure virtual function
– A class is made abstract by declaring one or more of its
virtual functions to be “pure”

• Placing “= 0” in its declaration
– Example

• virtual void draw() const = 0;

– “= 0” is known as a pure specifier
– Do not provide implementations

• Every concrete derived class must override all base-class pure
virtual functions with concrete implementations

– If not overridden, derived-class will also be abstract
– Used when it does not make sense for base class to have an

implementation of a function, but the programmer wants all
concrete derived classes to implement the function

56

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 13.8

An abstract class defines a common public
interface for the various classes in a class
hierarchy. An abstract class contains one or
more pure virtual functions that concrete
derived classes must override.

57

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 13.3

Attempting to instantiate an object of an abstract
class causes a compilation error.

58

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 13.4

Failure to override a pure virtual function in
a derived class, then attempting to instantiate
objects of that class, is a compilation error.

59

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 13.9

An abstract class has at least one pure virtual
function. An abstract class also can have data
members and concrete functions (including
constructors and destructors), which are subject
to the normal rules of inheritance by derived
classes.

60

© 2006 Pearson Education, Inc. All rights reserved.

13.5 Abstract Classes and Pure virtual
Functions (Cont.)

• We can use the abstract base class to declare pointers and
references

– Can refer to objects of any concrete class derived from the
abstract class

– Programs typically use such pointers and references to
manipulate derived-class objects polymorphically

• Polymorphism particularly effective for implementing
layered software systems

– Reading or writing data from and to devices

• Iterator class
– Can traverse all the objects in a container

61

© 2006 Pearson Education, Inc. All rights reserved.

13.6 Case Study: Payroll System Using
Polymorphism

• Enhanced CommissionEmployee-
BasePlusCommissionEmployee hierarchy
using an abstract base class

– Abstract class Employee represents the general concept
of an employee

• Declares the “interface” to the hierarchy
• Each employee has a first name, last name and social security

number
– Earnings calculated differently and objects printed

differently for each derived classe

62

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 13.10

A derived class can inherit interface or
implementation from a base class. Hierarchies
designed for implementation inheritance tend to have
their functionality high in the hierarchy—each new
derived class inherits one or more member functions
that were defined in a base class, and the derived class
uses the base-class definitions. Hierarchies designed
for interface inheritance tend to have their
functionality lower in the hierarchy—a base class
specifies one or more functions that should be defined
for each class in the hierarchy (i.e., they have the same
prototype), but the individual derived classes provide
their own implementations of the function(s).

63

© 2006 Pearson Education, Inc. All rights reserved.

Fig.13.11 | Employee hierarchy UML class diagram.

64

© 2006 Pearson Education, Inc. All rights reserved.

13.6.1 Creating Abstract Base Class
Employee

• Class Employee
– Provides various get and set functions
– Provides functions earnings and print

• Function earnings depends on type of employee, so
declared pure virtual

– Not enough information in class Employee for a default
implementation

• Function print is virtual, but not pure virtual
– Default implementation provided in Employee

– Example maintains a vector of Employee pointers
• Polymorphically invokes proper earnings and print

functions

65

© 2006 Pearson Education, Inc. All rights reserved.

Fig.13.12 | Polymorphic interface for the Employee hierarchy classes.

66

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 13.13: Employee.h

 2 // Employee abstract base class.

 3 #ifndef EMPLOYEE_H

 4 #define EMPLOYEE_H

 5
 6 #include <string> // C++ standard string class

 7 using std::string;

 8
 9 class Employee

10 {
11 public:
12 Employee(const string &, const string &, const string &);
13
14 void setFirstName(const string &); // set first name
15 string getFirstName() const; // return first name
16
17 void setLastName(const string &); // set last name
18 string getLastName() const; // return last name
19
20 void setSocialSecurityNumber(const string &); // set SSN
21 string getSocialSecurityNumber() const; // return SSN

Outline

Employee.h

(1 of 2)

67

© 2006 Pearson Education,
Inc. All rights reserved.

22
23 // pure virtual function makes Employee abstract base class
24 virtual double earnings() const = 0; // pure virtual
25 virtual void print() const; // virtual
26 private:
27 string firstName;
28 string lastName;
29 string socialSecurityNumber;
30 }; // end class Employee
31
32 #endif // EMPLOYEE_H

Outline

Employee.h

(2 of 2)

Function earnings is pure virtual, not enough
data to provide a default, concrete implementation

Function print is virtual, default implementation
provided but derived-classes may override

68

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 13.14: Employee.cpp

 2 // Abstract-base-class Employee member-function definitions.

 3 // Note: No definitions are given for pure virtual functions.

 4 #include <iostream>

 5 using std::cout;

 6
 7 #include "Employee.h" // Employee class definition

 8
 9 // constructor

10 Employee::Employee(const string &first, const string &last,
11 const string &ssn)
12 : firstName(first), lastName(last), socialSecurityNumber(ssn)
13 {
14 // empty body
15 } // end Employee constructor
16
17 // set first name
18 void Employee::setFirstName(const string &first)
19 {
20 firstName = first;
21 } // end function setFirstName
22
23 // return first name
24 string Employee::getFirstName() const
25 {
26 return firstName;
27 } // end function getFirstName
28

Outline

Employee.cpp

(1 of 2)

69

© 2006 Pearson Education,
Inc. All rights reserved.

29 // set last name
30 void Employee::setLastName(const string &last)
31 {
32 lastName = last;
33 } // end function setLastName
34
35 // return last name
36 string Employee::getLastName() const
37 {
38 return lastName;
39 } // end function getLastName
40
41 // set social security number
42 void Employee::setSocialSecurityNumber(const string &ssn)
43 {
44 socialSecurityNumber = ssn; // should validate
45 } // end function setSocialSecurityNumber
46
47 // return social security number
48 string Employee::getSocialSecurityNumber() const
49 {
50 return socialSecurityNumber;
51 } // end function getSocialSecurityNumber
52
53 // print Employee's information (virtual, but not pure virtual)
54 void Employee::print() const
55 {
56 cout << getFirstName() << ' ' << getLastName()
57 << "\nsocial security number: " << getSocialSecurityNumber();
58 } // end function print

Outline

Employee.cpp

(2 of 2)

70

© 2006 Pearson Education, Inc. All rights reserved.

13.6.2 Creating Concrete Derived Class
SalariedEmployee

•SalariedEmployee inherits from Employee
– Includes a weekly salary

• Overridden earnings function incorporates weekly salary
• Overridden print function incorporates weekly salary

– Is a concrete class (implements all pure virtual
functions in abstract base class)

71

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 13.15: SalariedEmployee.h

 2 // SalariedEmployee class derived from Employee.

 3 #ifndef SALARIED_H

 4 #define SALARIED_H

 5
 6 #include "Employee.h" // Employee class definition

 7
 8 class SalariedEmployee : public Employee

 9 {

10 public:
11 SalariedEmployee(const string &, const string &,
12 const string &, double = 0.0);
13
14 void setWeeklySalary(double); // set weekly salary
15 double getWeeklySalary() const; // return weekly salary
16
17 // keyword virtual signals intent to override
18 virtual double earnings() const; // calculate earnings
19 virtual void print() const; // print SalariedEmployee object
20 private:
21 double weeklySalary; // salary per week
22 }; // end class SalariedEmployee
23
24 #endif // SALARIED_H

Outline

Salaried
Employee.h

(1 of 1)SalariedEmployee inherits from Employee,
must override earnings to be concrete

Functions will be overridden
(or defined for the first time)

72

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 13.16: SalariedEmployee.cpp

 2 // SalariedEmployee class member-function definitions.

 3 #include <iostream>

 4 using std::cout;

 5
 6 #include "SalariedEmployee.h" // SalariedEmployee class definition

 7
 8 // constructor

 9 SalariedEmployee::SalariedEmployee(const string &first,

10 const string &last, const string &ssn, double salary)
11 : Employee(first, last, ssn)
12 {
13 setWeeklySalary(salary);
14 } // end SalariedEmployee constructor
15
16 // set salary
17 void SalariedEmployee::setWeeklySalary(double salary)
18 {
19 weeklySalary = (salary < 0.0) ? 0.0 : salary;
20 } // end function setWeeklySalary
21
22 // return salary
23 double SalariedEmployee::getWeeklySalary() const
24 {
25 return weeklySalary;
26 } // end function getWeeklySalary

Outline

Salaried
Employee.cpp

(1 of 2)

Maintain new data member
weeklySalary

73

© 2006 Pearson Education,
Inc. All rights reserved.

27
28 // calculate earnings;
29 // override pure virtual function earnings in Employee
30 double SalariedEmployee::earnings() const
31 {
32 return getWeeklySalary();
33 } // end function earnings
34
35 // print SalariedEmployee's information
36 void SalariedEmployee::print() const
37 {
38 cout << "salaried employee: ";
39 Employee::print(); // reuse abstract base-class print function
40 cout << "\nweekly salary: " << getWeeklySalary();
41 } // end function print

Outline

Salaried
Employee.cpp

(1 of 2)
Overridden earnings and print
functions incorporate weekly salary

74

© 2006 Pearson Education, Inc. All rights reserved.

13.6.3 Creating Concrete Derived Class
HourlyEmployee

•HourlyEmployee inherits from Employee
– Includes a wage and hours worked

• Overridden earnings function incorporates the employee’s
wages multiplied by hours (taking time-and-a-half pay into
account)

• Overridden print function incorporates wage and hours
worked

– Is a concrete class (implements all pure virtual
functions in abstract base class)

75

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 13.17: HourlyEmployee.h

 2 // HourlyEmployee class definition.

 3 #ifndef HOURLY_H

 4 #define HOURLY_H

 5
 6 #include "Employee.h" // Employee class definition

 7
 8 class HourlyEmployee : public Employee

 9 {

10 public:
11 HourlyEmployee(const string &, const string &,
12 const string &, double = 0.0, double = 0.0);
13
14 void setWage(double); // set hourly wage
15 double getWage() const; // return hourly wage
16
17 void setHours(double); // set hours worked
18 double getHours() const; // return hours worked
19
20 // keyword virtual signals intent to override
21 virtual double earnings() const; // calculate earnings
22 virtual void print() const; // print HourlyEmployee object
23 private:
24 double wage; // wage per hour
25 double hours; // hours worked for week
26 }; // end class HourlyEmployee
27
28 #endif // HOURLY_H

Outline

Hourly
Employee.h

(1 of 1)
HourlyEmployee inherits from Employee,

must override earnings to be concrete

Functions will be overridden
(or defined for first time)

76

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 13.18: HourlyEmployee.cpp

 2 // HourlyEmployee class member-function definitions.

 3 #include <iostream>

 4 using std::cout;

 5
 6 #include "HourlyEmployee.h" // HourlyEmployee class definition

 7
 8 // constructor

 9 HourlyEmployee::HourlyEmployee(const string &first, const string &last,

10 const string &ssn, double hourlyWage, double hoursWorked)
11 : Employee(first, last, ssn)
12 {
13 setWage(hourlyWage); // validate hourly wage
14 setHours(hoursWorked); // validate hours worked
15 } // end HourlyEmployee constructor
16
17 // set wage
18 void HourlyEmployee::setWage(double hourlyWage)
19 {
20 wage = (hourlyWage < 0.0 ? 0.0 : hourlyWage);
21 } // end function setWage
22
23 // return wage
24 double HourlyEmployee::getWage() const
25 {
26 return wage;
27 } // end function getWage

Outline

Hourly
Employee.cpp

(1 of 2)

Maintain new data member, hourlyWage

77

© 2006 Pearson Education,
Inc. All rights reserved.

28
29 // set hours worked
30 void HourlyEmployee::setHours(double hoursWorked)
31 {
32 hours = (((hoursWorked >= 0.0) && (hoursWorked <= 168.0)) ?
33 hoursWorked : 0.0);
34 } // end function setHours
35
36 // return hours worked
37 double HourlyEmployee::getHours() const
38 {
39 return hours;
40 } // end function getHours
41
42 // calculate earnings;
43 // override pure virtual function earnings in Employee
44 double HourlyEmployee::earnings() const
45 {
46 if (getHours() <= 40) // no overtime
47 return getWage() * getHours();
48 else
49 return 40 * getWage() + ((getHours() - 40) * getWage() * 1.5);
50 } // end function earnings
51
52 // print HourlyEmployee's information
53 void HourlyEmployee::print() const
54 {
55 cout << "hourly employee: ";
56 Employee::print(); // code reuse
57 cout << "\nhourly wage: " << getWage() <<
58 "; hours worked: " << getHours();
59 } // end function print

Outline

Hourly
Employee.cpp

(2 of 2)

Maintain new data member,
hoursWorked

Overridden earnings and
print functions

incorporate wage and hours

78

© 2006 Pearson Education, Inc. All rights reserved.

13.6.4 Creating Concrete Derived Class
CommissionEmployee

•CommissionEmployee inherits from
Employee

– Includes gross sales and commission rate
• Overridden earnings function incorporates gross sales and

commission rate
• Overridden print function incorporates gross sales and

commission rate
– Concrete class (implements all pure virtual functions in

abstract base class)

79

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 13.19: CommissionEmployee.h

 2 // CommissionEmployee class derived from Employee.

 3 #ifndef COMMISSION_H

 4 #define COMMISSION_H

 5
 6 #include "Employee.h" // Employee class definition

 7
 8 class CommissionEmployee : public Employee

 9 {

10 public:
11 CommissionEmployee(const string &, const string &,
12 const string &, double = 0.0, double = 0.0);
13
14 void setCommissionRate(double); // set commission rate
15 double getCommissionRate() const; // return commission rate
16
17 void setGrossSales(double); // set gross sales amount
18 double getGrossSales() const; // return gross sales amount
19
20 // keyword virtual signals intent to override
21 virtual double earnings() const; // calculate earnings
22 virtual void print() const; // print CommissionEmployee object
23 private:
24 double grossSales; // gross weekly sales
25 double commissionRate; // commission percentage
26 }; // end class CommissionEmployee
27
28 #endif // COMMISSION_H

Outline

Commission
Employee.h

(1 of 1)
CommissionEmployee inherits

from Employee, must override
earnings to be concrete

Functions will be overridden
(or defined for first time)

80

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 13.20: CommissionEmployee.cpp

 2 // CommissionEmployee class member-function definitions.

 3 #include <iostream>

 4 using std::cout;

 5
 6 #include "CommissionEmployee.h" // CommissionEmployee class definition

 7
 8 // constructor

 9 CommissionEmployee::CommissionEmployee(const string &first,

10 const string &last, const string &ssn, double sales, double rate)
11 : Employee(first, last, ssn)
12 {
13 setGrossSales(sales);
14 setCommissionRate(rate);
15 } // end CommissionEmployee constructor
16
17 // set commission rate
18 void CommissionEmployee::setCommissionRate(double rate)
19 {
20 commissionRate = ((rate > 0.0 && rate < 1.0) ? rate : 0.0);
21 } // end function setCommissionRate
22
23 // return commission rate
24 double CommissionEmployee::getCommissionRate() const
25 {
26 return commissionRate;
27 } // end function getCommissionRate

Outline

Commission
Employee.cpp

(1 of 2)

Maintain new data member,
commissionRate

81

© 2006 Pearson Education,
Inc. All rights reserved.

28
29 // set gross sales amount
30 void CommissionEmployee::setGrossSales(double sales)
31 {
32 grossSales = ((sales < 0.0) ? 0.0 : sales);
33 } // end function setGrossSales
34
35 // return gross sales amount
36 double CommissionEmployee::getGrossSales() const
37 {
38 return grossSales;
39 } // end function getGrossSales
40
41 // calculate earnings;
42 // override pure virtual function earnings in Employee
43 double CommissionEmployee::earnings() const
44 {
45 return getCommissionRate() * getGrossSales();
46 } // end function earnings
47
48 // print CommissionEmployee's information
49 void CommissionEmployee::print() const
50 {
51 cout << "commission employee: ";
52 Employee::print(); // code reuse
53 cout << "\ngross sales: " << getGrossSales()
54 << "; commission rate: " << getCommissionRate();
55 } // end function print

Outline

Commission
Employee.cpp

(2 of 2)

Maintain new data
member, grossSales

Overridden earnings and
print functions incorporate

commission rate and gross sales

82

© 2006 Pearson Education, Inc. All rights reserved.

13.6.5 Creating Indirect Concrete Derived
Class BasePlusCommissionEmployee

•BasePlusCommissionEmployee inherits
from CommissionEmployee

– Includes base salary
• Overridden earnings function that incorporates base

salary
• Overridden print function that incorporates base salary

– Concrete class, because derived class is concrete
• Not necessary to override earnings to make it concrete, can

inherit implementation from CommissionEmployee
– Although we do override earnings to incorporate base

salary

83

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 13.21: BasePlusCommissionEmployee.h

 2 // BasePlusCommissionEmployee class derived from Employee.

 3 #ifndef BASEPLUS_H

 4 #define BASEPLUS_H

 5
 6 #include "CommissionEmployee.h" // CommissionEmployee class definition

 7
 8 class BasePlusCommissionEmployee : public CommissionEmployee

 9 {

10 public:
11 BasePlusCommissionEmployee(const string &, const string &,
12 const string &, double = 0.0, double = 0.0, double = 0.0);
13
14 void setBaseSalary(double); // set base salary
15 double getBaseSalary() const; // return base salary
16
17 // keyword virtual signals intent to override
18 virtual double earnings() const; // calculate earnings
19 virtual void print() const; // print BasePlusCommissionEmployee object
20 private:
21 double baseSalary; // base salary per week
22 }; // end class BasePlusCommissionEmployee
23
24 #endif // BASEPLUS_H

Outline

BasePlus
Commission
Employee.h

(1 of 1)
BasePlusCommissionEmployee inherits

from CommissionEmployee, already concrete

Functions will be overridden

84

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 13.22: BasePlusCommissionEmployee.cpp

 2 // BasePlusCommissionEmployee member-function definitions.

 3 #include <iostream>

 4 using std::cout;

 5
 6 // BasePlusCommissionEmployee class definition

 7 #include "BasePlusCommissionEmployee.h"

 8
 9 // constructor

10 BasePlusCommissionEmployee::BasePlusCommissionEmployee(
11 const string &first, const string &last, const string &ssn,
12 double sales, double rate, double salary)
13 : CommissionEmployee(first, last, ssn, sales, rate)
14 {
15 setBaseSalary(salary); // validate and store base salary
16 } // end BasePlusCommissionEmployee constructor
17
18 // set base salary
19 void BasePlusCommissionEmployee::setBaseSalary(double salary)
20 {
21 baseSalary = ((salary < 0.0) ? 0.0 : salary);
22 } // end function setBaseSalary
23
24 // return base salary
25 double BasePlusCommissionEmployee::getBaseSalary() const
26 {
27 return baseSalary;
28 } // end function getBaseSalary

Outline

BasePlus
Commission
Employee.cpp

(1 of 2)

Maintain new data
member, baseSalary

85

© 2006 Pearson Education,
Inc. All rights reserved.

29
30 // calculate earnings;
31 // override pure virtual function earnings in Employee
32 double BasePlusCommissionEmployee::earnings() const
33 {
34 return getBaseSalary() + CommissionEmployee::earnings();
35 } // end function earnings
36
37 // print BasePlusCommissionEmployee's information
38 void BasePlusCommissionEmployee::print() const
39 {
40 cout << "base-salaried ";
41 CommissionEmployee::print(); // code reuse
42 cout << "; base salary: " << getBaseSalary();
43 } // end function print

Outline

BasePlus
Commission
Employee.cpp

(1 of 2)
Overridden earnings and print

functions incorporate base salary

86

© 2006 Pearson Education, Inc. All rights reserved.

13.6.6 Demonstrating Polymorphic
Processing

• Create objects of types SalariedEmployee,
HourlyEmployee, CommissionEmployee
and BasePlusCommissionEmployee

– Demonstrate manipulating objects with static binding
• Using name handles rather than pointers or references
• Compiler can identify each object’s type to determine which
print and earnings functions to call

– Demonstrate manipulating objects polymorphically
• Uses a vector of Employee pointers
• Invoke virtual functions using pointers and references

87

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 13.23: fig13_23.cpp

 2 // Processing Employee derived-class objects individually

 3 // and polymorphically using dynamic binding.

 4 #include <iostream>

 5 using std::cout;

 6 using std::endl;

 7 using std::fixed;

 8
 9 #include <iomanip>

10 using std::setprecision;
11
12 #include <vector>
13 using std::vector;
14
15 // include definitions of classes in Employee hierarchy
16 #include "Employee.h"
17 #include "SalariedEmployee.h"
18 #include "HourlyEmployee.h"
19 #include "CommissionEmployee.h"
20 #include "BasePlusCommissionEmployee.h"
21
22 void virtualViaPointer(const Employee * const); // prototype
23 void virtualViaReference(const Employee &); // prototype

Outline

fig13_23.cpp

(1 of 7)

88

© 2006 Pearson Education,
Inc. All rights reserved.

24
25 int main()
26 {
27 // set floating-point output formatting
28 cout << fixed << setprecision(2);
29
30 // create derived-class objects
31 SalariedEmployee salariedEmployee(
32 "John", "Smith", "111-11-1111", 800);
33 HourlyEmployee hourlyEmployee(
34 "Karen", "Price", "222-22-2222", 16.75, 40);
35 CommissionEmployee commissionEmployee(
36 "Sue", "Jones", "333-33-3333", 10000, .06);
37 BasePlusCommissionEmployee basePlusCommissionEmployee(
38 "Bob", "Lewis", "444-44-4444", 5000, .04, 300);
39
40 cout << "Employees processed individually using static binding:\n\n";
41
42 // output each Employee’s information and earnings using static binding
43 salariedEmployee.print();
44 cout << "\nearned $" << salariedEmployee.earnings() << "\n\n";
45 hourlyEmployee.print();
46 cout << "\nearned $" << hourlyEmployee.earnings() << "\n\n";
47 commissionEmployee.print();
48 cout << "\nearned $" << commissionEmployee.earnings() << "\n\n";
49 basePlusCommissionEmployee.print();
50 cout << "\nearned $" << basePlusCommissionEmployee.earnings()
51 << "\n\n";

Outline

fig13_23.cpp

(2 of 7)

Using objects (rather than
pointers or references) to

demonstrate static binding

89

© 2006 Pearson Education,
Inc. All rights reserved.

52
53 // create vector of four base-class pointers
54 vector < Employee * > employees(4);
55
56 // initialize vector with Employees
57 employees[0] = &salariedEmployee;
58 employees[1] = &hourlyEmployee;
59 employees[2] = &commissionEmployee;
60 employees[3] = &basePlusCommissionEmployee;
61
62 cout << "Employees processed polymorphically via dynamic binding:\n\n";
63
64 // call virtualViaPointer to print each Employee's information
65 // and earnings using dynamic binding
66 cout << "Virtual function calls made off base-class pointers:\n\n";
67
68 for (size_t i = 0; i < employees.size(); i++)
69 virtualViaPointer(employees[i]);
70
71 // call virtualViaReference to print each Employee's information
72 // and earnings using dynamic binding
73 cout << "Virtual function calls made off base-class references:\n\n";
74
75 for (size_t i = 0; i < employees.size(); i++)
76 virtualViaReference(*employees[i]); // note dereferencing
77
78 return 0;
79 } // end main

Outline

fig13_23.cpp

(3 of 7)

vector of Employee
pointers, will be used to

demonstrate dynamic binding

Demonstrate dynamic
binding using first

pointers, then references

90

© 2006 Pearson Education,
Inc. All rights reserved.

80
81 // call Employee virtual functions print and earnings off a
82 // base-class pointer using dynamic binding
83 void virtualViaPointer(const Employee * const baseClassPtr)
84 {
85 baseClassPtr->print();
86 cout << "\nearned $" << baseClassPtr->earnings() << "\n\n";
87 } // end function virtualViaPointer
88
89 // call Employee virtual functions print and earnings off a
90 // base-class reference using dynamic binding
91 void virtualViaReference(const Employee &baseClassRef)
92 {
93 baseClassRef.print(); ‘
94 cout << "\nearned $" << baseClassRef.earnings() << "\n\n";
95 } // end function virtualViaReference

Outline

fig13_23.cpp

(4 of 7)
Using references and pointers
cause virtual functions to
be invoked polymorphically

91

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig13_23.cpp

(5 of 7)

Employees processed individually using static binding:

salaried employee: John Smith

social security number: 111-11-1111

weekly salary: 800.00

earned $800.00

hourly employee: Karen Price

social security number: 222-22-2222

hourly wage: 16.75; hours worked: 40.00

earned $670.00

commission employee: Sue Jones

social security number: 333-33-3333

gross sales: 10000.00; commission rate: 0.06

earned $600.00

base-salaried commission employee: Bob Lewis

social security number: 444-44-4444

gross sales: 5000.00; commission rate: 0.04; base salary: 300.00

earned $500.00

 (Continued at top of next slide...)

92

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig13_23.cpp

(6 of 7)

 (...continued from bottom of previous slide)

Employees processed polymorphically using dynamic binding:

Virtual function calls made off base-class pointers:

salaried employee: John Smith

social security number: 111-11-1111

weekly salary: 800.00

earned $800.00

hourly employee: Karen Price

social security number: 222-22-2222

hourly wage: 16.75; hours worked: 40.00

earned $670.00

commission employee: Sue Jones

social security number: 333-33-3333

gross sales: 10000.00; commission rate: 0.06

earned $600.00

base-salaried commission employee: Bob Lewis

social security number: 444-44-4444

gross sales: 5000.00; commission rate: 0.04; base salary: 300.00

earned $500.00
 (Continued at the top of next slide...)

93

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig13_23.cpp

(7 of 7)

 (...Continued from bottom of previous page)

Virtual function calls made off base-class references:

salaried employee: John Smith

social security number: 111-11-1111

weekly salary: 800.00

earned $800.00

hourly employee: Karen Price

social security number: 222-22-2222

hourly wage: 16.75; hours worked: 40.00

earned $670.00

commission employee: Sue Jones

social security number: 333-33-3333

gross sales: 10000.00; commission rate: 0.06

earned $600.00

base-salaried commission employee: Bob Lewis

social security number: 444-44-4444

gross sales: 5000.00; commission rate: 0.04; base salary: 300.00

earned $500.00

94

© 2006 Pearson Education, Inc. All rights reserved.

13.7 (Optional) Polymorphism, Virtual
Functions and Dynamic Binding “Under the
Hood”

• How can C++ implement polymorphism, virtual
functions and dynamic binding internally?

– Three levels of pointers (“triple indirection”)
– Virtual function table (vtable) created when C++ compiles a class

that has one or more virtual functions
• First level of pointers
• Contains function pointers to virtual functions
• Used to select the proper function implementation each time a
virtual function of that class is called

• If pure virtual, function pointer is set to 0
• Any class that has one or more null pointers in its vtable is an

abstract class

95

© 2006 Pearson Education, Inc. All rights reserved.

13.7 (Optional) Polymorphism, Virtual
Functions and Dynamic Binding “Under the
Hood” (Cont.)

• How can C++ implement polymorphism, virtual
functions and dynamic binding internally? (Cont.)

– If a non-pure virtual function were not overridden by a
derived class

• The function pointer in the vtable for that class would point to the
implemented virtual function up in the hierarchy

– Second level of pointers
• Whenever an object of a class with one or more virtual functions

is instantiated, the compiler attaches to the object a pointer to the
vtable for that class

– Third level of pointers
• Handles to the objects that receive the virtual function calls

96

© 2006 Pearson Education, Inc. All rights reserved.

13.7 (Optional) Polymorphism, Virtual
Functions and Dynamic Binding “Under the
Hood” (Cont.)

• How a typical virtual function call executes
– Compiler determines if call is being made via a base-class pointer

and that the function is virtual
– Locates entry in vtable using offset or displacement
– Compiler generates code that performs following operations:

• Select the pointer being used in the function call from the third level
of pointers

• Dereference that pointer to retrieve underlying object
– Begins with pointer in second level of pointers

• Dereference object’s vtable pointer to get to vtable
• Skip the offset to select the correct function pointer
• Dereference the function pointer to form the “name” of the actual

function to execute, and use the function call operator to execute the
appropriate function

97

© 2006 Pearson Education, Inc. All rights reserved.

Fig.13.24 | How virtual function calls work.

98

© 2006 Pearson Education, Inc. All rights reserved.

Performance Tip 13.1

Polymorphism, as typically implemented with
virtual functions and dynamic binding in
C++, is efficient. Programmers may use these
capabilities with nominal impact on
performance.

99

© 2006 Pearson Education, Inc. All rights reserved.

Performance Tip 13.2

Virtual functions and dynamic binding enable
polymorphic programming as an alternative to
switch logic programming. Optimizing
compilers normally generate polymorphic code
that runs as efficiently as hand-coded switch-
based logic. The overhead of polymorphism is
acceptable for most applications. But in some
situations—real-time applications with stringent
performance requirements, for example—the
overhead of polymorphism may be too high.

100

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 13.11

Dynamic binding enables independent software
vendors (ISVs) to distribute software without
revealing proprietary secrets. Software
distributions can consist of only header files and
object files—no source code needs to be revealed.
Software developers can then use inheritance to
derive new classes from those provided by the ISVs.
Other software that worked with the classes the
ISVs provided will still work with the derived
classes and will use the overridden virtual
functions provided in these classes (via dynamic
binding).

101

© 2006 Pearson Education, Inc. All rights reserved.

13.8 Case Study: Payroll System Using Polymorphism
and Run-Time Type Information with Downcasting,
dynamic_cast, typeid and type_info

• Example: Reward
BasePlusCommissionEmployees by adding
10% to their base salaries

• Must use run-time type information (RTTI) and
dynamic casting to “program in the specific”

– Some compilers require that RTTI be enabled before it can
be used in a program

• Consult compiler documentation

102

© 2006 Pearson Education, Inc. All rights reserved.

13.8 Case Study: Payroll System Using Polymorphism
and Run-Time Type Information with Downcasting,
dynamic_cast, typeid and type_info (Cont.)

•dynamic_cast operator
– Downcast operation

• Converts from a base-class pointer to a derived-class pointer
– If underlying object is of derived type, cast is performed

• Otherwise, 0 is assigned
– If dynamic_cast is not used and attempt is made to

assign a base-class pointer to a derived-class pointer
• A compilation error will occur

103

© 2006 Pearson Education, Inc. All rights reserved.

13.8 Case Study: Payroll System Using Polymorphism
and Run-Time Type Information with Downcasting,
dynamic_cast, typeid and type_info (Cont.)

•typeid operator
– Returns a reference to an object of class type_info

• Contains the information about the type of its operand
• type_info member function name

– Returns a pointer-based string that contains the type
name of the argument passed to typeid

– Must include header file <typeinfo>

104

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 13.25: fig13_25.cpp

 2 // Demonstrating downcasting and run-time type information.

 3 // NOTE: For this example to run in Visual C++ .NET,

 4 // you need to enable RTTI (Run-Time Type Info) for the project.

 5 #include <iostream>

 6 using std::cout;

 7 using std::endl;

 8 using std::fixed;

 9
10 #include <iomanip>
11 using std::setprecision;
12
13 #include <vector>
14 using std::vector;
15
16 #include <typeinfo>
17
18 // include definitions of classes in Employee hierarchy
19 #include "Employee.h"
20 #include "SalariedEmployee.h"
21 #include "HourlyEmployee.h"
22 #include "CommissionEmployee.h"
23 #include "BasePlusCommissionEmployee.h"
24
25 int main()
26 {
27 // set floating-point output formatting
28 cout << fixed << setprecision(2);

Outline

fig13_25.cpp

(1 of 4)

105

© 2006 Pearson Education,
Inc. All rights reserved.

29
30 // create vector of four base-class pointers
31 vector < Employee * > employees(4);
32
33 // initialize vector with various kinds of Employees
34 employees[0] = new SalariedEmployee(
35 "John", "Smith", "111-11-1111", 800);
36 employees[1] = new HourlyEmployee(
37 "Karen", "Price", "222-22-2222", 16.75, 40);
38 employees[2] = new CommissionEmployee(
39 "Sue", "Jones", "333-33-3333", 10000, .06);
40 employees[3] = new BasePlusCommissionEmployee(
41 "Bob", "Lewis", "444-44-4444", 5000, .04, 300);
42
43 // polymorphically process each element in vector employees
44 for (size_t i = 0; i < employees.size(); i++)
45 {
46 employees[i]->print(); // output employee information
47 cout << endl;
48
49 // downcast pointer
50 BasePlusCommissionEmployee *derivedPtr =
51 dynamic_cast < BasePlusCommissionEmployee * >
52 (employees[i]);

Outline

fig13_25.cpp

(2 of 4)

Create employee objects, only one of type
BasePlusCommissionEmployee

Downcast the Employee pointer to a
BasePlusCommissionEmployee pointer

106

© 2006 Pearson Education,
Inc. All rights reserved.

53
54 // determine whether element points to base-salaried
55 // commission employee
56 if (derivedPtr != 0) // 0 if not a BasePlusCommissionEmployee
57 {
58 double oldBaseSalary = derivedPtr->getBaseSalary();
59 cout << "old base salary: $" << oldBaseSalary << endl;
60 derivedPtr->setBaseSalary(1.10 * oldBaseSalary);
61 cout << "new base salary with 10% increase is: $"
62 << derivedPtr->getBaseSalary() << endl;
63 } // end if
64
65 cout << "earned $" << employees[i]->earnings() << "\n\n";
66 } // end for
67
68 // release objects pointed to by vector’s elements
69 for (size_t j = 0; j < employees.size(); j++)
70 {
71 // output class name
72 cout << "deleting object of "
73 << typeid(*employees[j]).name() << endl;
74
75 delete employees[j];
76 } // end for
77
78 return 0;
79 } // end main

Outline

fig13_25.cpp

(3 of 4)

Determine if cast was successful

If cast was successful, modify base salary

Use typeid and function
name to display object types

107

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

fig13_25.cpp

(4 of 4)

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: 800.00
earned $800.00

hourly employee: Karen Price
social security number: 222-22-2222
hourly wage: 16.75; hours worked: 40.00
earned $670.00

commission employee: Sue Jones
social security number: 333-33-3333
gross sales: 10000.00; commission rate: 0.06
earned $600.00

base-salaried commission employee: Bob Lewis
social security number: 444-44-4444
gross sales: 5000.00; commission rate: 0.04; base salary: 300.00
old base salary: $300.00
new base salary with 10% increase is: $330.00
earned $530.00

deleting object of class SalariedEmployee
deleting object of class HourlyEmployee
deleting object of class CommissionEmployee
deleting object of class BasePlusCommissionEmployee

108

© 2006 Pearson Education, Inc. All rights reserved.

13.9 Virtual Destructors

• Nonvirtual destructors
– Destructors that are not declared with keyword virtual
– If a derived-class object is destroyed explicitly by applying

the delete operator to a base-class pointer to the object,
the behavior is undefined

•virtual destructors
– Declared with keyword virtual

• All derived-class destructors are virtual
– If a derived-class object is destroyed explicitly by applying

the delete operator to a base-class pointer to the object,
the appropriate derived-class destructor is called

• Appropriate base-class destructor(s) will execute afterwards

109

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 13.2

If a class has virtual functions, provide a
virtual destructor, even if one is not required
for the class. Classes derived from this class may
contain destructors that must be called properly.

110

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 13.5

Constructors cannot be virtual. Declaring a
constructor virtual is a compilation error.

111

© 2006 Pearson Education, Inc. All rights reserved.

13.10 (Optional) Software Engineering Case
Study: Incorporating Inheritance into the ATM
System

• UML model for inheritance
– The generalization relationship

• The base class is a generalization of the derived classes
• The derived classes are specializations of the base class

– Pure virtual functions are abstract operations in the UML
– Generalizations and abstract operations are written in italics

•Transaction base class
– Contains the functions and data members BalanceInquiry,
Withdrawal and Deposit have in common
• execute function
• accountNumber data member

112

© 2006 Pearson Education, Inc. All rights reserved.

Fig.13.26 | Attributes and operations of classes BalanceInquiry, Withdrawal and
Deposit.

113

© 2006 Pearson Education, Inc. All rights reserved.

Fig.13.27 | Class diagram modeling generalization relationship between base class
Transaction and derived classes BalanceInquiry, Withdrawal and Deposit.

114

© 2006 Pearson Education, Inc. All rights reserved.

Fig.13.28 | Class diagram of the ATM system (incorporating inheritance). Note that
abstract class name Transaction appears in italics.

115

© 2006 Pearson Education, Inc. All rights reserved.

13.10 (Optional) Software Engineering Case
Study: Incorporating Inheritance into the ATM
System (Cont.)

• Incorporating inheritance into the ATM system
design

– If class A is a generalization of class B, then class B is
derived from class A

– If class A is an abstract class and class B is a derived class
of class A, then class B must implement the pure virtual
functions of class A if class B is to be a concrete class

116

© 2006 Pearson Education, Inc. All rights reserved.

Fig.13.29 | Class diagram after incorporating inheritance into the system.

117

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 13.12

A complete class diagram shows all the associations
among classes and all the attributes and operations for
each class. When the number of class attributes,
operations and associations is substantial (as in Fig. 13.28
and Fig. 13.29), a good practice that promotes readability
is to divide this information between two class diagrams—
one focusing on associations and the other on attributes
and operations. However, when examining classes
modeled in this fashion, it is crucial to consider both class
diagrams to get a complete view of the classes. For
example, one must refer to Fig. 13.28 to observe the
inheritance relationship between Transaction and its
derived classes that is omitted from Fig. 13.29.

118

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 13.30: Withdrawal.h

 2 // Definition of class Withdrawal that represents a withdrawal transaction

 3 #ifndef WITHDRAWAL_H

 4 #define WITHDRAWAL_H

 5
 6 #include "Transaction.h" // Transaction class definition

 7
 8 // class Withdrawal derives from base class Transaction

 9 class Withdrawal : public Transaction

10 {
11 }; // end class Withdrawal
12
13 #endif // WITHDRAWAL_H

Outline

Withdrawal.h

(1 of 1)

Class Withdrawal inherits
from Transaction

119

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 13.31: Withdrawal.h

 2 // Definition of class Withdrawal that represents a withdrawal transaction

 3 #ifndef WITHDRAWAL_H

 4 #define WITHDRAWAL_H

 5
 6 #include "Transaction.h" // Transaction class definition

 7
 8 class Keypad; // forward declaration of class Keypad

 9 class CashDispenser; // forward declaration of class CashDispenser

10
11 // class Withdrawal derives from base class Transaction
12 class Withdrawal : public Transaction
13 {
14 public:
15 // member function overriding execute in base class Transaction
16 virtual void execute(); // perform the transaction
17 private:
18 // attributes
19 double amount; // amount to withdraw
20 Keypad &keypad; // reference to ATM's keypad
21 CashDispenser &cashDispenser; // reference to ATM's cash dispenser
22 }; // end class Withdrawal
23
24 #endif // WITHDRAWAL_H

Outline

Withdrawal.h

(1 of 1)

Class Withdrawal inherits
from Transaction

120

© 2006 Pearson Education,
Inc. All rights reserved.

 1 // Fig. 13.32: Transaction.h

 2 // Transaction abstract base class definition.

 3 #ifndef TRANSACTION_H

 4 #define TRANSACTION_H

 5
 6 class Screen; // forward declaration of class Screen

 7 class BankDatabase; // forward declaration of class BankDatabase

 8
 9 class Transaction

10 {
11 public:
12 int getAccountNumber(); // return account number
13 Screen &getScreen(); // return reference to screen
14 BankDatabase &getBankDatabase(); // return reference to bank database
15
16 // pure virtual function to perform the transaction
17 virtual void execute() = 0; // overridden in derived classes
18 private:
19 int accountNumber; // indicates account involved
20 Screen &screen; // reference to the screen of the ATM
21 BankDatabase &bankDatabase; // reference to the account info database
22 }; // end class Transaction
23
24 #endif // TRANSACTION_H

Outline

Transaction.h

(1 of 1)

Declare pure virtual function execute

Transaction is an abstract class,
contains a pure virtual function

	13
	슬라이드 번호 2
	OBJECTIVES
	슬라이드 번호 4
	슬라이드 번호 5
	13.1 Introduction
	13.1 Introduction (Cont.)
	13.2 Polymorphism Examples
	Software Engineering Observation 13.1
	Software Engineering Observation 13.2
	13.3 Relationships Among Objects in an Inheritance Hierarchy
	13.3.1 Invoking Base-Class Functions from Derived-Class Objects
	슬라이드 번호 13
	슬라이드 번호 14
	슬라이드 번호 15
	슬라이드 번호 16
	슬라이드 번호 17
	슬라이드 번호 18
	슬라이드 번호 19
	슬라이드 번호 20
	슬라이드 번호 21
	슬라이드 번호 22
	슬라이드 번호 23
	슬라이드 번호 24
	슬라이드 번호 25
	슬라이드 번호 26
	13.3.2 Aiming Derived-Class Pointers at Base-Class Objects
	슬라이드 번호 28
	슬라이드 번호 29
	13.3.3 Derived-Class Member-Function Calls via Base-Class Pointers
	슬라이드 번호 31
	슬라이드 번호 32
	Software Engineering Observation 13.3
	13.3.4 Virtual Functions
	13.3.4 Virtual Functions (Cont.)
	Software Engineering Observation 13.4
	Good Programming Practice 13.1
	Error-Prevention Tip 13.1
	Software Engineering Observation 13.5
	슬라이드 번호 40
	슬라이드 번호 41
	슬라이드 번호 42
	슬라이드 번호 43
	슬라이드 번호 44
	슬라이드 번호 45
	슬라이드 번호 46
	슬라이드 번호 47
	13.3.5 Summary of the Allowed Assignments Between Base-Class and Derived-Class Objects and Pointers
	Common Programming Error 13.1
	Common Programming Error 13.2
	13.4 Type Fields and switch Statements
	Software Engineering Observation 13.6
	Software Engineering Observation 13.7
	13.5 Abstract Classes and Pure virtual Functions
	13.5 Abstract Classes and Pure virtual Functions (Cont.)
	Software Engineering Observation 13.8
	Common Programming Error 13.3
	Common Programming Error 13.4
	Software Engineering Observation 13.9
	13.5 Abstract Classes and Pure virtual Functions (Cont.)
	13.6 Case Study: Payroll System Using Polymorphism
	Software Engineering Observation 13.10
	Fig.13.11 | Employee hierarchy UML class diagram.
	13.6.1 Creating Abstract Base Class Employee
	Fig.13.12 | Polymorphic interface for the Employee hierarchy classes.
	슬라이드 번호 66
	슬라이드 번호 67
	슬라이드 번호 68
	슬라이드 번호 69
	13.6.2 Creating Concrete Derived Class SalariedEmployee
	슬라이드 번호 71
	슬라이드 번호 72
	슬라이드 번호 73
	13.6.3 Creating Concrete Derived Class HourlyEmployee
	슬라이드 번호 75
	슬라이드 번호 76
	슬라이드 번호 77
	13.6.4 Creating Concrete Derived Class CommissionEmployee
	슬라이드 번호 79
	슬라이드 번호 80
	슬라이드 번호 81
	13.6.5 Creating Indirect Concrete Derived Class BasePlusCommissionEmployee
	슬라이드 번호 83
	슬라이드 번호 84
	슬라이드 번호 85
	13.6.6 Demonstrating Polymorphic Processing
	슬라이드 번호 87
	슬라이드 번호 88
	슬라이드 번호 89
	슬라이드 번호 90
	슬라이드 번호 91
	슬라이드 번호 92
	슬라이드 번호 93
	13.7 (Optional) Polymorphism, Virtual Functions and Dynamic Binding “Under the Hood”
	13.7 (Optional) Polymorphism, Virtual Functions and Dynamic Binding “Under the Hood” (Cont.)
	13.7 (Optional) Polymorphism, Virtual Functions and Dynamic Binding “Under the Hood” (Cont.)
	Fig.13.24 | How virtual function calls work.
	Performance Tip 13.1
	Performance Tip 13.2
	Software Engineering Observation 13.11
	13.8 Case Study: Payroll System Using Polymorphism and Run-Time Type Information with Downcasting, dynamic_cast, typeid and type_info
	13.8 Case Study: Payroll System Using Polymorphism and Run-Time Type Information with Downcasting, dynamic_cast, typeid and type_info (Cont.)
	13.8 Case Study: Payroll System Using Polymorphism and Run-Time Type Information with Downcasting, dynamic_cast, typeid and type_info (Cont.)
	슬라이드 번호 104
	슬라이드 번호 105
	슬라이드 번호 106
	슬라이드 번호 107
	13.9 Virtual Destructors
	Good Programming Practice 13.2
	Common Programming Error 13.5
	13.10 (Optional) Software Engineering Case Study: Incorporating Inheritance into the ATM System
	Fig.13.26 | Attributes and operations of classes BalanceInquiry, Withdrawal and Deposit.
	Fig.13.27 | Class diagram modeling generalization relationship between base class Transaction and derived classes BalanceInquiry, Withdrawal and Deposit.
	Fig.13.28 | Class diagram of the ATM system (incorporating inheritance). Note that abstract class name Transaction appears in italics.
	13.10 (Optional) Software Engineering Case Study: Incorporating Inheritance into the ATM System (Cont.)
	Fig.13.29 | Class diagram after incorporating inheritance into the system.
	Software Engineering Observation 13.12
	슬라이드 번호 118
	슬라이드 번호 119
	슬라이드 번호 120

