
1

Practices for Time
Complexity Analysis

Algorithms

Kyuseok Shim

SoEECS, SNU.

2

The Logarithm

Formal Definition
For any B, N > 0, logBN = K if B K = N.
If (the base) B is omitted, it defaults to 2 in computer
science.

Examples:
log 32 = 5 (because 25 = 32)

log 1024 = 10

log 1048576 = 20

log 1 billion = about 30

The logarithm grows much more slowly than N,
and slower than the square root of N.

3

Static Searching

Given an integer X and an array A, return the
position of X in A or an indication that it is not
present. If X occurs more than once, return any
occurrence. The array A is not altered.

If input array is not sorted, solution is to use a
sequential search. Running times:

Unsuccessful search: O(N); every item is examined

Successful search:

Worst case: O(N); every item is examined

Average case: O(N); half the items are examined

Can we do better if we know the array is sorted?

4

Binary Search

Yes! Use a binary search.

Look in the middle
Case 1: If X is less than the item in the middle, then look
in the subarray to the left of the middle

Case 2: If X is greater than the item in the middle, then
look in the subarray to the right of the middle

Case 3: If X is equal to the item in the middle, then we
have a match

Base Case: If the subarray is empty, X is not found.

This is logarithmic by the repeated halving
principle.

5

Binary Search Continued

Can do one comparison per iteration instead of
two by changing the base case.

See online code for details.

Average case and worst case in revised algorithm
are identical. 1 + log N comparisons (rounded
down to the nearest integer) are used. Example: If
N = 1,000,000, then 20 element comparisons are
used. Sequential search would be 25,000 times
more costly on average.

Back to interfaces

6

Binary Search Algorithm
int binarySearch(int a[], int x)
{

int low = 0, high = a.length - 1;
while(low <= high)
{

int mid = (low + high) / 2;
if(a[mid] < x)

low = mid + 1;
else if(a [mid] > x)

high = mid – 1;
else

return mid;
}
return NOT_FOUND;

}

7

Binary Search

Binary Search is an example of a data structure
implementation:

Insert: O (N) time per operation, because we must
insert and maintain the array in sorted order.

Delete: O (N) time per operation, because we must
slide elements that are to the right of the deleted element
over one spot to maintain contiguity.

Find: O(log N) time per operation, via binary search.

In this course we examine different data structures.
Generally we allow Insert, Delete, and Find, but
Find and Delete are usually restricted. Example: in
a stack, only last item is accessible.

8

Long pow(x, int n)

Long pow(long x, int n)

9

Exponentiation – O(n)
public static long pow(long x, int n)
{

if(n == 0)
return 1;

if(n == 1)
return x;

return x*pow(x, n-1);
}

10

Exponentiation – O(lon n)
public static long pow(long x, int n)
{

if(n == 0)
return 1;

if(n == 1)
return x;

if(isEven(n))
return pow(x * x, n / 2);

else
return pow(x * x, n / 2) * x;

}

11

Maximum Subsequence Sum
Problem

Examine a problem with several
different solutions.

Will look at four algorithms

Some algorithms much easier to code
than others

Some algorithms much easier to prove
correct than others

Some algorithms much, much faster (or
slower) than others

12

The Problem

Maximum Contiguous Subsequence Sum Problem
Given (possibly negative integers) A1, A2, …, AN, find
(and identify the sequence corresponding to) the
maximum value of (Ai + Ai+1 + …+ Aj).

The maximum contiguous subsequence sum is
zero if all the integers are negative. (Why?)

Examples (maximum subsequences are
underlined)

-2, 11, -4, 13, -4, 2

1, -3, 4, -2, -1, 6

13

Brute Force Algorithm
int MaxSubSum1(const vector<int> & A)
{

int MaxSum = 0;
for(int i = 0; i < A.size(); i++)

for(int j = i; j < A.size(); j++)
{

int ThisSum = 0;
for(int k = i; k <= j; k++)

ThisSum += A[k];
if(ThisSum > MaxSum)

MaxSum = ThisSum;
}

return MaxSum;
}

14

Subsequence Generation in
the Cubic Algorithm

a1 a2 a3 a4 a5a0

i=0

i=1

i=2

i=3
i=4
i=5

ㅓ=1
ㅓ=2

ㅓ=6
ㅓ=5

ㅓ=4
ㅓ=3

15

Analysis

Loop of size N inside of loop of size N inside of
loop of size N means O(N 3), or cubic algorithm.

Slight over-estimate (a factor of 6) that results
from some loops being of size less than N is not
important.

16

Actual Running Time

For N = 100, actual time is 0.47 seconds on a
particular computer.

Can use this to estimate time for larger inputs:

T(N) = cN 3

T(10N) = c(10N)3

= 1000cN 3

= 1000T(N)

Inputs size increases by a factor of 10 means that
running time increases by a factor of 1,000.

For N = 1000, estimate an actual time of 470
seconds. (Actual was 449 seconds).

For N = 10,000, estimate 449000 seconds (6
days).

17

How To Improve

Remove a loop; not always possible.

Here it is: innermost loop is unnecessary
because it throws away information.

ThisSum for next j is easily obtained from
old value of ThisSum:

Need Ai + A i+1 + … + A j-1 + Aj

Just computed Ai +A i+1 + …+ A j-1

What we need is what we just computed + Aj

18

The Better Algorithm

int MaxSubSum2(const vector<int> &A)
{

int MaxSum = 0;
for(int i = 0; i < A.size(); i++)
{

int ThisSum = 0;
for(int j = i; j < A.size(); j++)
{

ThisSum += A[j];
if(ThisSum > MaxSum)

MaxSum = ThisSum;
}

}
return MaxSum;

}

19

Analysis

Same logic as before: now the running time is
quadratic, or O(N 2)

As we will see, this algorithm is still usable for
inputs in the tens of thousands.

Recall that the cubic algorithm was not practical
for this amount of input.

20

Actual running time

For N = 100, actual time is 0.011 seconds on the
same particular computer.

Can use this to estimate time for larger inputs:

T(N) = cN 2

T(10N) = c(10N)2

= 100cN 2

= 100T(N)

Inputs size increases by a factor of 10 means that
running time increases by a factor of 100.

For N = 1000, estimate a running time of 1.11
seconds. (Actual was 1.12 seconds).

For N = 10,000, estimate 111 seconds (= actual).

21

Recursive Algorithm

Use a divide-and-conquer approach.

The maximum subsequence either
lies entirely in the first half

lies entirely in the second half

starts somewhere in the first half, goes to the last
element in the first half, continues at the first element in
the second half, ends somewhere in the second half.

Compute all three possibilities, and use the
maximum.

First two possibilities easily computed recursively.

22

Computing the Third Case

Easily done with two loops; see the code

For maximum sum that starts in the first half and
extends to the last element in the first half, use a
right-to-left scan starting at the last element in
the first half.

For the other maximum sum, do a left-to-right
scan, starting at the first element in the first half.

4 -3 5 -2 -1 2 6 -2
4* 0 3 -2 -1 1 7* 5

23

Coding Details

The code is more involved; see the online source.

Make sure you have a base case that handles
zero-element arrays.

Use a public static driver with a private recursive
routine.

Recursion rules:
Have a base case

Make progress to the base case

Assume it works

Avoid computing the same solution twice

24

Analysis

Let T(N) = the time for an algorithm to solve a
problem of size N.

Then T(1) = 1 (1 will be the quantum time unit;
remember that constants don't matter).

T(N) = 2 T(N / 2) + N
Two recursive calls, each of size N / 2. The time to solve
each recursive call is T(N / 2) by the above definition

Case three takes O(N) time; we use N, because we will
throw out the constants eventually.

25

int maxSumRec(const vector<int> &A, int left, int right)

{

if(left == right) // Base case

if(A[left] > 0)

return A[left];

else

return 0;

int center = (left + right) / 2;

int maxLeftSum = maxSumRec(A, left, center);

int maxRightSum = maxSumRec(A, center + 1, right);

int maxLeftBorderSum = 0, maxRightBorderSum = 0;
int leftBorderSum = 0, rightBorderSum = 0;

for(int i = center; i >= left; i--) {

leftBorderSum += A[i];

if(leftBorderSum > maxLeftBorderSum)

maxLeftBorderSum = leftBorderSum;

}

for(int i = center + 1; i <= right; i++) {

rightBorderSum += A[i];

if(rightBorderSum > maxRightBorderSum)

maxRightBorderSum = rightBorderSum;

}

return max3(maxLeftSum, maxRightSum, maxLeftBorderSum + maxRightBorderSum);

}

26

Bottom Line

T(1) = 1 = 1 * 1

T(2) = 2 * T(1) + 2 = 4 = 2 * 2

T(4) = 2 * T(2) + 4 = 12 = 4 * 3

T(8) = 2 * T(3) + 8 = 32 = 8 * 4

T(16) = 2 * T(4) + 16 = 80 = 16 * 5

T(32) = 2 * T(5) + 32 = 192 = 32 * 6

T(64) = 2 * T(6) + 64 = 448 = 64 * 7

T(N) = N(1 + log N) = O(N log N)

27

N log N

Any recursive algorithm that solves two half-sized
problems and does linear non-recursive work to
combine/split these solutions will always take
O(N log N) time because the above analysis will
always hold.

This is a very significant improvement over
quadratic.

It is still not as good as O(N), but is not that far
away either. There is a linear-time algorithm for
this problem; see the online code. The running time
is clear, but the correctness is non-trivial.

Space Complexity?

28

The Logarithm

Formal Definition
For any B, N > 0, logBN = K if B K = N.
If (the base) B is omitted, it defaults to 2 in computer
science.

Examples:
log 32 = 5 (because 25 = 32)

log 1024 = 10

log 1048576 = 20

log 1 billion = about 30

The logarithm grows much more slowly than N,
and slower than the square root of N.

29

Static Searching

Given an integer X and an array A, return the
position of X in A or an indication that it is not
present. If X occurs more than once, return any
occurrence. The array A is not altered.

If input array is not sorted, solution is to use a
sequential search. Running times:

Unsuccessful search: O(N); every item is examined

Successful search:

Worst case: O(N); every item is examined

Average case: O(N); half the items are examined

Can we do better if we know the array is sorted?

30

Binary Search

Yes! Use a binary search.

Look in the middle
Case 1: If X is less than the item in the middle, then look
in the subarray to the left of the middle

Case 2: If X is greater than the item in the middle, then
look in the subarray to the right of the middle

Case 3: If X is equal to the item in the middle, then we
have a match

Base Case: If the subarray is empty, X is not found.

This is logarithmic by the repeated halving
principle.

31

Binary Search Continued

Can do one comparison per iteration instead of
two by changing the base case.

See online code for details.

Average case and worst case in revised algorithm
are identical. 1 + log N comparisons (rounded
down to the nearest integer) are used. Example: If
N = 1,000,000, then 20 element comparisons are
used. Sequential search would be 25,000 times
more costly on average.

Back to interfaces

32

Binary Search Algorithm
int binarySearch(int a[], int x)
{

int low = 0, high = a.length - 1;
while(low <= high)
{

int mid = (low + high) / 2;
if(a[mid] < x)

low = mid + 1;
else if(a [mid] > x)

high = mid – 1;
else

return mid;
}
return NOT_FOUND;

}

33

Binary Search

Binary Search is an example of a data structure
implementation:

Insert: O (N) time per operation, because we must
insert and maintain the array in sorted order.

Delete: O (N) time per operation, because we must
slide elements that are to the right of the deleted element
over one spot to maintain contiguity.

Find: O(log N) time per operation, via binary search.

In this course we examine different data structures.
Generally we allow Insert, Delete, and Find, but
Find and Delete are usually restricted. Example: in
a stack, only last item is accessible.

34

Long pow(x, int n)

Long pow(long x, int n)

35

Exponentiation – O(n)
public static long pow(long x, int n)
{

if(n == 0)
return 1;

if(n == 1)
return x;

return pow(x * x, n / 2);
}

36

Exponentiation – O(lon n)
public static long pow(long x, int n)
{

if(n == 0)
return 1;

if(n == 1)
return x;

if(isEven(n))
return pow(x * x, n / 2);

else
return pow(x * x, n / 2) * x;

}

	Practices for Time Complexity Analysis
	The Logarithm
	Static Searching
	Binary Search
	Binary Search Continued
	Binary Search Algorithm
	Binary Search
	Long pow(x, int n)
	Exponentiation – O(n)
	Exponentiation – O(lon n)
	Maximum Subsequence Sum Problem
	The Problem
	Brute Force Algorithm
	Subsequence Generation in the Cubic Algorithm
	Analysis
	Actual Running Time
	How To Improve
	The Better Algorithm
	Analysis
	Actual running time
	Recursive Algorithm
	Computing the Third Case
	Coding Details
	Analysis
	슬라이드 번호 25
	Bottom Line
	N log N
	The Logarithm
	Static Searching
	Binary Search
	Binary Search Continued
	Binary Search Algorithm
	Binary Search
	Long pow(x, int n)
	Exponentiation – O(n)
	Exponentiation – O(lon n)

