Semantic Compression

1

Semantic Compression

- Real-life data are highly structured and there are strong correlations between the attributes and records.
- The syntactic compression algorithms are not designed to take advantage of such structures.
- Recently, some new schemes are proposed based on these observations.
- Naturally, such schemes are so-called semantic compression methods in contrary to the syntactic ones.

Semantic Compression

- First derive a description model by taking into account the semantic meaning of the attributes
- Represent the original data by the derived model.
- The data, that cannot derive from the model, are explicitly stored

Syntactic Compression

- Statistical Model vs. Dictionary-based Model
 - Statistical Model
 - Each distinct character of the input data is encoded with the code assignment being based on the probability of the character's appearance in the data.
 - E.g. Huffman coding, Arithmetic coding
 - Dictionary-based Model
 - Maintains a dictionary that contains a list of commonly occurring character strings in data and their corresponding codes
 - E.g. LZW, Vector Quantization
- Lossless vs. Lossy
 - Lossless: Huffman coding, Arithmetic coding, LZW coding
 - Lossy: Vector quantization

Syntactic Compression

- Huffman Coding
 - First developed by David Huffman.
 - Symbols that have higher probabilities will have shorter codes than symbols that have lower probabilities.
 - The two symbols that have minimum probabilities will have the same length.
- LZW(Lempel-Ziv-Welch) coding
 - Used both in UNIX compress and DOS pkzip
 - Organized around a string translation table which contains a set of character strings and their corresponding code values
 - The string table has prefix property that for every string in the table, its prefix is also in the table.

Lossless Compression(static)

Dictionary Encoding

- Assigns an ID to each new word input: ABC ABC BC DDD
 Compressed Data: 1 1 2 3
 Dictionary: ABC =1, BC = 2, DDD=3
- Binary Encoding
 - Binary representation of numeric data input: "100" "20" "50"
 Encoding: 100 20 50

Lossless Compression(static)

Differential Encoding (or Delta Encoding)

 Replaces a data item with a code value that defines its relationship to a specific data item ex) input: 100 120 130 Compressed Data: 100 20 30

input: Johnson Jonah Jones Jorgenson Compressed Data: (0) Johnson (2)nah (3)es (2)rgenson Lossless Compression (semi-adaptive)

- Huffman Encoding
 - Assigns shorter codes to more frequently appearing symbols and longer codes to less frequently appearing symbols

Lossless Compression(adaptive)

LZ(Lempel-Ziv) Coding

- Adaptive dictionary encoding
- Converts variable-length strings into fixedlength codes

Input: {A B AB AA ABA}

Compressed Data: {(0,A)(0,B)(1,B)(1,A)(3,A)}

- new table entry is coded as (i,c)
 - i: the codeword for the existing table entry(12 bit)
 - c: the appended character(8bit)

Fascicle

- [Jagadish, Madar, Ng 99]
- Fascicles
 - Informally, subsets of a relation having very si milar values for many attributes
 - Technically, a k-D fascicle of a relation is a su bset of records having k compact attributes
- An attribute A of a subset F of records is compact with tolerance t, if:
 - the range of A-values (numeric), or
 - the number of distinct A-values (categorical)
 of all the records in F does not exceed t

What is a Fascicle? (cont.)

error≤4	error≤5,000	error≤25,000	error=0	
age	salary	assets	credit	3-D Fascicles
20	30,000	25,000	good	25,000,50,000, 1, 2
30	35,000	50,000	good	35,000 50,000 good :3
35	40,000	75,000	good	
40	100,000	175,000	poor	2 D Eracialar
50	110,000	250,000	good	2-D Fascicles
60	50,000	150,000	poor	137,500 poor :2
70	35,000	125,000	poor	157,500 poor .2
75	15,000	100,000	good	

- Compress data by storing representative values (e.g., "centroid") only once for each attribute cluster
- Lossy compression: information loss is controlled by the notion of "similar values" for attributes (user defined)

Fascicle

- Lossless:
 - First, use fascicles to physically re-order the relation
 - Compact attributes are *not* projected away
 - Apply syntactic compression
 - Syntactic compression dependent on the physic al ordering of records
- Lossy:
 - First, use fascicles and project away compact attr ibutes
 - Apply syntactic compression

Compressing with Fascicles

- k-dimensional fascicle F(k,t): subset of records with k compact attributes
 - Compress by storing single centroid value for k compact attributes
- User-defined compactness tolerance t (vector) specifies the allowable loss in the compression <u>per attribute</u>
 - E.g., t[Duration] = 3 means that all "Duration" values in a fascicle are within 3 of the centroid value

Compressing with Fascicles

- Problem Statement
 - Given a table T and a compactness-tolerance vector t,
 - Find fascicles within the specified tolerances such that the total storage is minimized (so-called 'storage minimization problem')
- Problem Decomposition
 - (1) Find candidate fascicles in T
 - (2) Select the best fascicles to compress T
- NP-Complete
 - Corresponds to Minimum Cover Problem [Karp 72]

Storage Minimization Problem

- Given a collection C of subsets of a finite set S and a positive integer K,
- Is there a subset C'⊆C with |C'|≤K such that every element of S belongs to at least one member of C'?
- NP-Complete
- Greedy selection is among the best existing heuristics

How to Find Candidate Fas cicles?

- Operates on the lattice consisting of all po ssible subsets of records
- Finding all fascicles needs too MUCH effort
- Greedy selection only needs some good q uality candidates, not all of them
- Thus, we adapt randomized strategy
 - Pick some good starting fascicles
 - Grow them to maximal sizes to ensure quality by one scan over data

Tip set & Maximal set

- Tip set
 - It is hard to find the exact k-D fascicles.
 - To find a k-D fascicle for a given value k.

•
$$(\perp \subseteq S_1 \subseteq S_2 \subseteq S_3 \subseteq \ldots \subseteq \tau)$$

- ${\scriptscriptstyle \top}$: entire relation, ${\perp}$: empty set
- S_t : i-D fascicle
- S_{t+1} : j-D fascicle, a superset of S_t
- Then, $j \leq i$
- For $1 \le k \le n$, if $j < k \le i$, we call S_t a tip set.
- In other words, S is a k-D tip set if S is a k-D fascicle, and there is an parent T of S such that T is a j-D fascicle with j < k.
- Maximal set
 - S is a k-D maximal set if S is a k-D fascicle, and for all supersets T of S, T is a j-D fascicle with j < k

Why tipset? -Example

- We want 2-D fascicle.
- We add one more tuple to 4–D fascicle.
- But, it becomes 1-D fascicle.

1-D fascicle

Algorithm Single-k

- Input : A dimensionality k, number of fascicles P, a buffer of b pages, and a relation R of r pages
- Output : P k-D fascicles
- Divide R into q disjoint pieces, each comprising up to b randomly chosen pages from R, i.e., q = r/b ¬.
- 2. For each piece : /* choosing initial tip sets */
 - 2.1 Read the piece into main memory.
 - 2.2 Read the records in main memory to produce a series of tip sets.
 - 2.3 Repeat 2.2, each with a different permutation of the records, until P/q tip sets are obtained.
- 3. /* growing the tip sets */
 - Grow all P tip sets with one pass over the relation.
 - Output the grown tip sets.

Single-k algorithm - Example

We want 2-D fascicles

compactness tolerance $t_{Position} = 1$, $t_{Points} = 10$, $t_{Played Mins} = 60$, $t_{Penalty Mins} = 20$

Name	Position	Points	Played Mins	Penalty Mins
Blake	Defense	43	395	34
Borque	Defense	77	430	22
Cullimore	Defense	3	30	18
Gretzky	Defense	130	458	26
Konstantinov	Defense	10	560	120
Мау	Winger	35	290	180
Odjick	Winger	9	115	245
Tkachuk	Centre	82	530	160
Wotton	Defense	5	38	6

- Green cells represent that the attributes are compact.
- Red cells represent that the attributes is not compact.
- Black cells represent that the attributes need not check because those cells were red cells in previous step.

Greedy Selection for the Single-k algorithm

- To represent the storage savings induced by a fascicle F, it is weighted by wt(F) = k * |F|, where k is the dimensionality of F.
- In a straightforward implementation of the greedy selection, we select the candidate fascicle with the highest weight.
 - adjust the weight of the remaining fascicles.
- If A is selected fascicle, then the adjusted weight of each remaining fascicle F is given by
 - Wt(F/A) = k * |F A|
- Then from among the remaining fascicles, we pick the one with the heaviest adjusted weight, and repeat.

The multi-k Algorithm

- Exploits single-k algorithm to produce fascicles all having dimensionalities ≥ k.
- Recall from the Single-k algorithm how a k-D tip set corresponds to a path (⊥, S₁, S₂, S₃, S_t)
- While Single-k algorithm construct a path (\perp , S₁, S₂, S₃,S_t) and obtains St as a k-D tip set,
 - the Multi-k algorithm uses exactly the same path to obtain larger sets on the path with dimensionality i, for i ≥ k.

Classification

Classification

- Given:
 - Database of tuples, each assigned a class label
- Develop a model/profile for each class
 - Example profile (good credit):
 - (25 <= age <= 40 and income > 40k) or (married = YES)
- Sample applications:
 - Credit card approval (good, bad)
 - Bank locations (good, fair, poor)
 - Treatment effectiveness (good, fair, poor)

What is Classification?

- Given a database of tuples
 - Each tuple consists of
 - A set of Attribute values
 - A assigned categorical class label
- Develop a model/classifier for each class based on the set of attributes
- Use the model to predict the class lable of future data

Classification Model

- Decision Tree Model
- Probabilistic Model(Bayesian etc.)
- Neural Network Model
- Support Vector Machine
- K-nearest neighbor

Decision Trees

Decision Trees

- Pros
 - Fast execution time
 - Generated rules are easy to interpret by humans
 - Scale well for large data sets
 - Can handle high dimensional data
- Cons
 - Cannot capture correlations among attributes
 - Consider only axis-parallel cuts

Decision Tree Algorithms

- Classifiers from machine learning community:
 - ID3[Qui86]
 - C4.5[Qui93]
 - CART[BF084]
- Classifiers for large database:
 - SLIQ[MAR96], SPRINT[SAM96]
 - SONAR[FMMT96]
 - Rainforest[GRG98]
- Pruning phase followed by building phase

Decision Tree Algorithm

- A decision tree is created in two phases:
 - Building Phase
 - Recursively split nodes using best splitting attribute for node until all the examples in each node belong to one class
 - Pruning Phase
 - Prune leaf nodes recursively to prevent overfitting
 - Smaller imperfect decision tree generally achieves better accuracy

SPRINT

- Shafer, Agrawal, Manish 96]
- Building Phase
 - Initialize root node of tree
 - while a node N that can be split exists
 - for each attribute A, evaluate splits on A
 - use best split to split N
- Use gini index to find best split
- Separate attribute lists maintained in each node of tree
- Attribute lists for numeric attributes sorted

How can we get best split?

- Select the attribute that is most useful for classifying training set
- gini index and entropy
 - Statistical properties
 - Measure how well an attribute separates the training set
 - Entropy (entropy(T) = $-\Sigma p_j \times \log_2(p_j)$)
 - Gini Index (gini(T) = $1 \Sigma p_j^2$)

Attribute List

- SPRINT creates an attribute salary 10000 list for each attribute 40000 Numerical attribute list is 15000 sorted 75000 18000 Attribute records contains
 - Attribute value
 - Class label
 - Index of the record

[Training set]

36
Attribute list (cont.)

salary

education high school

graduate

under graduatereject

10000 reject

15000 accept

label

reject

accept

18000 reject

- All attribute lists are made at the root
- As the tree is grown, the attribute lists belonging to each node are partitioned and associated with the children

-	salary	label	rid	education	label	rid
	10000	reject	0	high school	reject	0
	15000	accept	2	under graduat	eaccept	1
	18000	reject	4	under graduat	e reject	2
	40000	accept	1	graduate	accept	3
	75000	accept	3	graduate	accept	4
				-		

ves

rid

0

2 4

rid

0

2

4

label

salary	label	rid
40000	accept	1
75000	accept	3

education	label	rid
under graduate	accept	1
graduate	accept	3

Histogram

- For continuous attributes, two histograms are associated with each decision-tree node. These histograms, denoted as C_{above} and C_{below}
 - C_{below:}: maintains this distribution for attribute records that already been processed
 - C_{above}: maintains this distribution for attribute records that have not been processed

Finding Split Points

- Numeric attributes
 - C_{below} initials to zeros
 - C_{above} initials with the class distribution at that node
 - Scan the attribute list to find the best split
- Categorical attributes
 - Scan the attribute list to build the count matrix
 - Use the subsetting algorithm to find the best split

Choose Position 3 has lowest Entropy!

Evaluate categorical attributes

[Attribute List]

label	rid
reject	0
accept	1
reject	2
accept	3
accept	4
	reject accept reject accept

[Histogram for education]

		accept	reject
(high school	0	1
$\left \right.$	under graduate	1	1
, 	graduate	2	0
//			

• 3 distinct value \rightarrow 2³-2 split condition exists!

{high school} $Entropy_{split} (S) = \frac{1}{5} \times \frac{1}{1} \log 1 + \frac{4}{5} \times \left(-\frac{3}{4} \log \frac{3}{4} - \frac{1}{4} \log \frac{1}{4}\right)$ {under graduate} {under graduate} $Entropy_{split} (S) = 0.950978$ {graduate} $Entropy_{split} (S) = \frac{3}{5} \times 0.918296 + \frac{2}{5} \times 0 = 0.550978$ {high school, under graduate} $Entropy_{split} (S) = \frac{3}{5} \times 0.918296 + \frac{2}{5} \times 0 = 0.550978$ {under graduate, graduate} $Entropy_{split} (S) = \frac{3}{5} \times 0.918296 + \frac{2}{5} \times 0 = 0.550978$ {under graduate, graduate} $Entropy_{split} (S) = 0.550978$ {high school, graduate}

Entropy $_{split}(S) = 0.811278$

Choose {graduate} has lowest Entropy!

SPARTAN

- [S. Babu, M. N. Garofalakis, and R. Rastogi 01]
- Model-Based Semantic Compression (MBSC)
 - Extract *Data Mining models* from the data table
 - Use the extracted models to construct an effective compression plan
 - Lossless or lossy compression
- SPARTAN system: specific instantiation of MBSC framework
 - Key observation: row-wise attribute clusters (a-la fascicles) are not sufficient

(e.g., Y = aX + b)

 Idea: use carefully-selected collection of Classification and Regression Trees (CaRTs) to capture such "vertical" correlations and *predict values for entire columns*

SPARTAN Example CaRT Models

SPARTAN Compression Problem Formulation

- Given:
 - Data table T over set of attributes X and per-attribute error tolerances
- Find:
 - Set of attributes P to be predicted using CaRT models (and corresponding CaRTs+outliers) such that
 - Each CaRT uses only predictor attributes in X-P
 - Each attribute in P is predicted within its specified tolerance
 - The overall storage cost is minimized
 - *materialization cost*: storage for predictor attributes in X-P
 - *prediction cost*: storage for CaRT models + outliers

SPARTAN Compression Problem

- Non-trivial problem!
 - Space of possible CaRT predictors is exponential in the number of attributes
 - CaRT construction is an expensive process (multiple passes over the data)

SPARTAN Architecture

From [S. Babu, M. N. Garofalakis, and R. Rastogi 01]

SPARTAN's DependencyFinder

- *Input:* Random sample of input table T
- Output: A Bayesian Network (BN) identifying strong dependencies and "predictive correlations" among T's attributes
- BN Semantics: An attribute is independent of all its non-descendants *given its parents*
- Use BN to restrict (huge!) search space of possible CaRT models: Build CaRTs using "neighboring" attributes (e.g., parents) as predictors
- SPARTAN uses an (enhanced) constraint-based BN builder

SPARTAN's CaRTSelector

- "Heart" of the SPARTAN semantic-compression engine
- Uses the constructed Bayesian Network on T to drive the construction and selection of the "best" subset of CaRT predictors
- Output: Subset of attributes P to be predicted (within tolerance) and corresponding CaRTs

SPARTAN's CaRTSelector (cont.)

- Complication: A_n attribute in P *cannot* be used as a predictor for other attributes
 - Otherwise, errors will compound!!
- Hard optimization problem -- Strict generalization of Weighted Maximum Independent Set (WMIS) (NP-hard!!)
- Two solutions
 - Greedy heuristic
 - Novel heuristic based on WMIS approximation algorithms

The CaRTBuilder Component

- Input: Random sample of the input table; target predicted attribute X_p; predictor attributes {X₁,...,X_k}; and error tolerance for X_p
- Output: Minimum-storage-cost CaRT for X_p using {X₁,...,X_k} as predictors, within the specified error tolerance
- Contributions
 - Novel algorithms for exploiting error tolerances in CaRT building
 - Integrated tree building and pruning for regression trees (dynamic programming algorithm)

The RowAggregator Component

- Input: Sub-table of materialized data attributes returned by the CaRTSelector
- Output: Fascicle-based (lossy) compression scheme for sub-table
- Summary
 - Attribute errors in sub-table should not propagate through the CaRTs to the predicted attributes
 - Algorithms based on fascicle algorithms [Jagadish, Madar, Ng 99]