
Page 1

Effective C++Effective C++

Unit 5 -

 
10

Third Edition

Knowledge Discovery & Database Research Lab



ITEM 5 : Know what functions C++ silently writes and callsITEM 5 : Know what functions C++ silently writes and calls

Copy constructor, copy assignment operator, destructor 

▲ If you don’t declare no constructors,compilers

 
will declare a default constructor.

▲ The following code will cause each function to be generated

class Empty{};

class Empty{

public:

Empty(){. . . }

Empty(const

 

Empty&rhs) {. . . }

~Empty(){. . . }

Empty&operator

 

= (const Empty&rhs) {. . . }

};

// default constructor

// copy constructor

// destructor

// copy assignment operator

Empty e1; // default constructor

// destructor

Empty e2(e1); // copy constructor

e2 = e1; // copy assignment operator

Page 2



ITEM 5 : Know what functions C++ silently writes and callsITEM 5 : Know what functions C++ silently writes and calls

▲ What do the functions do?

give compilers a place to put “behind the scenes” code

▲ Generated destructor is non-virtual (see Item 7)

▲ Copy constructor, copy assignment operator

copy each non-static data member of the source object over to the target object

▲ Example

Constructor 

: declared 

Copy constructor

: not declared

Copy assignment

: not declared

template <typename

 

T>

class NamedObject

 

{

public:

NamedObject(const

 

char*name, const T&value);

NamedObject(const

 

std::string&name, const T&value);

. . . 

private:

std::string

 

nameValue;

T objectValue;

};

NamedObject<int>no1(“Smallest Prime Number”,2);

NamedObject<int>no2(no1);  // calls copy constructor
Page 3



ITEM 5 : Know what functions C++ silently writes and callsITEM 5 : Know what functions C++ silently writes and calls

▲ Code

▲ What should happen here ? 

template <class T>

class NamedObject

 

{

public:

NamedObject(std::string& name, const T& value);

. . . 

private:

std::string&

 

nameValue;

const

 

T objectValue;

};

std::string

 

newDog(“Persephone”);

std::string

 

oldDog(“Satch”);

NamedObject<int>p(newDog,2);

NamedObject<int>s(oldDog,36);

p=s;

refuse to compile the code

Compilers may implicitly generate a class’s 

default constructor, copy constructor, copy

assignment operator, and destructor.

Things to remember

Page 4



ITEM 6 : Explicitly disallow the use of compilerITEM 6 : Explicitly disallow the use of compiler--generated generated 
functions you do not wantfunctions you do not want

You’d like attempt to copy HomeForSale objects to not compile  

▲ Solution

Declare the copy constructor and the copy assignment operator private

Do not define class HomeForSale{

public:

. . . 

private:

. . . 

HomeForSale(const

 

HomeForSale&);

 

// declarations only

HomeForSale& operator=(const HomeForSale&);

};

class HomeForSale{ . . . };

HomeForSale

 

h1;

HomeForSale

 

h2;

HomeForSale

 

h3(h1);

h1 = h2;

attempt to copy h1, h2 –

 
should not compile!

the goal here is to prevent copying!

Page 5



ITEM 6 : Explicitly disallow the use of compilerITEM 6 : Explicitly disallow the use of compiler--generated generated 
functions you do not wantfunctions you do not want

▲ Move the link-time error up to compile time  

By declaring the copy constructor and copy assignment operator private not in 

HomeForSale itself

class Uncopyable{

protected:

Uncopyable(){}

 

// allow construction and destruction of derived objects

~Uncopyable(){}

private:

Uncopyable(const

 

Uncopyable&);

 

// but, prevent copying

Uncopyable&operator=(const Uncopyable&);

};

class HomeForSale: private Uncopyable{

. . . 

};

To disallow functionality automatically provided

by compilers, declare the corresponding member

functions private and give no implementations.

Using a base class like Uncopyable is one way 

to do this

Things to remember

Page 6



ITEM 7 : Declare destructors virtual in polymorphic base classesITEM 7 : Declare destructors virtual in polymorphic base classes

Non-virtual vs virtual destructor (1)

▲ Avoid leaking memory and other resources

class TimeKeeper{

public:

TimeKeeper();

~TimeKeeper();

. . . 

}; 

class TimeKeeper{

public:

TimeKeeper();

~virtual

 

TimeKeeper();

. . . 

}; 

TimeKeepr

 

*ptk

 

= getTimeKeeper();

. . . 

delete ptk;

C++ specifies that when a derived class object 

is deleted through a pointer to a base class with 

non-virtual destructor, results are undefined

Page 7



ITEM 7 : Declare destructors virtual in polymorphic base classesITEM 7 : Declare destructors virtual in polymorphic base classes

Non-virtual vs virtual destructor (2)  

▲

 
When a class is not

 
intended to be a base class, making the destructor virtual

 is usually a bad idea

class Point{

public:

point (int

 

xCoord, int

 

Ycoord);

~point();     // ~virtual point();

private:

int

 

x,y;

};

Non-virtual : 64bit

virtual : 96bit or 128bit

class SpecialString: public std::string{

. . . 

}

SpecialString

 

*pss

 

= new SpecialString(“Impending

 

Doom”);

std::string

 

*ps;

ps

 

= pss;

delete ps;

SpecialString

 
destructor 

won’t be called

Page 8



ITEM 7 : Declare destructors virtual in polymorphic base classesITEM 7 : Declare destructors virtual in polymorphic base classes

Pure virtual destructor

Pure virtual functions result in abstract classes.  

The rule for giving base classes virtual destructors applied only to polymorphic base 

classes

class AWOV{

public:

virtual ~AWOV() = 0;

 

// declare

}

AWOV::~AWOV() {}

 

// definition of pure virtual destructor

Polymorphic base classes should declare virtual destructors.

If a class has any virtual functions, it should have a virtual destructor.

Classes not designed to be base classes or not designed to be used

polymorphically should not declare virtual destructors.

Things to remember

Page 9



ITEM 8 : Prevent exceptions from leaving destructorsITEM 8 : Prevent exceptions from leaving destructors

Consider:

Suppose v has ten Widgets in it.

During destruction of the first one:

exception

The second one : exception

Program : undefined behavior

▲ Cause 

Destructors emitting exceptions

class Widget{

public:

. . . 

~Widget() { . . . }  // might emit an exception

};

void doSomething()

{

std::vector<Widget> v;

. . . 

} // v is automatically destroyed here

Page 10



ITEM 8 : Prevent exceptions from leaving destructorsITEM 8 : Prevent exceptions from leaving destructors

What should you do ?

▲ Create a resource-managing classes

Destructor

class DBConnection

 

{

public:

. . . 

static DBConnection

 

create();

void close();

}
class DBConn

 

{

public:

. . . 

~DBConn()

{

db.close();

}

private:

DBConnection

 

db;

};

close connection; throw an exception if closing fails

make sure database connections are

 always closed

Page 11



ITEM 8 : Prevent exceptions from leaving destructorsITEM 8 : Prevent exceptions from leaving destructors

Propagation of exception 

▲ Destructor throwing exceptions means trouble

▲ Two primary ways to avoid the trouble

(1) Terminate the program                           (2) Swallow the exception

In general, swallowing exceptions is a bad idea.

The program must be able to reliably continue execution even after an error

has been encountered and ignored. 

DBConn::~DBConn()

{

try {db.close();}

catch(..){

make log entry that the call to close 

failed;

std::abort();

}

}

DBConn::~DBConn()

{

try {db.close();}

catch(..){

make log entry that the call to close 

failed;

}

}

Page 12



ITEM 8 : Prevent exceptions from leaving destructorsITEM 8 : Prevent exceptions from leaving destructors

(3) Better strategy

DBConn::~DBConn() {

public:

. . .

void close() {  // new function for

db.close();   //  client use     

close = true;

}

~DBConn() {

if (!closed) {  // close the connection

try {

 

// if the client didn’t

db.close();

}

catch( . . .) {

 

// if closing fails, 

make log entry that the call to close failed;

}

}

}

private:

DBConnection

 

db;

bool

 

closed;

};

The exception has to come from

 some non-destructor function

Page 13



ITEM 8 : Prevent exceptions from leaving destructorsITEM 8 : Prevent exceptions from leaving destructors

Page 14

Destructors should never emit exceptions. If functions called in a destructor

may throw, the destructor should catch any exceptions, then swallow them

or terminate the program.

If class clients need to be able to react to exceptions thrown during an 

operation, the class should provide a regular (i.e., non-destructor) function

that performs the operation.

Things to remember



ITEM 9 : Never call virtual functions during construction or desITEM 9 : Never call virtual functions during construction or destructiontruction

Example : a class of hierarchy for modeling stock transactions

▲ important point : auditable 

class Transaction{

 

// base class for all transactions

public:

Transaction();

virtual

 

void logTransaction() const = 0;

 

// make type-dependent log entry

…

}

Transation::Transaction()

 

// implementation of bass class

{

…

logTransaction();

 

// as final action, log this transaction

}

class BuyTransaction:public

 

Transaction{

 

// derived class 

public:

virtual void logTransaction() const;

 

// how to log transactions of this type

…

}
Page 15



▲ Call

Virtual functions never go down into derived classes

Instead, the object behaves as if it were of the base type.  

Base class parts of derived class objects are constructed before derived class parts are

Derived class data members have not been initialized when base class constructors run

The logTransaction function is pure virtual in Transaction.

☞ Unless it had been defined, the program wouldn’t link.

ITEM 9 : Never call virtual functions during construction or desITEM 9 : Never call virtual functions during construction or destructiontruction

class SellTransaction:public

 

Transaction{

 

// derived class

public:

virtual void logTransaction() const;

 

// how to log transactions of this type

…

}

BuyTransaction

 

b;

Page 16

BuyTransaction

 
constructor 

Transaction 
constructor 

virtual

 

function
logTransaction



ITEM 9 : Never call virtual functions during construction or desITEM 9 : Never call virtual functions during construction or destructiontruction

▲ Example 2

more insidious code: compile and link without complaint

Most runtime systems will abort the program when the pure virtual is called.

class Transaction{

 

// base class for all transactions

public:

Transaction();

{ init();}

 

// call to non-virtual

virtual void logTransaction() const = 0;

…

private:

void init()

{

…

logTransaction();

 

// that calls a virtual!

}

};

Page 17



ITEM 9 : Never call virtual functions during construction or desITEM 9 : Never call virtual functions during construction or destructiontruction

Approach to this problem

▲ Turn logTransaction

 
into a non-virtual

 
function in Transaction

class Transaction{

public:

explicit Transaction(const

 

std::string& logInfo);

void logTransaction(const

 

std::string& logInfo) const; // now a non-virtual func

…

};

Transaction::Transaction(const

 

std::string& logInfo)

{

…

logTransaction(logInfo);

}

Page 18

Now, a non-virtual call



compensate by having derived classes pass necessary construction information up 

to base class constructors 

Page 19

class BuyTransaction: public Transaction{

public:

BuyTransaction

 

{ parameters }

: Transaction(createLogString

 

(parameters))

 

// pass log info to base class constructor

{. . . }

. . . 

private:

static std::string

 

createLogString

 

(parpameters) ; 

};

Don’t call virtual functions during construction or destruction, because

such calls will never go to a more derived class than that of the 

currently executing constructor or destructor.

Things to remember

ITEM 9 : Never call virtual functions during construction or desITEM 9 : Never call virtual functions during construction or destructiontruction



ITEM 10 : Have assignment operators return a reference to *thisITEM 10 : Have assignment operators return a reference to *this

Chain of assignment

▲ Right-associative assignment

▲ Example

int

 

x,y,z;

x=y=z=15;

Page 20

x=(y=(z=15));

class Widget{

public:

…

Widget& operator = (const Widget& rhs)

 

// return type is a reference to the current class

{

…

return *this;

 

// return the left-hand object

}

…

};



ITEM 10 : Have assignment operators return a reference to *thisITEM 10 : Have assignment operators return a reference to *this

▲ This convention applies to all assignment operators (+=, -=, *=, etc)

class Widget{

public:

…

Widget& operator

 

+=

 

(const Widget& rhs)

{

…

return *this;

}

Widget& operator = (int

 

rhs)

 

// it applies even if the operator’s parameter type is 

{

 

// unconventional

…

return *this;

}

…

};

Page 21

Have assignment operators return a reference to *this

Things to remember


	Effective C++
	ITEM 5 : Know what functions C++ silently writes and calls
	ITEM 5 : Know what functions C++ silently writes and calls
	ITEM 5 : Know what functions C++ silently writes and calls
	ITEM 6 : Explicitly disallow the use of compiler-generated functions you do not want
	ITEM 6 : Explicitly disallow the use of compiler-generated functions you do not want
	ITEM 7 : Declare destructors virtual in polymorphic base classes
	ITEM 7 : Declare destructors virtual in polymorphic base classes
	ITEM 7 : Declare destructors virtual in polymorphic base classes
	ITEM 8 : Prevent exceptions from leaving destructors
	ITEM 8 : Prevent exceptions from leaving destructors
	ITEM 8 : Prevent exceptions from leaving destructors
	ITEM 8 : Prevent exceptions from leaving destructors
	ITEM 8 : Prevent exceptions from leaving destructors
	ITEM 9 : Never call virtual functions during construction or destruction
	ITEM 9 : Never call virtual functions during construction or destruction
	ITEM 9 : Never call virtual functions during construction or destruction
	ITEM 9 : Never call virtual functions during construction or destruction
	ITEM 9 : Never call virtual functions during construction or destruction
	ITEM 10 : Have assignment operators return a reference to *this
	ITEM 10 : Have assignment operators return a reference to *this

