
Association Rules and
Sequential Pattern Mining

Kyuseok Shim

Seoul National University

Motivation
� Many applications require sequential pattern miningMany applications require sequential pattern miningMany applications require sequential pattern miningMany applications require sequential pattern mining

� Datasets typically include quantity information

� However, traditional techniques cannot take it into account

� Quantity information can provide useful insights to the users

Web Access
Log Analysis

E-Commerce

Mail Order
Companies

Computer
���� Digital Camera

Computer
���� Switch Hub

Outline

� Association Rule Mining Algorithms
� Sequential Pattern Algorithms
� Summary

Association RulesAssociation RulesAssociation RulesAssociation Rules

Association Rules

� Given:
� A database of customer transactions

� Each transaction is a set of items

� Find all rules X => Y that correlate the presence of
one set of items X with another set of items Y
� Example: 98% of people who purchase diapers and baby

food also buy beer.

� Any number of items in the consequent/antecedent of a
rule

� Possible to specify constraints on rules (e.g., find only
rules involving expensive imported products)

Association Rules

� Sample Applications

� Market basket analysis

� Attached mailing in direct marketing

� Fraud detection for medical insurance

� Department store floor/shelf planning

Problem Decomposition

1. Find all sets of items that have minimum
support

� Most expensive phase

� Lots of research

2. Use the frequent itemsets to generate the
desired rules

� Generation is straight forward

� X X X X →→→→ YYYY [[[[support, confidencesupport, confidencesupport, confidencesupport, confidence]]]]

b, e40

a, b, c, e30

b, c, e20

a, c, d10

ItemsTID

database in the ons transactiof # total

in items theall containing ons transactiof #
 support

YX ∪=

X

YX

 contaning ons transactiof #

 and both contain that ons transactiof #
 confidence=

� For For For For min_supportmin_supportmin_supportmin_support = 50%, = 50%, = 50%, = 50%, min_confidencemin_confidencemin_confidencemin_confidence
= 50%= 50%= 50%= 50%

� B => C with 50% support and 66% B => C with 50% support and 66% B => C with 50% support and 66% B => C with 50% support and 66%
confidenceconfidenceconfidenceconfidence

Support and Confidence

The Apriori Algorithm :
Key Observation

� Every subset of a frequent itemset is also
frequent itemset.

� If {beer, diaper, nuts} is frequent, {beer,

diaper} must be frequent.

� If there is any itemset which is infrequent,

its superset will not be generated!

� A powerful candidate set pruning technique.

An Apriori Example

b, e40

a, f50

a, b, c, e,30

b, c, e20

a, c, d, f10

ItemsTID

Min_sup=2

3e

1d

2f

3c

3b

3a

SupItemset

Data base D 1-candidates

Scan D

3e

2f

3c

3b

3a

SupItemset

Freq 1-itemsets

ce

bf

af

bc

ae

ac

cf

be

ab

Itemset

2-candidates

0bf

2af

ce

be

bc

ae

ac

ab

Itemset

2

1

2

2

3

1

Sup

3be

ce

bc

af

ac

Itemset

2

2

2

2

Sup

Freq 2-itemsets

bce

Itemset

3-candidates

bce

Itemset

2

Sup

bce

acf

Itemset

3-candidates

Scan D

Freq 3-itemsets

pruning

Scan D

bce

Itemset

2

Sup

� From From From From [Agrawal, Srikant 1994] [Agrawal, Srikant 1994] [Agrawal, Srikant 1994] [Agrawal, Srikant 1994]

The Apriori Algorithm

� Ck: Candidate itemset of size k
� Lk : frequent itemset of size k

� L1 = {frequent items};
� for (k = 1; Lk !=∅; k++) do

� Ck+1 = candidates generated from Lk;
� for each transaction t in database do increment

the count of all candidates in Ck+1 that are
contained in t

� Lk+1 = candidates in Ck+1 with min_support
� return ∪k Lk;

Basic Sequential Pattern
Algorithm

What is sequential pattern?

� Customers typically rent “Star Wars” , then
“Empire Strikes Back” , and the “Return of
the Jedi” .

� Useful time-related or ordered sequential
pattern results apply to many scientific and
business domains
� Customer purchase behavior

� Web access patterns

� Scientific experiments

� Disease treatments

� DNA sequences

Problem Statement

<(30) (40 70) (90)>4

<(90)>5

<(30 50 70)>3

<(10 20) (30) (40 60 70)>2

<(30) (90)>1

Customer SequenceCustomer ID

Sequence Database

Sequence : <(10 20) (30) (40 60 70)>

itemset/element/transaction(TID)

Length = 6<(30) (90)> ≡ <30 90>

<30 90> <30 (40 70) 90>

<30 (40 70) 90> contains <30 90>

subsequence
super sequence

� Support : the number(ratio) of tuples in database containing the sequence
� Min_support : user-specified support threshold
� Sequential pattern : the sequence is contained by at least min_support

Problem Definition

� Given a sequence database and a min_support, to
find the complete set of frequent sequential
patterns in the database.

� In the previous example,

<30 (40 70)>

<30 90>

Sequential patterns
with support >= 20%

An Example
� Apriori heuristic

� Any super-pattern of a non-frequent pattern cannot be frequent

� Breadth first algorithm (Given min_support = 50%)

<d c>3

<c d>4

<c d c>6

<c a (b d) c>5

<(a b) c d>2

<c c>1

SequenceSID

<c d>

<c c>

<d c>

<a a> <b b> <c c> <d d>

<a b> <b a> <(a b)>

<a c> <c a> <(a c)>

<a d> <d a> <(a d)>

<b c> <c b> <(b c)>

<b d> <d b> <(b d)>

<c d> <d c> <(c d)>

2

<c c d> …

Ø

Candidates

Ø3

<c>, <d>1

Sequential
patterns

Length

Depth-First
Without-Candidate Style

Breadth-First
Apriori Style

General Constraint issue

Overview

� The Roadmap of topics discussed in this tutorial

Apriori [AS95]

GSP [AS96]

SP Algorithm

FreeSpan [HPM00]

PrefixSpan [PHM01]

SPIRIT [GRS99] PrefixGrowth [PHW02]

DIM-SEQ [PHW01]

GSP (1)

� General structure is similar to that of
Apriori sequence phase.

� Key Operations

� Candidate generation

� Counting candidates

� Processing taxonomies

GSP (2)
� Candidate generation

� Join condition
� If the subsequence obtained by dropping the first item of s1

is the same as the subsequence obtained by dropping the
last item of s2

� e.g.
� < (10 20) 30 40 >, < 20 30 40 50 >
� < 10 20 (30 40) >, < 20 (30 40 50) >
� < 10 >, < 20 >

� Join operation
� The sequence s1 extended with the last item in s2.
� The added item becomes a separate element if it was a

separate element in s2, and part of the last element of s1
otherwise.

� e.g.
� < (10 20) 30 40 >, < 20 30 40 50 > → < (10 20) 30 40 50 >
� < 10 20 (30 40) >, < 20 (30 40 50) > → < 10 20 (30 40 50) >
� < 10 >, < 20 > → < 10 20 > , < (10 20) > ∵<(N)20>, <(N 20)>

PrefixSpan (1)

� J. Pei, J. Han, B. Mortazavi-Asl, H.
Pinto, Q. Chen, U. Dayal and M. Hsu
[PHM01]

� Depth first & Divide and conquer
algorithm

PrefixSpan (2)

� J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen,
U. Dayal and M. Hsu [PHM01]

� Depth first & Divide and conquer algorithm

� PrefixSpan vs. FreeSpan
� Only prefix-based projection : less projections and

quickly shrinking the projected DB

� PrefixSpan vs. GSP
� PrefixSpan makes no candidate.

� The longer the sequence patterns, the larger the
candidates GSP has.

� However, PrefixSpan makes projections as many as
frequent patterns, therefore the performance of
PrefixSpan is dependant on projection cost.

PrefixSpan (3)
� Given a sequence α = <e1e2…en>,

� a sequence β = < e'1e'2…e'm > (m≤n) is a prefixprefixprefixprefix of α if and
only if e'i = ei for (i≤m-1) , e'm⊆ em, and all the items in (em–
e'm) are alphabetically after those in e'm.

� when β α, subsequence α' of α is a projectionprojectionprojectionprojection of α w.r.t.
prefix β if and only if α' has prefix β and there exists no proper
super-sequence α" of α' such that α" is a subsequence of α
and also has prefix β.

� sequence γ = <emem+1…en> is the postfixpostfixpostfixpostfix of α w.r.t. prefix β,
where e"m = (em – e'm), denoted as γ = α/β or α = β·γ

αααα = <a(abc)(bc)d(acf)>, ββββ = <ab>
αααα’ = the projection of αααα w.r.t. ββββ = <a(bc)(bc)d(acf)>
γγγγ = αααα’/ββββ = <(_c)(bc)d(acf)>
ββββ is a prefix of αααα’, and γγγγ is the postfix of αααα’ w.r.t. ββββ.

PrefixSpan (4)

� Outline of the method

1: PrefixSpan(α, l, S|α)

2: Scan S|α once, find the set of frequent items b such that

3: (a) b can be assembled to the last element of α to form

a sequential pattern; or

4: (b) can be appended to α to form a sequential pattern.

5: For each frequent item b, append it to α to form a sequential

pattern α’, and output α’;

6: For each α’, construct α’-projected database S|α’ , and

call PrefixSpan(α’, l+1, S|α’)

F

PrefixSpan (5)
� Example (Given min_support = 50%)Example (Given min_support = 50%)Example (Given min_support = 50%)Example (Given min_support = 50%)

30

20

10

SID

<d c (a b)>

<b (c a)>

<(a b) c>

Sequence Database

1-frequent sequence
<a>, , <c>

Having prefix <a> Having prefix Having prefix <c>

30

10

SID

<(_b)>

<(_b) c>

Projected Database

20

10

SID

<(c a)>

<c>

Projected Database

30

20

SID

<(a b)>

<(_a)>

Projected Database

1-frequent sequence
∅∅∅∅

1-frequent sequence
<c>

1-frequent sequence
<_b>

Having prefix <(ab)> Having prefix <bc>

10

SID

<c>

Projected Database

20

SID

<(_a)>

Projected Database

1-frequent sequence
∅∅∅∅

1-frequent sequence
∅∅∅∅

F
F

F F

PrefixSpan (6)

� Scaling up techniques
� Bi-level projection

� To reduce the number of projection, bi-level
algorithm construct projection not by 1-sequences,
but by 2-sequences.

� To get 2-sequences, bi-level use a GSP-like method.

� This method reduces the number of projection, but it
makes a number of candidates.

� Pseudo-projection
� If the projected database fits in main memory,

instead of constructing a physical projection,
pseudo-projection uses pointers as a pseudo-
projection.

Summary

� Association rule mining and Sequential pattern
mining have interesting applications

� Breadth-first and Depth first style algorithms are
developed

� Maximal patterns were introduced for compact
representations

References (1)

� [AS95] R. Agrawal and R. Srikant. “Mining
sequntial patterns,” ICDE, 1995.

� [AS96] R. Agrawal and R. Srikant. “Mining
Sequential patterns: Generalizations and
performance improvements,” EDBT, 1996.

� [GRS99] M. Garofalakis, R. Rastogi, and K. Shim.
“Spirit: Sequential pattern mining with regular
expression constraints,” VLDB, 1999.

� [HPM00]J. Han, J. Pei , B. Mortazavi-Asl, H.
Chen, U. Dayal and M. Hsu. “FreeSpan: frequent
pattern-projected sequential pattern mining,” KDD,
2000.

References (2)

� [PHM01] J. Pei, J. Han, B. Mortazavi-Asl, H.
Pinto, Q. Chen, U. Dayal and M. Hsu. “PrefixSpan:

Mining Sequential Patterns Efficiently by Prefix-
Projected Pattern Growth,” ICDE, 2001.

� [PHP01] H. Pinto, J. Han, J. Pei, K. Wang, Q.
Chen, U. Dayal. “Multi-Dimensional Sequential
Pattern Mining,” CIKM, 2001.

� [PHW02] J. Pei, J. Han, and W. Wang. “Mining

sequential patterns with constraints in large
databases,” CIKM, 2002

