Effective C++

Unit 5 - 10

Third Edition

Knowledge Discovery & Database Research Lab

Page 1

ITEM 5 : Know what functions C++ silently writes and calls

B Copy constructor, copy assignment operator, destructor

A |f you don’t declare no constructors,compilers will declare a default constructor.
class Empty{};

class Empty{

public:
Empty(Af. . . } /| default constructor
Empty(const Empty&rhs) {. . . } /| copy constructor
~Empty(Af. . . } /| destructor

Empty&operator = (const Empty&rhs) {. . . } /| copy assignment operator
3

A The following code will cause each function to be generated

Empty e1; /| default constructor
/| destructor
Empty e2(e1); /| copy constructor
e2 = ef; /| copy assignment operator

Page 2

ITEM 5 : Know what functions C++ silently writes and calls

A What do the functions do?

@® give compilers a place to put “behind the scenes” code
A Generated destructor is non-virtual (see ltem 7)
A Copy constructor, copy assignment operator

® copy each non-static data member of the source object over to the target object

A Example template <typename T>

® Constructor class NamedObject {

blic:
: declared public

NamedObject(const char*name, const T&value);
® Copy constructor

: not declared

NamedObject(const std::string&name, const T&value);

® Copy assignment private:
: not declared std::string nameValue;
T objectValue;
}

NamedObject<int>no1(“Smallest Prime Number” ,2);

NamedObject<int>no2(no1); /] calls copy constructor
Page 3

ITEM 5 : Know what functions C++ silently writes and calls

A Code
template <class T>

class NamedObject {
public:
NamedObject(std::string& name, const T& value);

private:
std::string& nameValue;

const T objectValue; § Things to remember
A What should happen here ? ® Compilers may implicitly generate a class’ s
std::string newDog(“Persephone”); default constructor, copy constructor, copy

std::string oldDog(“Satch”™): assignment operator, and destructor.
NamedObject<int>p(newDog,2);
NamedObject<int>s(oldDog,36);

p=s;

m=) refuse to compile the code

Page 4

ITEM 6 : Explicitly disallow the use of compiler-generated
functions you do not want

B You'd like attempt to copy HomeForSale objects to not compile

class HomeForSale{ . . . };

HomeForSale h1;
HomeForSale h2;

HomeForSale h3(h1); mmm) attempt to copy h1, h2 — should not compile!

h1 = h2; the goal here is to prevent copying!

A Solution

® Declare the copy constructor and the copy assignment operator private

® Do not define class HomeForSale{
public:

private:

HomeForSale(const HomeForSale&); /| declarations only
HomeForSale& operator=(const HomeForSale&);
3
Page 5

ITEM 6 : Explicitly disallow the use of compiler-generated
functions you do not want

A Move the link—time error up to compile time

® By declaring the copy constructor and copy assignment operator private not in
HomeForSale itself

class Uncopyable{

protected:
Uncopyable(){} /| allow construction and destruction of derived objects
~Uncopyable(){}

private:
Uncopyable(const Uncopyable&); /] but, prevent copying

Uncopyable&operator=(const Uncopyable&);
%
Things to remember

class HomeForSale: private Uncopyablef{ : w : : : .
P Py ® To disallow functionality automatically provided

by compilers, declare the corresponding member

functions private and give no implementations.
Using a base class like Uncopyable is one way
to do this

ITEM 7 : Declare destructors virtual in polymorphic base classes

M Non-virtual vs virtual destructor (1)
A Avoid leaking memory and other resources

class TimeKeeper{ class TimeKeeper{

public: public:

TimeKeeper(); TimeKeeper();

~TimeKeeper(); ~virtual TimeKeeper();

b h

N /

TimeKeepr *ptk = getTimeKeeper();
delete ptk;

mm) C++ specifies that when a derived class object
is deleted through a pointer to a base class with
non-virtual destructor, results are undefined

Page 7

ITEM 7 : Declare destructors virtual in polymorphic base classes

B Non-virtual vs virtual destructor (2)

A When a class is not intended to be a base class, making the destructor virtual

is usually a bad idea
class Point{
public:
point (int xCoord, int Ycoord); - Non-virtual : 64bit

~point(); [/ ~virtual point() virtual : 96bit or 128bit
private:

int x,y;
};

class SpecialString: public std::string{

}
SpecialString *pss = new SpecialString(“Impending Doom”);

td::string *ps; i i
std::string “ps mm) SpecialString destructor

ps = pss; ,
won t be called

delete ps;
Page 8

ITEM 7 : Declare destructors virtual in polymorphic base classes

B Pure virtual destructor

class AWOV{
public:
virtual ~AWOV() = 0; /| declare
}
AWOV::~AWOV() {} /| definition of pure virtual destructor

® Pure virtual functions result in abstract classes.

@®The rule for giving base classes virtual destructors applied only to polymorphic base
classes

Things to remember

® Polymorphic base classes should declare virtual destructors.

If @ class has any virtual functions, it should have a virtual destructor.

®Classes not designed to be base classes or not designed to be used
polymorphically should not declare virtual destructors.

Page 9

ITEM 8 : Prevent exceptions from leaving destructors

O CO"Slder- class Widget{
@® Suppose v has ten Widgets in it. public:

® During destruction of the first one: ce
exception ~Widget() { . . . } /| might emit an exception

® The second one : exception 5

® Program : undefined behavior void doSomething()

{
A Cause std::vector<Widget> v;

® Destructors emitting exceptions
} | v is automatically destroyed here

Page 10

ITEM 8 : Prevent exceptions from leaving destructors

B What should you do ?
A Create a resource—managing classes

class DBConnection {
public:

static DBConnection create();
void close(); mm) close connection; throw an exception if closing fails

}
class DBConn {
® Destructor

public:
~DBConn() .
{ m) make sure database connections are
db.close(); always closed
}
private:

DBConnection db;

L
Page 11

ITEM 8 : Prevent exceptions from leaving destructors

B Propagation of exception
A Destructor throwing exceptions means trouble
A Two primary ways to avoid the trouble

(1) Terminate the program (2) Swallow the exception
DBConn::~DBConn() DBConn::~DBConn()
{ {
try {db.close();} try {db.close();}
catch(..)X{ catch(..){
make log entry that the call to close make log entry that the call to close
failed; failed;
std::abort(); }
} }

}
® |n general, swallowing exceptions is a bad idea.

® The program must be able to reliably continue execution even after an error
has been encountered and ignored.

Page 12

ITEM 8 : Prevent exceptions from leaving destructors

(3) Better strategy

DBConn::~DBConn() { private:
public: DBConnection db;
bool closed;
void close() { /| new function for L
db.close(); /| client use
close = true;
) m) The exception has to come from
~DBConn() { some non-destructor function
if (Iclosed) { /| close the connection
try { /| if the client didn’t
db.close();

}
catch(...) { [l if closing fails,
make log entry that the call to close failed;
}
}

}
Page 13

ITEM 8 : Prevent exceptions from leaving destructors

Things to remember

" Destructors should never emit exceptions. If functions called in a destructor
may throw, the destructor should catch any exceptions, then swallow them
or terminate the program.

" If class clients need to be able to react to exceptions thrown during an
operation, the class should provide a regular (i.e., non-destructor) function
that performs the operation.

Page 14

ITEM 9 : Never call virtual functions during construction or destruction

B Example : a class of hierarchy for modeling stock transactions
A important point : auditable

class Transaction{ /| base class for all transactions
public:

Transaction();

virtual void logTransaction() const = 0; // make type-dependent log entry

}
Transation::Transaction() /| implementation of bass class
{
logTransaction(); /| as final action, log this transaction
}
class BuyTransaction:public Transaction{ // derived class
public:
virtual void logTransaction() const; /| how to log transactions of this type
}

Page 15

ITEM 9 : Never call virtual functions during construction or destruction

class SellTransaction:public Transaction{ /| derived class
public:
virtual void logTransaction() const; /I how to log transactions of this type

BuyTransaction b;

A Call
BuyTransaction Transaction function
constructor constructor logTransaction

® Virtual functions never go down into derived classes

® |nstead, the object behaves as if it were of the base type.
® Base class parts of derived class objects are constructed before derived class parts are
® Derived class data members have not been initialized when base class constructors run

® The logTransaction function is pure virtual in Transaction.

= Unless it had been defined, the program wouldn’t link.
Page 16

ITEM 9 : Never call virtual functions during construction or destruction

A Example 2
class Transaction{ /| base class for all transactions

public:
Transaction();
{ init();} /| call to non-virtual
virtual void logTransaction() const = 0;

private:
void init()
{

logTransaction(); /] that calls a virtual!
}

};

® more insidious code: compile and link without complaint

® Most runtime systems will abort the program when the pure virtual is called.

Page 17

ITEM 9 : Never call virtual functions during construction or destruction

B Approach to this problem
A Turn logTransaction into a non-virtual function in Transaction

class Transaction{
public:
explicit Transaction(const std::string& loginfo);
void logTransaction(const std::string& loginfo) const; /| now a non-virtual func

3
Transaction::Transaction(const std::string& loginfo)
{

logTransaction(loginfo); mm) Now, a non-virtual call
}

Page 18

ITEM 9 : Never call virtual functions during construction or destruction

class BuyTransaction: public Transaction{
public:
BuyTransaction { parameters }
: Transaction(createLogString (parameters)) /] pass log info to base class constructor
{...}

private:
static std::string createLogString (parpameters) ;
3

® compensate by having derived classes pass necessary construction information up
to base class constructors

Things to remember

® Don't call virtual functions during construction or destruction, because
such calls will never go to a more derived class than that of the
currently executing constructor or destructor.

Page 19

ITEM 10 : Have assignment operators return a reference to «this

B Chain of assignment
A Right—associative assignment

int x,y,z;

x=y=2=15;

x=(y=(z=15));

A Example

class Widget{
public:

Widget& operator = (const Widget& rhs) // return type is a reference to the current class
{

return *this; /| return the left-hand object

}

1P Page 20

ITEM 10 : Have assignment operators return a reference to +this

A This convention applies to all assignment operators (+=, —=, *=, etc)

class Widget{
public:

Widget& operator += (const Widget& rhs)
{

return *this;

}

Widget& operator = (int rhs) /] it applies even if the operator’ s parameter type is
{ /| unconventional

return *this;
}

Things to remember

7 " Have assignment operators return a reference to -this

Page 21

	Effective C++
	ITEM 5 : Know what functions C++ silently writes and calls
	ITEM 5 : Know what functions C++ silently writes and calls
	ITEM 5 : Know what functions C++ silently writes and calls
	ITEM 6 : Explicitly disallow the use of compiler-generated functions you do not want
	ITEM 6 : Explicitly disallow the use of compiler-generated functions you do not want
	ITEM 7 : Declare destructors virtual in polymorphic base classes
	ITEM 7 : Declare destructors virtual in polymorphic base classes
	ITEM 7 : Declare destructors virtual in polymorphic base classes
	ITEM 8 : Prevent exceptions from leaving destructors
	ITEM 8 : Prevent exceptions from leaving destructors
	ITEM 8 : Prevent exceptions from leaving destructors
	ITEM 8 : Prevent exceptions from leaving destructors
	ITEM 8 : Prevent exceptions from leaving destructors
	ITEM 9 : Never call virtual functions during construction or destruction
	ITEM 9 : Never call virtual functions during construction or destruction
	ITEM 9 : Never call virtual functions during construction or destruction
	ITEM 9 : Never call virtual functions during construction or destruction
	ITEM 9 : Never call virtual functions during construction or destruction
	ITEM 10 : Have assignment operators return a reference to *this
	ITEM 10 : Have assignment operators return a reference to *this

