Exception Handling




| never forget a face, but in your case I’ll make
an exception.
— Groucho Marx

|t Is common sense to take a method and try it. If it
fails, admit it frankly and try another. But above all,

try something.
— Franklin Delano Roosevelt

O! throw away the worser part of it, And live

the purer with the other half.
— William Shakespeare

© 2006 Pearson Education, Inc. All rights reserved.



|f they' re running and they don’t look where
they' re going | have to come out from somewhere

and catch them.
—Jerome David Salinger

O infinite virtue! com’st thou smiling from
the world' s great snare uncaught?

— William Shakespeare

© 2006 Pearson Education, Inc. All rights reserved.



In this chapter you will learn:

What exceptions are and when to use them.

To use try, catch and throw to detect, handle and
Indicate exceptions, respectively.

To process uncaught and unexpected exceptions.
To declare new exception classes.

How stack unwinding enables exceptions not caught
INn one scope to be caught in another scope.

To handle new failures.
To use auto_ptr to prevent memory leaks.
To understand the standard exception hierarchy.

< >

© 2006 Pearson Education, Inc. All rights reserved.



Introduction

Exception-Handling Overview

Example: Handling an Attempt to Divide by Zero
When to Use Exception Handling

Rethrowing an Exception

Exception Specifications

Processing Unexpected Exceptions

Stack Unwinding

Constructors, Destructors and Exception Handling
Exceptions and Inheritance

Processing new Failures

Class auto_ptr and Dynamic Memory Allocation
Standard Library Exception Hierarchy

Other Error-Handling Techniques

Wrap-Up

(< >

© 2006 Pearson Education, Inc. All rights reserved.



e EXxceptions
— Indicate problemsthat occur during a program’s execution
— Occur infrequently

e Exception handling

— Can resolve exceptions
» Allow a program to continue executing or
* Notify the user of the problem and
e Terminatethe program in acontrolled manner

— Makes programsrobust and fault-tolerant

(< >

© 2006 Pearson Education, Inc. All rights reserved.



Exception handling helpsimprove a program’s
fault tolerance.

(< >

© 2006 Pearson Education, Inc. All rights reserved.



Exception handling provides a standard
mechanism for processing errors. Thisis
especially important when working on a
project with alargeteam of programmers.

(< >

© 2006 Pearson Education, Inc. All rights reserved.



| ntermixing program and error-handling logic

— Pseudocode example
Perform a task
|f the preceding task did not execute correctly
Perform error processing
Perform next task
|f the preceding task did not execute correctly
Perform error processing

— Makesthe program difficult to read, modify, maintain and
debug

(< >

© 2006 Pearson Education, Inc. All rights reserved.



10

|f the potential problems occur infrequently,
Intermixing program logic and error-handling
ogic can degrade a program’s perfor mance,

pecause the program must (potentially frequently)
perform teststo determine whether the task
executed correctly and the next task can be

performed.

(< >

© 2006 Pearson Education, Inc. All rights reserved.



11

e Exception handling

— Removes error-handling code from the program

execution’s“main line”

— Programmer s can handle any exceptionsthey choose
» All exceptions,
» All exceptions of a certain type or
» All exceptions of a group of related types

(< >

© 2006 Pearson Education, Inc. All rights reserved.



12

e Classexception

— Isthe standard C++ base classfor all exceptions

— Providesitsderived classeswith virtual function what
* Returnsthe exception’s stored error message

(< >

© 2006 Pearson Education, Inc. All rights reserved.



© 00 N o 0o A WDN PP

=
(@)

11
12
13
14

// Fig. 16.1: DivideByZeroException.h

// Class DivideByZeroException definition.

#include <stdexcept> // stdexcept header file contains runtime_error
using std::-runtime_error; // standard C++ library class runtime_error

// DivideByZeroException objects should be thrown by functions
// upon detecting division-by-zero exceptions
class DivideByZeroException : public runtime_error
{
public:
// constructor specifies default error message
DivideByZeroException: :DivideByZeroException()
: runtime_error( "attempted to divide by zero" ) {}
}; // end class DivideByZeroException

_ 13
Qutline

DivideBy
ZeroException.h

(1of 1)

<« |

© 2006 Pearson Education,
Inc. All rights reserved.



© 00 N O O B WDN BF-

NN NNRPRRERRERRERR R R
W N RFP O ®©O©O®NOU MWNIERERO

24
25
26
27
28
29

// Fig. 16.2: Figl6_02.cpp

// A simple exception-handling example that checks for
// divide-by-zero exceptions.

#include <iostream>

using std::cin;

using std::cout;

using std::endl;

#include "DivideByZeroException._h" // DivideByZeroException class

// perform division and throw DivideByZeroException object if
// divide-by-zero exception occurs
double quotient( int numerator, int denominator )
{
// throw DivideByZeroException if trying to divide by zero
if ( denominator == 0 )
throw DivideByZeroException(); // terminate function

// return division result
return static_cast< double >( numerator ) / denominator;
} 7/ end function quotient

int mainQ)

{
int numberl; // user-specified numerator
int number2; // user-specified denominator
double result; // result of division

cout << "Enter two integers (end-of-file to end): ";

_ 14
Qutline

Figl6_02.cpp

(1 of 3)

<« |

© 2006 Pearson Education,
Inc. All rights reserved.



30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

// enable user to enter two integers to divide
while ( cin >> numberl >> number2 )
{
// try block contains code that might throw exception
// and code that should not execute if an exception occurs

try

{

result = quotient( numberl, number2 );

cout << "The quotient is: " << result << endl;
} /7/ end try

// exception handler handles a divide-by-zero exception
catch ( DivideByZeroException &divideByZeroException )
{
cout << "Exception occurred: "
<< divideByZeroException_.what() << endl;
} // end catch

cout << "\nEnter two integers (end-of-file to end): ";
} /7 end while

cout << endl;
return 0; // terminate normally

54 } // end main

_ 15
Qutline

Figl6_02.cpp

(2 of 3)

<« |

© 2006 Pearson Education,
Inc. All rights reserved.



Enter two integers (end-of-file to end): 1007
The quotient is: 14.2857

Enter two integers (end-of-file to end): 1000
Exception occurred: attempted to divide by zero

Enter two integers (end-of-file to end): A2

_ 16
Qutline

Figl6_02.cpp

(30f 3)

<« >

© 2006 Pearson Education,
Inc. All rights reserved.



17

«try Blocks

— Keyword try followed by braces ({})

— Should enclose
o Statementsthat might cause exceptions and
« Statementsthat should be skipped in case of an exception

(< >

© 2006 Pearson Education, Inc. All rights reserved.



18

Exceptions may surface through explicitly
mentioned codein a try block, through calls
to other functions and through deeply nested
function callsinitiated by codein a try block.

(< >

© 2006 Pearson Education, Inc. All rights reserved.



19

ecatch handlers

— Immediately follow a try block

e Oneor more catch handlersfor each try block
— Keyword catch
— EXxception parameter enclosed in parentheses

* Representsthetype of exception to process

« Can provide an optional parameter nameto interact with the
caught exception object

— EXxecutesif exception parameter type matchesthe
exception thrown in the try block

e Could be abase class of thethrown exception’s class

(< >

© 2006 Pearson Education, Inc. All rights reserved.



20

It Isasyntax error to place code between a try
block and its corresponding catch handlers.

(< >

© 2006 Pearson Education, Inc. All rights reserved.



21

Each catch handler can have only a single
parameter—specifying a comma-separ ated
list of exception parametersisasyntax error.

(< >

© 2006 Pearson Education, Inc. All rights reserved.



22

It iIsalogic error to catch the sametypein two
different catch handlersfollowing a single try
block.

(< >

© 2006 Pearson Education, Inc. All rights reserved.



23

e Termination model of exception handling
— try block expireswhen an exception occurs
e Local variablesin try block go out of scope
— The code within the matching catch handler executes

— Control resumeswith thefirst statement after the last
catch handler following the try block

e Control doesnot return to throw point

e Stack unwinding

— Occursif no matching catch handler isfound

— Program attemptsto locate another enclosing try block in
the calling function

(< >

© 2006 Pearson Education, Inc. All rights reserved.



24

Logic errorscan occur if you assumethat after
an exception is handled, control will return to
thefirst statement after the throw point.

(< >

© 2006 Pearson Education, Inc. All rights reserved.



25

With exception handling, a program can continue
executing (rather than terminating) after dealing
with a problem. This helps ensurethe kind of
robust applicationsthat contributeto what is
called mission-critical computing or business-
critical computing.

(< >

© 2006 Pearson Education, Inc. All rights reserved.



26

* Throwing an exception

— Use keyword throw followed by an operand representing
the type of exception

 Thethrow operand can be of any type

— If the throw operand isan object, it iscalled an
exception object

— Thethrow operand initializes the exception parameter in
the matching catch handler, if oneisfound

(< >

© 2006 Pearson Education, Inc. All rights reserved.



27

Use caution when throwing theresult of a
conditional expression (?:), because promotion rules
could causethe valueto be of atypedifferent from
the one expected. For example, when throwing an
int or adouble from the same conditional
expression, the conditional expression convertsthe
inttoadouble. However, the catch handler
always catchestheresult asadouble, rather than
catching theresult asadouble when adouble is
thrown, and catching theresult asan 1nt when an
intisthrown.

(< >

© 2006 Pearson Education, Inc. All rights reserved.



28

Catching an exception object by reference
eliminatesthe overhead of copying the object
that representsthe thrown exception.

(< >

© 2006 Pearson Education, Inc. All rights reserved.



29

Associating each type of runtime error with an
appropriately named exception object improves
program clarity.

(< >

© 2006 Pearson Education, Inc. All rights reserved.



30

* When to use exception handling

— To process synchronouserrors
 Occur when a statement executes
— Not to process asynchronouserrors

e Occur in parallel with, and independent of, program
execution

— Toprocess problemsarising in predefined software
elements

» Such as predefined functions and classes

e Error handling can be performed by the program codeto be
customized based on the application’s needs

(< >

© 2006 Pearson Education, Inc. All rights reserved.



31

| ncor porate your exception-handling strategy into
your system from the design process' sinception.

| ncluding effective exception handling after a
system has been implemented can be difficult.

(< >

© 2006 Pearson Education, Inc. All rights reserved.



32

Exception handling provides a single, uniform
technique for processing problems. This helps
programmersworking on large projects
understand each other’serror-processing code.

(< >

© 2006 Pearson Education, Inc. All rights reserved.



33

Avoid using exception handling as an alternate
form of flow of control. These “additional”
exceptions can “ get in theway” of genuine
error-type exceptions.

(< >

© 2006 Pearson Education, Inc. All rights reserved.



34

Exception handling simplifies combining software
components and enablesthem to work together
effectively by enabling predefined componentsto
communicate problemsto application-specific
components, which can then processthe problems
In an application-specific manner.

(< >

© 2006 Pearson Education, Inc. All rights reserved.



35

When no exceptions occur, exception-handling
codeincurslittle or no performance penalties.
Thus, programsthat implement exception
handling oper ate mor e efficiently than do

programsthat intermix error-handling code
with program logic.

(< >

© 2006 Pearson Education, Inc. All rights reserved.



36

Functions with common error conditions should
return O or NULL (or other appropriate values)
rather than throw exceptions. A program calling
such a function can check thereturn valueto
determine success or failure of the function call.

(< >

© 2006 Pearson Education, Inc. All rights reserved.



37

e Rethrowing an exception

— Empty throw; statement

— Usewhen a catch handler cannot or can only partially
Process an exception

— Next enclosing try block attemptsto match the exception
with one of its catch handlers

(< >

© 2006 Pearson Education, Inc. All rights reserved.



38

Executing an empty throw statement that is
situated outside a catch handler causes a call
to function ter minate, which abandons
exception processing and terminatesthe
program immediately.

(< >

© 2006 Pearson Education, Inc. All rights reserved.



© 0N O Ol A W DN P

=
o

// Fig. 16.3: Figl6_03.cpp

// Demonstrating exception rethrowing.
#include <iostream>

using std::cout;

using std::-endl;

#include <exception>
using std::exception;

// throw, catch and rethrow exception

11 void throwexception()

12 {
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27 } // end function throwException

// throw exception and catch it immediately

try

{
cout << " Function throwException throws an exception\n";
throw exception(); // generate exception

} // end try

catch ( exception & ) // handle exception

{
cout << " Exception handled in function throwException"

<< "\n Function throwException rethrows exception";
throw; // rethrow exception for further processing
} 7/ end catch

cout << "This also should not print\n";

Rethrow the exception

_ 39
Qutline

Figl6 03.cpp

(10f 2)

<« >

© 2006 Pearson Education,
Inc. All rights reserved.



2 40

29 int main(Q Outline
30 { -
31 // throw exception

32 try

33 { o i i Figl6 03.cpp
34 cout << "\nmain invokes function throwException\n";

35 throwException(); 2 of 2

36 cout << "This should not print\n*; ( 0 )
37 } /7 end try

38 catch ( exception & ) // handle exception

39 {

40 cout << "\n\nException handled in main\n"; Catch rethrown exception

41 } // end catch

42

43 cout << "Program control continues after catch in main\n";

44 return 0O;
45 } // end main

main invokes function throwException
Function throwException throws an exception
Exception handled in function throwException
Function throwException rethrows exception

Exception handled in main
Program control continues after catch in main

<« |

© 2006 Pearson Education,
Inc. All rights reserved.



41

» Exception specifications (a.k.a. throw lists)

— Keyword throw
— Comma-separated list of exception classes in parentheses

— Example

e Int someFunction( double value )
throw ( ExceptionA, ExceptionB,
ExceptionC )

1
}

— Indicates someFunction can throw exceptions of types
ExceptionA, ExceptionB and ExceptionC

(< >

© 2006 Pearson Education, Inc. All rights reserved.



42

» Exception specifications (Cont.)
— A function can throw only exceptions of typesin its
gpecification or typesderived from those types

 |f afunction throws a non-specification exception, function
unexpected iscalled

— Thisnormally terminatesthe program

— No exception specification indicates the function can
throw any exception

— An empty exception specification, throw(), indicatesthe
function can not throw any exceptions

(< >

© 2006 Pearson Education, Inc. All rights reserved.



43

Throwing an exception that has not been declared
In a function’s exception specification causes a call
to function unexpected.

(< >

© 2006 Pearson Education, Inc. All rights reserved.



44

The compiler will not generate a compilation
error if afunction containsa throw expression
for an exception not listed in the function’s
exception specification. An error occursonly
when that function attemptsto throw that
exception at execution time. To avoid surprises
at execution time, car efully check your codeto
ensurethat functions do not throw exceptions
not listed in their exception specifications.

(< >

© 2006 Pearson Education, Inc. All rights reserved.



45

e Function unexpected
— Called when a function throws an exception not in its
exception specification
— Callsthefunction registered with function
set_unexpected

— Function terminate iscalled by default

» Function set_unexpected of <exception>

— Takesasargument a pointer to a function with no
argumentsand avoid return type

— Returnsa pointer to thelast function called by
unexpected

e ReturnsO thefirst time
< »|

© 2006 Pearson Education, Inc. All rights reserved.



46

 Function terminate

— Called when
« No matching catch isfound for a thrown exception

» A destructor attemptsto throw an exception during stack
unwinding

e Attempting to rethrow an exception when no exception is
being handled

« Calling function unexpected beforeregistering a function
with function set_unexpected

— Callsthefunction registered with function
set_terminate

— Function abort iscalled by default

(< >

© 2006 Pearson Education, Inc. All rights reserved.



a7

e Function set_terminate

— Takesasargument a pointer to a function with no
argumentsand avoid return type

— Returnsapointer to thelast function called by
terminate

e ReturnsO thefirst time

e Function abort

— Terminatesthe program without calling destructorsfor
automatic or static storage class objects

e Could lead to resourceleaks

(< >

© 2006 Pearson Education, Inc. All rights reserved.



e Stack unwinding
Occurswhen a thrown exception isnot caught in a

particular scope

48

Unwinding a function ter minates that function
« All local variables of the function ar e destroyed
o Control returnsto the statement that invoked the function

Attemptsare madeto catch the exception in outer

try...catch blocks

|f the exception isnever caught, function terminate is

called

(< >

© 2006 Pearson Education, Inc. All rights reserved.



© 0 N O O B~ W DN PP

NN NN RE R R R R R B R R R
A W NP O O 0 N O Ul W N R O

// Fig. 16.4: Figl6_04.cpp

// Demonstrating stack unwinding.
#include <iostream>

using std::cout;

using std::-endl;

#include <stdexcept>
using std::runtime_error;

// function3 throws run-time error
void function3() throw ( runtime_error )

{

cout << "In function 3" << endl;

// no try block, stack unwinding occur, return control to function2
throw runtime_error( "runtime_error in function3" );
} 7/ end function3

// function2 invokes function3
void function2() throw ( runtime_error )
{
cout << "function3 is called inside function2" << endl;
function3(); // stack unwinding occur, return control to functionl
} // end function2

_ 49
Qutline

Figl6_04.cpp

(1 of 3)

<« |

© 2006 Pearson Education,
Inc. All rights reserved.



25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

// functionl invokes function2

void functionl() throw ( runtime_error )

{

cout << "function2 is called inside functionl™ << endl;
function2(); // stack unwinding occur, return control to main

} 7/ end functionl

// demonstrate stack unwinding

int mainQ
{
// invoke functionl
try
{
cout << "functionl is called inside main"™ << endl;
functionl(); // call functionl which throws runtime_error
} // end try
catch ( runtime_error &error ) // handle run-time error
{
cout << "Exception occurred: " << error_.what() << endl;
cout << "Exception handled in main" << endl;
} // end catch
return O;

49 } // end main

_ 50
Qutline

Figl6_04.cpp

(2 of 3)

<« >

© 2006 Pearson Education,
Inc. All rights reserved.



functionl is called
function2 is called
Ffunction3 is called
In function 3

Exception occurred:

inside main
inside functionl
inside function2

runtime_error in function3

Exception handled in main

_ 51
Qutline

Figl6_04.cpp

(30f 3)

4 > |
© 2006 Pearson Education,
Inc. All rights reserved.



52

e EXceptions and constructors
— EXceptions enable constructors, which cannot return
values, toreport errorsto the program

— Exceptionsthrown by constructors cause any alr eady-
constructed component objectsto call their destructors

e Only those objectsthat have already been constructed will be
destructed

e Exceptionsand destructors

— Destructorsarecalled for all automatic objectsin the
terminated try block when an exception isthrown

« Acquired resources can be placed in local objectsto
automatically release the resour ces when an exception occurs

— If adestructor invoked by stack unwinding throws an

exception, function terminate iscalled
(< »]

© 2006 Pearson Education, Inc. All rights reserved.



53

When an exception isthrown from the constructor
for an object that iscreated in a new expression,
the dynamically allocated memory for that object
ISreleased.

(< >

© 2006 Pearson Education, Inc. All rights reserved.



54

 |[nheritance with exception classes

— New exception classes can be defined to inherit from
existing exception classes

— A catch handler for a particular exception class can also
catch exceptions of classesderived from that class

(< >

© 2006 Pearson Education, Inc. All rights reserved.



55

Using inheritance with exceptions enables an exception
handler to catch related errorswith concise notation.
One approach isto catch each type of pointer or
referenceto a derived-class exception object
individually, but a more concise approach isto catch
pointersor referencesto base-class exception objects
Instead. Also, catching pointersor referencesto
derived-class exception objectsindividually iserror
prone, especially if the programmer forgetsto test
explicitly for one or more of the derived-class pointer or
refer ence types.

(< >

© 2006 Pearson Education, Inc. All rights reserved.



56

enew failures

— Some compilersthrow abad_al loc exception
« Compliant tothe C++ standard specification
— Some compilersreturn O

o C++ standard-compliant compilersalso have a version of
new that returnsO

— Useexpresson new( nothrow ), wherenothrowis
of typenothrow_t

— Some compilersthrow bad _alloc if <new> isincluded

(< >

© 2006 Pearson Education, Inc. All rights reserved.



© 0N O Ol b WDN P

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

// Fig. 16.5: Figl6_05.cpp 57
// Demonstrating pre-standard new returning O when memory ()l]t”f](?

// is not allocated. -

#include <iostream>

using std::cerr;

using std::cout; Figl6 05.cpp
int mainQ)
: (1 of 2)

double *ptr[ 50 ];

// allocate memory for ptr

for (int i = 0; i < 50; i++ ) Allocate 50000000 doubl e values
{ 4/—”’//’/’/;/’/’/’//z

ptr[ 1 ] = new double[ 50000000 J; newwill have returned O if the
memory allocation operation failed

if (ptr[ i ] == 0 ) // did new fail to allocate mem
{
cerr << "Memory allocation failed for ptr[ " << 1 << " J\n"';
break;
} 7/ end if
else // successful memory allocation
cout << "Allocated 50000000 doubles in ptr[ ™ << 1 << " J\n"";
} 7/ end for

return O;
} 7/ end main

<« |

© 2006 Pearson Education,
Inc. All rights reserved.



Allocated 50000000 doubles in ptr[ O ]
Allocated 50000000 doubles in ptr[ 1 ]
Allocated 50000000 doubles in ptr[ 2 ]
Memory allocation failed for ptr[ 3 ]

_ 58
Qutline

Figl6 03.cpp

(2 of 2)

<« >

© 2006 Pearson Education,
Inc. All rights reserved.



// Fig. 16.6: Figl6_06-cpp 59
// Demonstrating standard new throwing bad_alloc when memory Outline

// cannot be allocated. -

#include <iostream>

using std::cerr;

using std::cout; Fial
using std::endl; 916_06.cpp

© 0 N O O b W DN P

(10f 2)

#include <new> // standard operator new
using std::-bad_alloc;

e
(N )

12 int mainQ

13 {

14 double *ptr[ 50 ];

15

16 // allocate memory for ptr

17 try

18 {

19 // allocate memory for ptr[ 1 ]; new throws bad_alloc on failure
20 for Cint i =0; 1 <50; i++ )
1 c 4  Allocate 50000000 doubl e values
22 ptr[ i ] = new double[ 50000000 ]; // may throw exception

23 cout << "Allocated 50000000 doubles in ptr[ " << i << " J\n"";

24 } // end for

25 } // end try

<« |

© 2006 Pearson Education,
Inc. All rights reserved.



26
27
28
29
30
31
32
33
34

// handle bad_alloc exception
catch ( bad_alloc &memoryAllocationException )
{
cerr << "Exception occurred: "
<< memoryAllocationException.what() << endl;
} // end catch

return O;

35 } // end main

Allocated 50000000 doubles in ptr[ O ]
Allocated 50000000 doubles in ptr[ 1 ]
Allocated 50000000 doubles in ptr[ 2 ]
Exception occurred: bad allocation

_ 60
Qutline

newthrows abad_alloc exception if the
memory allocation operation failed
Figl6 06.cpp

(2 of 2)

<« >

© 2006 Pearson Education,
Inc. All rights reserved.



61

To make programs morerobust, usetheversion
of new that throwsbad_all loc exceptionson
failure.

(< >

© 2006 Pearson Education, Inc. All rights reserved.



62

enew failures (Cont.)

— Function set_new_handler
e Registersafunction to handle new failures

— Theregistered function is called by new when a memory
allocation operation fails

 Takesasargument a pointer to a function that takes no
argumentsand returnsvoid

o C++ standard specifiesthat the new-handler function should:
— Make more memory available and let new try again,
— Throw abad_al loc exception or
— Call function abort or exittoterminatethe program

(< >

© 2006 Pearson Education, Inc. All rights reserved.



© 00 N O O A W DN -

N NN RNNNNNRRRERRRRPRPRPR PR
N o 00 WNRP O OOWNOUMWDNER O

// Fig. 16.7: Figl6_07.cpp

// Demonstrating set_new_handler.
#include <iostream>

using std::cerr;

using std::cout;

_ 63
Qutline

Figl6_07.cpp

#include <new> // standard operator new and set_new_handler

using std::set new_handler;

#include <cstdlib> // abort function prototype
using std::abort;

// handle memory allocation failure

(10f 2)

void customNewHandler() <«

{

cerr << ""customNewHandler was called";
abort();
} 7/ end function customNewHandler

Create a user-defined new-handler
function cust onNewHandl er

// using set_new_handler to handle failed memory allocation

int mainQ

{
double *ptr[ 50 ];

// specify that customNewHandler should be called on

// memory allocation failure
set_new_handler( customNewHandler );

Register cust omNewHandl er

withset _new handl er

<« |

© 2006 Pearson Education,
Inc. All rights reserved.



28
29
30
31
32
33
34
35
36
37

64

// allocate memory for ptr[ i ]; customNewHandler will be Outline

// called on failed memory allocation

Allocate 50000000 doubl e values

for Cint i =0; i < 50; 1++)
{ /

ptr[ i 1 = new double[ 50000000 ]; // may throw exception Figl6 O7.cpp
cout << "Allocated 50000000 doubles in ptr[ " << i << " J\n";

} 7/ end for

return O;

38 } // end main

Allocated 50000000 doubles in ptr[ 0 ]
Allocated 50000000 doubles in ptr[ 1 ]
Allocated 50000000 doubles in ptr[ 2 ]
customNewHandler was called

(2 of 2)

<« >

© 2006 Pearson Education,
Inc. All rights reserved.



65

e Classtemplateauto_ptr

— Defined in header file<memory>

— Maintains a pointer to dynamically allocated memory
» |tsdestructor performsdelete on the pointer data member

— Prevents memory leaks by deleting the dynamically
allocated memory even if an exception occurs

» Providesoverloaded operators> and -> just like aregular
pointer variable

e Can passownership of the memory via the overloaded
assignment operator or the copy constructor

— Thelast auto_ptr object maintaining the pointer will
delete the memory

(< >

© 2006 Pearson Education, Inc. All rights reserved.



// Fig. 16.8: Integer.h 66
// Integer class definition. Out“ne

1

2

3

4 class Integer
5 {
6

7
8

9

public: Integer.h
Integer( int 1 = 0 ); // Integer default constructor
~Integer(); // Integer destructor (1 of 1)
void setinteger( int 1 ); // functions to set Integer
10 int getinteger() const; // function to return Integer
11 private:
12 int value;

13 }; // end class Integer

<« |

© 2006 Pearson Education,
Inc. All rights reserved.



© 0 N O O B W DN PP

I N N N T o o =
©O © ® N o U M W N R O

// Fig. 16.9: Integer.cpp

// Integer member function definition.
#include <iostream>

using std::cout;

using std::endl;

#include "Integer.h™

// Integer default constructor
Integer::Integer( int i )
: value(C i)

cout << "Constructor for Integer " << value << endl;
} // end Integer constructor

// Integer destructor
Integer: :~Integer()
{
cout << "Destructor for Integer " << value << endl;
} 7/ end Integer destructor

_ 67
Qutline

Integer.cpp

(10f 2)

<« |

© 2006 Pearson Education,
Inc. All rights reserved.



21
22
23
24
25
26
27
28
29
30
31
32

// set Integer value
void Integer::setinteger( int i )
{
value = 1;
} // end function setinteger

// return Integer value
int Integer::getinteger() const
{
return value;
} // end function getinteger

_ 68
Qutline

Integer.cpp

(2 of 2)

<« |

© 2006 Pearson Education,
Inc. All rights reserved.



© 0O N O O b WDN P

el ol
w N Rk O

14
15
16
17
18
19
20
21
22
23
24
25
26

// Fig. 16.10: Figl6_10.cpp 69
// Demonstrating auto_ptr. Outline

#include <iostream> -

using std::cout;

using std::endl;

#include <memory> Figl6_10.cpp

using std::auto_ptr; // auto_ptr class definition (1 of 2)

#include "Integer.h"

// use auto_ptr to manipulate Integer object
int mainQ)

{

cout << "Creating an auto_ptr object that points to an Integer\n";

_ i . Create an aut o_pt r to point to a
= dynamically allocated | nt eger object
auto_ptr< Integer > ptrTolnteger( new Integer( 7 ) );

cout << "\nUsing the auto_ptr to manipulate the Integer\n';

ptrTolnteger->setinteger( 99 ); // use auto_ptr to set Integer va

Manipulatetheaut o_ptr asif it
// use auto_ptr to get Integer value were apointer toan | nt eger

cout << "Integer after setinteger: " << ( *ptrTolnteger ).getlinteger()

return O;
} /7 end main \ The dynamically alocated memory is

automatically deleted by the
aut o_pt r when it goes out of scope

<« |

© 2006 Pearson Education,
Inc. All rights reserved.



Creating an auto_ptr object that points to an Integer
Constructor for Integer 7

Using the auto_ptr to manipulate the Integer
Integer after setlnteger: 99

Terminating program
Destructor for Integer 99

_ 70
Qutline

Figl6_10.cpp

(2 of 2)

4 > |
© 2006 Pearson Education,
Inc. All rights reserved.



71

An auto_ ptr hasrestrictionson certain
oper ations. For example, an auto_ptr cannot
point to an array or a standard-container class.

(< >

© 2006 Pearson Education, Inc. All rights reserved.



72

e Exception hierarchy classes

— Base-classexception
e Containsvirtual function what for storing error messages
» Exception classesderived from exception
— bad_alloc —thrown by new
— bad_cast —thrown by dynamic_cast
— bad_typeid - thrown by typeid
— bad_exception - thrown by unexpected

 |Instead of terminating the program or calling the
function specified by set _unexpected

 Used only if bad_exceptionisin thefunction’s
throwlist

(< >

© 2006 Pearson Education, Inc. All rights reserved.



73

Placing a catch handler that catches a base-class
object before a catch that catchesan object of a
classderived from that baseclassisalogicerror.
The base-class catch catches all objects of classes
derived from that base class, so the derived-class
catch will never execute.

(< >

© 2006 Pearson Education, Inc. All rights reserved.



74

exception

il
| |

runtime_error logic_error
overflow _error underflow _error invalid_argument length_error out_of_range

bad alloc bad cast bad_type id bad_exception

| Standard Library exception classes.

< >

© 2006 Pearson Education, Inc. All rights reserved.



75

» Exception hierarchy classes (Cont.)

— Class logic_error, derived from exception
e Indicateserrorsin program logic
e Exception classesderived from logic_error
— invalid_argument
 |Indicatesan invalid argument to a function
— length_error

e Indicatesalength larger than the maximum size for
some object was used

— out_of _range

* Indicatesavalue, such asan array subscript,
exceeded itsallowed range

(< >

© 2006 Pearson Education, Inc. All rights reserved.



76

» Exception hierarchy classes (Cont.)

— Classruntime_ervror, derived from exception
 |ndicates execution-timeerrors
» Exception classesderived from runtime_error
— overflow_error

 Indicatesan arithmetic overflow error — an
arithmetic result islarger than thelargest storable
number

— underflow_error

e |ndicatesan arithmetic underflow error — an
arithmetic result issmaller than the smallest storable
number

(< >

© 2006 Pearson Education, Inc. All rights reserved.



77

Programmer -defined exception classes need not
be derived from classexception. Thus, writing
catch( exception anyException ) isnot
guaranteed to catch all exceptionsa program
could encounter.

(< >

© 2006 Pearson Education, Inc. All rights reserved.



78

To catch all exceptions potentially thrown in a
try block, use catch(. . .). Oneweaknesswith
catching exceptionsin thisway isthat thetype of
the caught exception isunknown at compiletime.
Another weaknessisthat, without a named
parameter, thereisnoway torefer tothe
exception object inside the exception handler.

(< >

© 2006 Pearson Education, Inc. All rights reserved.



79

The standard exception hierarchy isa good
starting point for creating exceptions.
Programmer s can build programsthat can
throw standard exceptions, throw exceptions
derived from the standard exceptions or throw
their own exceptions not derived from the
standard exceptions.

(< >

© 2006 Pearson Education, Inc. All rights reserved.



80

Use catch(...) toperform recovery that does
not depend on the exception type (e.g., releasing
common resour ces). The exception can be
rethrown to alert mor e specific enclosing catch
handlers.

(< >

© 2006 Pearson Education, Inc. All rights reserved.



81

e Other error-handling techniques

| gnor e the exception

e Devastating for commercial and mission-critical software
Abort the program

* Preventsa program from giving usersincorrect results

e |nappropriatefor mission-critical applications

« Should release acquired resour ces before aborting
Set error indicators

| ssue an error message and pass an appropriateerror code
through exit tothe program’s environment

(< >

© 2006 Pearson Education, Inc. All rights reserved.



82

Aborting a program component dueto an
uncaught exception could leave a resour ce—such
asafilestream or an |/O device—in a statein

which other programsare unableto acquirethe
resource. Thisisknown asa “resource leak.”

(< >

© 2006 Pearson Education, Inc. All rights reserved.



83

e Other error-handling techniques (Cont.)

— Usefunctionssetjump and longjump
e Defined in library <csetjmp>

e Used tojump immediately from a deeply nested function call
toan error handler

— Unwind the stack without calling destructorsfor
automatic objects

— Useadedicated error-handling capability

« Such asanew_handler function registered with
set_new_handler for operator new

(< >

© 2006 Pearson Education, Inc. All rights reserved.



	16
	슬라이드 번호 2
	슬라이드 번호 3
	OBJECTIVES
	슬라이드 번호 5
	16.1 Introduction
	Error-Prevention Tip 16.1
	Software Engineering Observation 16.1
	16.2 Exception-Handling Overview
	Performance Tip 16.1
	16.2 Exception-Handling Overview (Cont.)
	16.3 Example: Handling an Attempt to Divide by Zero
	슬라이드 번호 13
	슬라이드 번호 14
	슬라이드 번호 15
	슬라이드 번호 16
	16.3 Example: Handling an Attempt to Divide by Zero (Cont.)
	Software Engineering Observation 16.2
	16.3 Example: Handling an Attempt to Divide by Zero (Cont.)
	Common Programming Error 16.1
	Common Programming Error 16.2
	Common Programming Error 16.3
	16.3 Example: Handling an Attempt to Divide by Zero (Cont.)
	Common Programming Error 16.4
	Error-Prevention Tip 16.2
	16.3 Example: Handling an Attempt to Divide by Zero (Cont.)
	Common Programming Error 16.5
	Performance Tip 16.2
	Good Programming Practice 16.1
	16.4 When to Use Exception Handling
	Software Engineering Observation 16.3
	Software Engineering Observation 16.4
	Software Engineering Observation 16.5
	Software Engineering Observation 16.6
	Performance Tip 16.3
	Software Engineering Observation 16.7
	16.5 Rethrowing an Exception
	Common Programming Error 16.6
	슬라이드 번호 39
	슬라이드 번호 40
	16.6 Exception Specifications
	16.6 Exception Specifications (Cont.)
	Common Programming Error 16.7
	Error-Prevention Tip 16.3
	16.7 Processing Unexpected Exceptions
	16.7 Processing Unexpected Exceptions (Cont.)
	16.7 Processing Unexpected Exceptions (Cont.)
	16.8 Stack Unwinding
	슬라이드 번호 49
	슬라이드 번호 50
	슬라이드 번호 51
	16.9 Constructors, Destructors and Exception Handling
	Error-Prevention Tip 16.4
	16.10 Exceptions and Inheritance
	Error-Prevention Tip 16.5
	16.11 Processing new Failures
	슬라이드 번호 57
	슬라이드 번호 58
	슬라이드 번호 59
	슬라이드 번호 60
	Software Engineering Observation 16.8
	16.11 Processing new Failures (Cont.)
	슬라이드 번호 63
	슬라이드 번호 64
	16.12 Class auto_ptr and Dynamic Memory Allocation
	슬라이드 번호 66
	슬라이드 번호 67
	슬라이드 번호 68
	슬라이드 번호 69
	슬라이드 번호 70
	Software Engineering Observation 16.9
	16.13 Standard Library Exception Hierarchy
	Common Programming Error 16.8
	Fig. 16.11 | Standard Library exception classes.  
	16.13 Standard Library Exception Hierarchy (Cont.)
	16.13 Standard Library Exception Hierarchy (Cont.)
	Common Programming Error 16.9 
	Error-Prevention Tip 16.6
	Software Engineering Observation 16.10
	Software Engineering Observation 16.11
	16.14 Other Error-Handling Techniques
	Common Programming Error 16.10
	16.14 Other Error-Handling Techniques (Cont.)

