
1

© 2006 Pearson Education, Inc. All rights reserved.

1616

Exception Handling

2

© 2006 Pearson Education, Inc. All rights reserved.

It is common sense to take a method and try it. If it
fails, admit it frankly and try another. But above all,
try something.

— Franklin Delano Roosevelt

O! throw away the worser part of it, And live
the purer with the other half.

— William Shakespeare

I never forget a face, but in your case I’ll make
an exception.

— Groucho Marx

3

© 2006 Pearson Education, Inc. All rights reserved.

If they’re running and they don’t look where
they’re going I have to come out from somewhere
and catch them.

— Jerome David Salinger

O infinite virtue! com’st thou smiling from
the world’s great snare uncaught?

— William Shakespeare

4

© 2006 Pearson Education, Inc. All rights reserved.

OBJECTIVES

In this chapter you will learn:
What exceptions are and when to use them.
To use try, catch and throw to detect, handle and
indicate exceptions, respectively.
To process uncaught and unexpected exceptions.
To declare new exception classes.
How stack unwinding enables exceptions not caught
in one scope to be caught in another scope.
To handle new failures.
To use auto_ptr to prevent memory leaks.
To understand the standard exception hierarchy.

5

© 2006 Pearson Education, Inc. All rights reserved.

16.1 Introduction
16.2 Exception-Handling Overview
16.3 Example: Handling an Attempt to Divide by Zero
16.4 When to Use Exception Handling
16.5 Rethrowing an Exception
16.6 Exception Specifications
16.7 Processing Unexpected Exceptions
16.8 Stack Unwinding
16.9 Constructors, Destructors and Exception Handling
16.10 Exceptions and Inheritance
16.11 Processing new Failures
16.12 Class auto_ptr and Dynamic Memory Allocation
16.13 Standard Library Exception Hierarchy
16.14 Other Error-Handling Techniques
16.15 Wrap-Up

6

© 2006 Pearson Education, Inc. All rights reserved.

16.1 Introduction

• Exceptions
– Indicate problems that occur during a program’s execution
– Occur infrequently

• Exception handling
– Can resolve exceptions

• Allow a program to continue executing or
• Notify the user of the problem and
• Terminate the program in a controlled manner

– Makes programs robust and fault-tolerant

7

© 2006 Pearson Education, Inc. All rights reserved.

Error-Prevention Tip 16.1

Exception handling helps improve a program’s
fault tolerance.

8

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 16.1

Exception handling provides a standard
mechanism for processing errors. This is
especially important when working on a
project with a large team of programmers.

9

© 2006 Pearson Education, Inc. All rights reserved.

16.2 Exception-Handling Overview

• Intermixing program and error-handling logic
– Pseudocode example

Perform a task
If the preceding task did not execute correctly

Perform error processing
Perform next task
If the preceding task did not execute correctly

Perform error processing
…

– Makes the program difficult to read, modify, maintain and
debug

10

© 2006 Pearson Education, Inc. All rights reserved.

Performance Tip 16.1

If the potential problems occur infrequently,
intermixing program logic and error-handling
logic can degrade a program’s performance,
because the program must (potentially frequently)
perform tests to determine whether the task
executed correctly and the next task can be
performed.

11

© 2006 Pearson Education, Inc. All rights reserved.

16.2 Exception-Handling Overview
(Cont.)

• Exception handling
– Removes error-handling code from the program

execution’s “main line”
– Programmers can handle any exceptions they choose

• All exceptions,
• All exceptions of a certain type or
• All exceptions of a group of related types

12

© 2006 Pearson Education, Inc. All rights reserved.

16.3 Example: Handling an Attempt to
Divide by Zero

• Class exception
– Is the standard C++ base class for all exceptions
– Provides its derived classes with virtual function what

• Returns the exception’s stored error message

13

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

DivideBy
ZeroException.h

(1 of 1)

 1 // Fig. 16.1: DivideByZeroException.h

 2 // Class DivideByZeroException definition.

 3 #include <stdexcept> // stdexcept header file contains runtime_error

 4 using std::runtime_error; // standard C++ library class runtime_error

 5
 6 // DivideByZeroException objects should be thrown by functions

 7 // upon detecting division-by-zero exceptions

 8 class DivideByZeroException : public runtime_error

 9 {

10 public:
11 // constructor specifies default error message
12 DivideByZeroException::DivideByZeroException()
13 : runtime_error("attempted to divide by zero") {}
14 }; // end class DivideByZeroException

14

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Fig16_02.cpp

(1 of 3)

 1 // Fig. 16.2: Fig16_02.cpp

 2 // A simple exception-handling example that checks for

 3 // divide-by-zero exceptions.

 4 #include <iostream>

 5 using std::cin;

 6 using std::cout;

 7 using std::endl;

 8
 9 #include "DivideByZeroException.h" // DivideByZeroException class

10
11 // perform division and throw DivideByZeroException object if
12 // divide-by-zero exception occurs
13 double quotient(int numerator, int denominator)
14 {
15 // throw DivideByZeroException if trying to divide by zero
16 if (denominator == 0)
17 throw DivideByZeroException(); // terminate function
18
19 // return division result
20 return static_cast< double >(numerator) / denominator;
21 } // end function quotient
22
23 int main()
24 {
25 int number1; // user-specified numerator
26 int number2; // user-specified denominator
27 double result; // result of division
28
29 cout << "Enter two integers (end-of-file to end): ";

15

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Fig16_02.cpp

(2 of 3)

30
31 // enable user to enter two integers to divide
32 while (cin >> number1 >> number2)
33 {
34 // try block contains code that might throw exception
35 // and code that should not execute if an exception occurs
36 try
37 {
38 result = quotient(number1, number2);
39 cout << "The quotient is: " << result << endl;
40 } // end try
41
42 // exception handler handles a divide-by-zero exception
43 catch (DivideByZeroException ÷ByZeroException)
44 {
45 cout << "Exception occurred: "
46 << divideByZeroException.what() << endl;
47 } // end catch
48
49 cout << "\nEnter two integers (end-of-file to end): ";
50 } // end while
51
52 cout << endl;
53 return 0; // terminate normally
54 } // end main

16

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Fig16_02.cpp

(3 of 3)

Enter two integers (end-of-file to end): 100 7
The quotient is: 14.2857

Enter two integers (end-of-file to end): 100 0
Exception occurred: attempted to divide by zero

Enter two integers (end-of-file to end): ^Z

17

© 2006 Pearson Education, Inc. All rights reserved.

16.3 Example: Handling an Attempt to
Divide by Zero (Cont.)

•try Blocks
– Keyword try followed by braces ({})
– Should enclose

• Statements that might cause exceptions and
• Statements that should be skipped in case of an exception

18

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 16.2

Exceptions may surface through explicitly
mentioned code in a try block, through calls
to other functions and through deeply nested
function calls initiated by code in a try block.

19

© 2006 Pearson Education, Inc. All rights reserved.

16.3 Example: Handling an Attempt to
Divide by Zero (Cont.)

•catch handlers
– Immediately follow a try block

• One or more catch handlers for each try block
– Keyword catch
– Exception parameter enclosed in parentheses

• Represents the type of exception to process
• Can provide an optional parameter name to interact with the

caught exception object
– Executes if exception parameter type matches the

exception thrown in the try block
• Could be a base class of the thrown exception’s class

20

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 16.1

It is a syntax error to place code between a try
block and its corresponding catch handlers.

21

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 16.2

Each catch handler can have only a single
parameter—specifying a comma-separated
list of exception parameters is a syntax error.

22

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 16.3

It is a logic error to catch the same type in two
different catch handlers following a single try
block.

23

© 2006 Pearson Education, Inc. All rights reserved.

16.3 Example: Handling an Attempt to
Divide by Zero (Cont.)

• Termination model of exception handling
– try block expires when an exception occurs

• Local variables in try block go out of scope
– The code within the matching catch handler executes
– Control resumes with the first statement after the last
catch handler following the try block

• Control does not return to throw point

• Stack unwinding
– Occurs if no matching catch handler is found
– Program attempts to locate another enclosing try block in

the calling function

24

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 16.4

Logic errors can occur if you assume that after
an exception is handled, control will return to
the first statement after the throw point.

25

© 2006 Pearson Education, Inc. All rights reserved.

Error-Prevention Tip 16.2

With exception handling, a program can continue
executing (rather than terminating) after dealing
with a problem. This helps ensure the kind of
robust applications that contribute to what is
called mission-critical computing or business-
critical computing.

26

© 2006 Pearson Education, Inc. All rights reserved.

16.3 Example: Handling an Attempt to
Divide by Zero (Cont.)

• Throwing an exception
– Use keyword throw followed by an operand representing

the type of exception
• The throw operand can be of any type

– If the throw operand is an object, it is called an
exception object

– The throw operand initializes the exception parameter in
the matching catch handler, if one is found

27

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 16.5

Use caution when throwing the result of a
conditional expression (?:), because promotion rules
could cause the value to be of a type different from
the one expected. For example, when throwing an
int or a double from the same conditional
expression, the conditional expression converts the
int to a double. However, the catch handler
always catches the result as a double, rather than
catching the result as a double when a double is
thrown, and catching the result as an int when an
int is thrown.

28

© 2006 Pearson Education, Inc. All rights reserved.

Performance Tip 16.2

Catching an exception object by reference
eliminates the overhead of copying the object
that represents the thrown exception.

29

© 2006 Pearson Education, Inc. All rights reserved.

Good Programming Practice 16.1

Associating each type of runtime error with an
appropriately named exception object improves
program clarity.

30

© 2006 Pearson Education, Inc. All rights reserved.

16.4 When to Use Exception Handling

• When to use exception handling
– To process synchronous errors

• Occur when a statement executes
– Not to process asynchronous errors

• Occur in parallel with, and independent of, program
execution

– To process problems arising in predefined software
elements

• Such as predefined functions and classes
• Error handling can be performed by the program code to be

customized based on the application’s needs

31

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 16.3

Incorporate your exception-handling strategy into
your system from the design process’s inception.
Including effective exception handling after a
system has been implemented can be difficult.

32

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 16.4

Exception handling provides a single, uniform
technique for processing problems. This helps
programmers working on large projects
understand each other’s error-processing code.

33

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 16.5

Avoid using exception handling as an alternate
form of flow of control. These “additional”
exceptions can “get in the way” of genuine
error-type exceptions.

34

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 16.6

Exception handling simplifies combining software
components and enables them to work together
effectively by enabling predefined components to
communicate problems to application-specific
components, which can then process the problems
in an application-specific manner.

35

© 2006 Pearson Education, Inc. All rights reserved.

Performance Tip 16.3

When no exceptions occur, exception-handling
code incurs little or no performance penalties.
Thus, programs that implement exception
handling operate more efficiently than do
programs that intermix error-handling code
with program logic.

36

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 16.7

Functions with common error conditions should
return 0 or NULL (or other appropriate values)
rather than throw exceptions. A program calling
such a function can check the return value to
determine success or failure of the function call.

37

© 2006 Pearson Education, Inc. All rights reserved.

16.5 Rethrowing an Exception

• Rethrowing an exception
– Empty throw; statement
– Use when a catch handler cannot or can only partially

process an exception
– Next enclosing try block attempts to match the exception

with one of its catch handlers

38

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 16.6

Executing an empty throw statement that is
situated outside a catch handler causes a call
to function terminate, which abandons
exception processing and terminates the
program immediately.

39

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Fig16_03.cpp

(1 of 2)

 1 // Fig. 16.3: Fig16_03.cpp

 2 // Demonstrating exception rethrowing.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 #include <exception>

 8 using std::exception;

 9
10 // throw, catch and rethrow exception
11 void throwException()
12 {
13 // throw exception and catch it immediately
14 try
15 {
16 cout << " Function throwException throws an exception\n";
17 throw exception(); // generate exception
18 } // end try
19 catch (exception &) // handle exception
20 {
21 cout << " Exception handled in function throwException"
22 << "\n Function throwException rethrows exception";
23 throw; // rethrow exception for further processing
24 } // end catch
25
26 cout << "This also should not print\n";
27 } // end function throwException

Rethrow the exception

40

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Fig16_03.cpp

(2 of 2)

28
29 int main()
30 {
31 // throw exception
32 try
33 {
34 cout << "\nmain invokes function throwException\n";
35 throwException();
36 cout << "This should not print\n";
37 } // end try
38 catch (exception &) // handle exception
39 {
40 cout << "\n\nException handled in main\n";
41 } // end catch
42
43 cout << "Program control continues after catch in main\n";
44 return 0;
45 } // end main

main invokes function throwException
 Function throwException throws an exception
 Exception handled in function throwException
 Function throwException rethrows exception

Exception handled in main
Program control continues after catch in main

Catch rethrown exception

41

© 2006 Pearson Education, Inc. All rights reserved.

16.6 Exception Specifications

• Exception specifications (a.k.a. throw lists)
– Keyword throw
– Comma-separated list of exception classes in parentheses
– Example

• int someFunction(double value)
throw (ExceptionA, ExceptionB,

ExceptionC)
{

…
}

– Indicates someFunction can throw exceptions of types
ExceptionA, ExceptionB and ExceptionC

42

© 2006 Pearson Education, Inc. All rights reserved.

16.6 Exception Specifications (Cont.)

• Exception specifications (Cont.)
– A function can throw only exceptions of types in its

specification or types derived from those types
• If a function throws a non-specification exception, function
unexpected is called

– This normally terminates the program
– No exception specification indicates the function can
throw any exception

– An empty exception specification, throw(), indicates the
function can not throw any exceptions

43

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 16.7

Throwing an exception that has not been declared
in a function’s exception specification causes a call
to function unexpected.

44

© 2006 Pearson Education, Inc. All rights reserved.

Error-Prevention Tip 16.3

The compiler will not generate a compilation
error if a function contains a throw expression
for an exception not listed in the function’s
exception specification. An error occurs only
when that function attempts to throw that
exception at execution time. To avoid surprises
at execution time, carefully check your code to
ensure that functions do not throw exceptions
not listed in their exception specifications.

45

© 2006 Pearson Education, Inc. All rights reserved.

16.7 Processing Unexpected Exceptions

• Function unexpected
– Called when a function throws an exception not in its

exception specification
– Calls the function registered with function
set_unexpected

– Function terminate is called by default

• Function set_unexpected of <exception>
– Takes as argument a pointer to a function with no

arguments and a void return type
– Returns a pointer to the last function called by
unexpected

• Returns 0 the first time

46

© 2006 Pearson Education, Inc. All rights reserved.

16.7 Processing Unexpected Exceptions
(Cont.)

• Function terminate
– Called when

• No matching catch is found for a thrown exception
• A destructor attempts to throw an exception during stack

unwinding
• Attempting to rethrow an exception when no exception is

being handled
• Calling function unexpected before registering a function

with function set_unexpected
– Calls the function registered with function
set_terminate

– Function abort is called by default

47

© 2006 Pearson Education, Inc. All rights reserved.

16.7 Processing Unexpected Exceptions
(Cont.)

• Function set_terminate
– Takes as argument a pointer to a function with no

arguments and a void return type
– Returns a pointer to the last function called by
terminate

• Returns 0 the first time

• Function abort
– Terminates the program without calling destructors for

automatic or static storage class objects
• Could lead to resource leaks

48

© 2006 Pearson Education, Inc. All rights reserved.

16.8 Stack Unwinding

• Stack unwinding
– Occurs when a thrown exception is not caught in a

particular scope
– Unwinding a function terminates that function

• All local variables of the function are destroyed
• Control returns to the statement that invoked the function

– Attempts are made to catch the exception in outer
try…catch blocks

– If the exception is never caught, function terminate is
called

49

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Fig16_04.cpp

(1 of 3)

 1 // Fig. 16.4: Fig16_04.cpp

 2 // Demonstrating stack unwinding.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 #include <stdexcept>

 8 using std::runtime_error;

 9
10 // function3 throws run-time error
11 void function3() throw (runtime_error)
12 {
13 cout << "In function 3" << endl;
14
15 // no try block, stack unwinding occur, return control to function2
16 throw runtime_error("runtime_error in function3");
17 } // end function3
18
19 // function2 invokes function3
20 void function2() throw (runtime_error)
21 {
22 cout << "function3 is called inside function2" << endl;
23 function3(); // stack unwinding occur, return control to function1
24 } // end function2

50

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Fig16_04.cpp

(2 of 3)

25
26 // function1 invokes function2
27 void function1() throw (runtime_error)
28 {
29 cout << "function2 is called inside function1" << endl;
30 function2(); // stack unwinding occur, return control to main
31 } // end function1
32
33 // demonstrate stack unwinding
34 int main()
35 {
36 // invoke function1
37 try
38 {
39 cout << "function1 is called inside main" << endl;
40 function1(); // call function1 which throws runtime_error
41 } // end try
42 catch (runtime_error &error) // handle run-time error
43 {
44 cout << "Exception occurred: " << error.what() << endl;
45 cout << "Exception handled in main" << endl;
46 } // end catch
47
48 return 0;
49 } // end main

51

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Fig16_04.cpp

(3 of 3)

function1 is called inside main

function2 is called inside function1

function3 is called inside function2

In function 3

Exception occurred: runtime_error in function3

Exception handled in main

52

© 2006 Pearson Education, Inc. All rights reserved.

16.9 Constructors, Destructors and
Exception Handling

• Exceptions and constructors
– Exceptions enable constructors, which cannot return

values, to report errors to the program
– Exceptions thrown by constructors cause any already-

constructed component objects to call their destructors
• Only those objects that have already been constructed will be

destructed

• Exceptions and destructors
– Destructors are called for all automatic objects in the

terminated try block when an exception is thrown
• Acquired resources can be placed in local objects to

automatically release the resources when an exception occurs
– If a destructor invoked by stack unwinding throws an

exception, function terminate is called

53

© 2006 Pearson Education, Inc. All rights reserved.

Error-Prevention Tip 16.4

When an exception is thrown from the constructor
for an object that is created in a new expression,
the dynamically allocated memory for that object
is released.

54

© 2006 Pearson Education, Inc. All rights reserved.

16.10 Exceptions and Inheritance

• Inheritance with exception classes
– New exception classes can be defined to inherit from

existing exception classes
– A catch handler for a particular exception class can also

catch exceptions of classes derived from that class

55

© 2006 Pearson Education, Inc. All rights reserved.

Error-Prevention Tip 16.5

Using inheritance with exceptions enables an exception
handler to catch related errors with concise notation.
One approach is to catch each type of pointer or
reference to a derived-class exception object
individually, but a more concise approach is to catch
pointers or references to base-class exception objects
instead. Also, catching pointers or references to
derived-class exception objects individually is error
prone, especially if the programmer forgets to test
explicitly for one or more of the derived-class pointer or
reference types.

56

© 2006 Pearson Education, Inc. All rights reserved.

16.11 Processing new Failures

•new failures
– Some compilers throw a bad_alloc exception

• Compliant to the C++ standard specification
– Some compilers return 0

• C++ standard-compliant compilers also have a version of
new that returns 0

– Use expression new(nothrow), where nothrow is
of type nothrow_t

– Some compilers throw bad_alloc if <new> is included

57

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Fig16_05.cpp

(1 of 2)

 1 // Fig. 16.5: Fig16_05.cpp

 2 // Demonstrating pre-standard new returning 0 when memory

 3 // is not allocated.

 4 #include <iostream>

 5 using std::cerr;

 6 using std::cout;

 7
 8 int main()

 9 {

10 double *ptr[50];
11
12 // allocate memory for ptr
13 for (int i = 0; i < 50; i++)
14 {
15 ptr[i] = new double[50000000];
16
17 if (ptr[i] == 0) // did new fail to allocate memory
18 {
19 cerr << "Memory allocation failed for ptr[" << i << "]\n";
20 break;
21 } // end if
22 else // successful memory allocation
23 cout << "Allocated 50000000 doubles in ptr[" << i << "]\n";
24 } // end for
25
26 return 0;
27 } // end main

Allocate 50000000 double values

new will have returned 0 if the
memory allocation operation failed

58

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Fig16_03.cpp

(2 of 2)

Allocated 50000000 doubles in ptr[0]

Allocated 50000000 doubles in ptr[1]

Allocated 50000000 doubles in ptr[2]

Memory allocation failed for ptr[3]

59

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Fig16_06.cpp

(1 of 2)

 1 // Fig. 16.6: Fig16_06.cpp

 2 // Demonstrating standard new throwing bad_alloc when memory

 3 // cannot be allocated.

 4 #include <iostream>

 5 using std::cerr;

 6 using std::cout;

 7 using std::endl;

 8
 9 #include <new> // standard operator new

10 using std::bad_alloc;
11
12 int main()
13 {
14 double *ptr[50];
15
16 // allocate memory for ptr
17 try
18 {
19 // allocate memory for ptr[i]; new throws bad_alloc on failure
20 for (int i = 0; i < 50; i++)
21 {
22 ptr[i] = new double[50000000]; // may throw exception
23 cout << "Allocated 50000000 doubles in ptr[" << i << "]\n";
24 } // end for
25 } // end try

Allocate 50000000 double values

60

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Fig16_06.cpp

(2 of 2)

26
27 // handle bad_alloc exception
28 catch (bad_alloc &memoryAllocationException)
29 {
30 cerr << "Exception occurred: "
31 << memoryAllocationException.what() << endl;
32 } // end catch
33
34 return 0;
35 } // end main

Allocated 50000000 doubles in ptr[0]

Allocated 50000000 doubles in ptr[1]

Allocated 50000000 doubles in ptr[2]

Exception occurred: bad allocation

new throws a bad_alloc exception if the
memory allocation operation failed

61

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 16.8

To make programs more robust, use the version
of new that throws bad_alloc exceptions on
failure.

62

© 2006 Pearson Education, Inc. All rights reserved.

16.11 Processing new Failures (Cont.)

•new failures (Cont.)
– Function set_new_handler

• Registers a function to handle new failures
– The registered function is called by new when a memory

allocation operation fails
• Takes as argument a pointer to a function that takes no

arguments and returns void
• C++ standard specifies that the new-handler function should:

– Make more memory available and let new try again,
– Throw a bad_alloc exception or
– Call function abort or exit to terminate the program

63

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Fig16_07.cpp

(1 of 2)

 1 // Fig. 16.7: Fig16_07.cpp

 2 // Demonstrating set_new_handler.

 3 #include <iostream>

 4 using std::cerr;

 5 using std::cout;

 6
 7 #include <new> // standard operator new and set_new_handler

 8 using std::set_new_handler;
 9
10 #include <cstdlib> // abort function prototype
11 using std::abort;
12
13 // handle memory allocation failure
14 void customNewHandler()
15 {
16 cerr << "customNewHandler was called";
17 abort();
18 } // end function customNewHandler
19
20 // using set_new_handler to handle failed memory allocation
21 int main()
22 {
23 double *ptr[50];
24
25 // specify that customNewHandler should be called on
26 // memory allocation failure
27 set_new_handler(customNewHandler);

Create a user-defined new-handler
function customNewHandler

Register customNewHandler
with set_new_handler

64

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Fig16_07.cpp

(2 of 2)

28
29 // allocate memory for ptr[i]; customNewHandler will be
30 // called on failed memory allocation
31 for (int i = 0; i < 50; i++)
32 {
33 ptr[i] = new double[50000000]; // may throw exception
34 cout << "Allocated 50000000 doubles in ptr[" << i << "]\n";
35 } // end for
36
37 return 0;
38 } // end main

Allocated 50000000 doubles in ptr[0]

Allocated 50000000 doubles in ptr[1]

Allocated 50000000 doubles in ptr[2]

customNewHandler was called

Allocate 50000000 double values

65

© 2006 Pearson Education, Inc. All rights reserved.

16.12 Class auto_ptr and Dynamic
Memory Allocation

• Class template auto_ptr
– Defined in header file <memory>
– Maintains a pointer to dynamically allocated memory

• Its destructor performs delete on the pointer data member
– Prevents memory leaks by deleting the dynamically

allocated memory even if an exception occurs
• Provides overloaded operators * and -> just like a regular

pointer variable
• Can pass ownership of the memory via the overloaded

assignment operator or the copy constructor
– The last auto_ptr object maintaining the pointer will
delete the memory

66

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Integer.h

(1 of 1)

 1 // Fig. 16.8: Integer.h

 2 // Integer class definition.

 3
 4 class Integer

 5 {

 6 public:

 7 Integer(int i = 0); // Integer default constructor

 8 ~Integer(); // Integer destructor

 9 void setInteger(int i); // functions to set Integer

10 int getInteger() const; // function to return Integer
11 private:
12 int value;
13 }; // end class Integer

67

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Integer.cpp

(1 of 2)

 1 // Fig. 16.9: Integer.cpp

 2 // Integer member function definition.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 #include "Integer.h"

 8
 9 // Integer default constructor

10 Integer::Integer(int i)
11 : value(i)
12 {
13 cout << "Constructor for Integer " << value << endl;
14 } // end Integer constructor
15
16 // Integer destructor
17 Integer::~Integer()
18 {
19 cout << "Destructor for Integer " << value << endl;
20 } // end Integer destructor

68

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Integer.cpp

(2 of 2)

21
22 // set Integer value
23 void Integer::setInteger(int i)
24 {
25 value = i;
26 } // end function setInteger
27
28 // return Integer value
29 int Integer::getInteger() const
30 {
31 return value;
32 } // end function getInteger

69

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Fig16_10.cpp

(1 of 2)

 1 // Fig. 16.10: Fig16_10.cpp

 2 // Demonstrating auto_ptr.

 3 #include <iostream>

 4 using std::cout;

 5 using std::endl;

 6
 7 #include <memory>
 8 using std::auto_ptr; // auto_ptr class definition

 9
10 #include "Integer.h"
11
12 // use auto_ptr to manipulate Integer object
13 int main()
14 {
15 cout << "Creating an auto_ptr object that points to an Integer\n";
16
17 // "aim" auto_ptr at Integer object
18 auto_ptr< Integer > ptrToInteger(new Integer(7));
19
20 cout << "\nUsing the auto_ptr to manipulate the Integer\n";
21 ptrToInteger->setInteger(99); // use auto_ptr to set Integer value
22
23 // use auto_ptr to get Integer value
24 cout << "Integer after setInteger: " << (*ptrToInteger).getInteger()
25 return 0;
26 } // end main

Create an auto_ptr to point to a
dynamically allocated Integer object

Manipulate the auto_ptr as if it
were a pointer to an Integer

The dynamically allocated memory is
automatically deleted by the
auto_ptr when it goes out of scope

70

© 2006 Pearson Education,
Inc. All rights reserved.

Outline

Fig16_10.cpp

(2 of 2)

Creating an auto_ptr object that points to an Integer

Constructor for Integer 7

Using the auto_ptr to manipulate the Integer

Integer after setInteger: 99

Terminating program

Destructor for Integer 99

71

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 16.9

An auto_ptr has restrictions on certain
operations. For example, an auto_ptr cannot
point to an array or a standard-container class.

72

© 2006 Pearson Education, Inc. All rights reserved.

16.13 Standard Library Exception
Hierarchy

• Exception hierarchy classes
– Base-class exception

• Contains virtual function what for storing error messages
• Exception classes derived from exception

– bad_alloc – thrown by new
– bad_cast – thrown by dynamic_cast
– bad_typeid – thrown by typeid
– bad_exception – thrown by unexpected

• Instead of terminating the program or calling the
function specified by set_unexpected

• Used only if bad_exception is in the function’s
throw list

73

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 16.8

Placing a catch handler that catches a base-class
object before a catch that catches an object of a
class derived from that base class is a logic error.
The base-class catch catches all objects of classes
derived from that base class, so the derived-class
catch will never execute.

74

© 2006 Pearson Education, Inc. All rights reserved.

Fig. 16.11 | Standard Library exception classes.

75

© 2006 Pearson Education, Inc. All rights reserved.

16.13 Standard Library Exception
Hierarchy (Cont.)

• Exception hierarchy classes (Cont.)
– Class logic_error, derived from exception

• Indicates errors in program logic
• Exception classes derived from logic_error

– invalid_argument
• Indicates an invalid argument to a function

– length_error
• Indicates a length larger than the maximum size for

some object was used
– out_of_range

• Indicates a value, such as an array subscript,
exceeded its allowed range

76

© 2006 Pearson Education, Inc. All rights reserved.

16.13 Standard Library Exception
Hierarchy (Cont.)

• Exception hierarchy classes (Cont.)
– Class runtime_error, derived from exception

• Indicates execution-time errors
• Exception classes derived from runtime_error

– overflow_error
• Indicates an arithmetic overflow error – an

arithmetic result is larger than the largest storable
number

– underflow_error
• Indicates an arithmetic underflow error – an

arithmetic result is smaller than the smallest storable
number

77

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 16.9

Programmer-defined exception classes need not
be derived from class exception. Thus, writing
catch(exception anyException) is not
guaranteed to catch all exceptions a program
could encounter.

78

© 2006 Pearson Education, Inc. All rights reserved.

Error-Prevention Tip 16.6

To catch all exceptions potentially thrown in a
try block, use catch(...). One weakness with
catching exceptions in this way is that the type of
the caught exception is unknown at compile time.
Another weakness is that, without a named
parameter, there is no way to refer to the
exception object inside the exception handler.

79

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 16.10

The standard exception hierarchy is a good
starting point for creating exceptions.
Programmers can build programs that can
throw standard exceptions, throw exceptions
derived from the standard exceptions or throw
their own exceptions not derived from the
standard exceptions.

80

© 2006 Pearson Education, Inc. All rights reserved.

Software Engineering Observation 16.11

Use catch(...) to perform recovery that does
not depend on the exception type (e.g., releasing
common resources). The exception can be
rethrown to alert more specific enclosing catch
handlers.

81

© 2006 Pearson Education, Inc. All rights reserved.

16.14 Other Error-Handling Techniques

• Other error-handling techniques
– Ignore the exception

• Devastating for commercial and mission-critical software
– Abort the program

• Prevents a program from giving users incorrect results
• Inappropriate for mission-critical applications
• Should release acquired resources before aborting

– Set error indicators
– Issue an error message and pass an appropriate error code

through exit to the program’s environment

82

© 2006 Pearson Education, Inc. All rights reserved.

Common Programming Error 16.10

Aborting a program component due to an
uncaught exception could leave a resource—such
as a file stream or an I/O device—in a state in
which other programs are unable to acquire the
resource. This is known as a “resource leak.”

83

© 2006 Pearson Education, Inc. All rights reserved.

16.14 Other Error-Handling Techniques
(Cont.)

• Other error-handling techniques (Cont.)
– Use functions setjump and longjump

• Defined in library <csetjmp>
• Used to jump immediately from a deeply nested function call

to an error handler
– Unwind the stack without calling destructors for

automatic objects
– Use a dedicated error-handling capability

• Such as a new_handler function registered with
set_new_handler for operator new

	16
	슬라이드 번호 2
	슬라이드 번호 3
	OBJECTIVES
	슬라이드 번호 5
	16.1 Introduction
	Error-Prevention Tip 16.1
	Software Engineering Observation 16.1
	16.2 Exception-Handling Overview
	Performance Tip 16.1
	16.2 Exception-Handling Overview (Cont.)
	16.3 Example: Handling an Attempt to Divide by Zero
	슬라이드 번호 13
	슬라이드 번호 14
	슬라이드 번호 15
	슬라이드 번호 16
	16.3 Example: Handling an Attempt to Divide by Zero (Cont.)
	Software Engineering Observation 16.2
	16.3 Example: Handling an Attempt to Divide by Zero (Cont.)
	Common Programming Error 16.1
	Common Programming Error 16.2
	Common Programming Error 16.3
	16.3 Example: Handling an Attempt to Divide by Zero (Cont.)
	Common Programming Error 16.4
	Error-Prevention Tip 16.2
	16.3 Example: Handling an Attempt to Divide by Zero (Cont.)
	Common Programming Error 16.5
	Performance Tip 16.2
	Good Programming Practice 16.1
	16.4 When to Use Exception Handling
	Software Engineering Observation 16.3
	Software Engineering Observation 16.4
	Software Engineering Observation 16.5
	Software Engineering Observation 16.6
	Performance Tip 16.3
	Software Engineering Observation 16.7
	16.5 Rethrowing an Exception
	Common Programming Error 16.6
	슬라이드 번호 39
	슬라이드 번호 40
	16.6 Exception Specifications
	16.6 Exception Specifications (Cont.)
	Common Programming Error 16.7
	Error-Prevention Tip 16.3
	16.7 Processing Unexpected Exceptions
	16.7 Processing Unexpected Exceptions (Cont.)
	16.7 Processing Unexpected Exceptions (Cont.)
	16.8 Stack Unwinding
	슬라이드 번호 49
	슬라이드 번호 50
	슬라이드 번호 51
	16.9 Constructors, Destructors and Exception Handling
	Error-Prevention Tip 16.4
	16.10 Exceptions and Inheritance
	Error-Prevention Tip 16.5
	16.11 Processing new Failures
	슬라이드 번호 57
	슬라이드 번호 58
	슬라이드 번호 59
	슬라이드 번호 60
	Software Engineering Observation 16.8
	16.11 Processing new Failures (Cont.)
	슬라이드 번호 63
	슬라이드 번호 64
	16.12 Class auto_ptr and Dynamic Memory Allocation
	슬라이드 번호 66
	슬라이드 번호 67
	슬라이드 번호 68
	슬라이드 번호 69
	슬라이드 번호 70
	Software Engineering Observation 16.9
	16.13 Standard Library Exception Hierarchy
	Common Programming Error 16.8
	Fig. 16.11 | Standard Library exception classes.
	16.13 Standard Library Exception Hierarchy (Cont.)
	16.13 Standard Library Exception Hierarchy (Cont.)
	Common Programming Error 16.9
	Error-Prevention Tip 16.6
	Software Engineering Observation 16.10
	Software Engineering Observation 16.11
	16.14 Other Error-Handling Techniques
	Common Programming Error 16.10
	16.14 Other Error-Handling Techniques (Cont.)

