Associlation Rules and

!'_ Sequential Pattern Mining

Kyuseok Shim
Seoul National University

Motivation

= Many applications require sequential pattern mining
= Datasets typically include quantity information
= However, traditional techniques cannot take it into account
= Quantity information can provide useful insights to the users

I_g_
<

i Outline

s Association Rule Mining Algorithms

s Sequential Pattern Algorithms
= Summary

!'_ Association Rules

Assoclation Rules

= Given:
= A database of customer transactions
= Each transaction is a set of items

» Find all rules X => Ythat correlate the presence of
one set of items X with another set of items Y

= Example: 98% of people who purchase diapers and baby
food also buy beer.

= Any number of items in the consequent/antecedent of a
rule

= Possible to specify constraints on rules (e.qg., find only
rules involving expensive imported products)

i Assoclation Rules

= Sample Applications
= Market basket analysis
= Attached mailing in direct marketing
= Fraud detection for medical insurance
= Department store floor/shelf planning

i Problem Decomposition

1. Find all sets of items that have minimum
support

= Most expensive phase
= Lots of research

2. Use the frequent itemsets to generate the
desired rules

= (3eneration is straight forward

iSupport and Confidence

= X - Y [support, confidence]

#of transactonscontainingall theitemsin X LY

support= .
total# of transaconsin the databas
. _ #of transactonsthatcontainboth X andY
confidence= _ _
#of transactonscontaning X
. . . TID |tems
= For min_support = 50%, min_confidence
_ o 10 a, c,d
= 50%
. 20 b, c, e
= B =>C with 50% support and 66% 0 1ab oo
confidence " b’ e’ ’

he Apriori Algorithm
i Key Observation

= Every subset of a frequent itemset is also
frequent itemset.

= |f {beer, diaper, nuts} is frequent, {beer,
diaper} must be frequent.
= |f there is any itemset which is infrequent,

its superset will not be generated!
= A powerful candidate set pruning technique.

i An Apriori

—xample

Min_sup=2 2-candidates ~ ScanD
Data base D Scan D 1-candidates Freq 1-itemsets ltemset ltemset | Sup
TID [ltems temset | Sup || ltemset | Sup ab ab 1
10 [a, c, d,f a 3 a 3 ac ac 2
20 [b,c,e |=-=| b 3 b 3 |mmb_ 2° ae 1
30 |a, b,c e, C 3 C 3 af af 2
40 |Db, e d 1 e 3 bc bc | 2
50 |a,f e 3 f > be be 3
f 5 b bf | 0
_ ce ce 2
Freq S-temsets Scan D 3-candidates cf
ltemset | Sup itemset | Sup | [Itemset | pruning 3-candidates ~ Freq 2-itemsets
bce 2 @| bce 2 bce - | ltemset | ltemset | Sup
acf ac 2
bce af 2
. bc 2
= From [Agrawal, Srikant 1994] oo 3
ce 2

iThe Apriorl Algorithm

= C,: Candidate itemset of size k
= L, ‘ frequent itemset of size k

= L, = {frequent items};
« for (k=1; L, !=0; k++) do
= C,,y = candidates generated from L,;

= for each transaction t in database do increment
the count of all candidates in C,,, that are
contained in t

= L,y = candidates in C,,; with min_support
= return O, L

3asic Sequential Pattern

!'_ Algorithm

i What Is sequential pattern?

s Customers typically rent “Star Wars”, then
“Empire Strikes Back”, and the “Return of
the Jedi”.

s Useful time-related or ordered sequential

pattern results apply to many scientific and
business domains

Customer purchase behavior
Web access patterns
Scientific experiments
Disease treatments

DNA sequences

Problem Statement

<(30) (90)> = <30 90>

Sequence Database / Length = 6

A

A s R
Customer ID Customer)%quence / Sequence - <(10 2\01(30}(4}0 70)>
1 <(90) 199)4 itemset/element/transaction(TID)
2 <(10 20) (30) (40662015 subsequence
3 <(30 50 70)> ~_ \ - Super sequence
4 <(30) (40 70) (90)> > <30 90> =<30 (40 70) 90>
5 <(90)> N\

<30 (40 70) 90> contains <30 90>

= Support : the number(ratio) of tuples in database containing the sequence
= Min_support : user-specified support threshold
= Sequential pattern : the sequence is contained by at least min_support

i Problem Definition

s Given a sequence database and a min_support, to
find the complete set of frequent sequential
patterns in the database.

= |n the previous example,

<30 90>
<30 (40 70)>

i An Example

s Apriori heuristic
= Any super—pattern of a non—frequent pattern cannot be frequent
m Breadth first algorithm (Given min_support = 50%)

SID Seqguence Length Candidates Sequential
1 <c o> patterns
2 |<(ab)cd> 1) <c>, <d>
3 | <qe> 2 <a a> <b b>@ <c d>

<a b> <b a> <(a b)> <c c>
4 | <cd> <ac><ca><(ac)> <d c>
5 |<ca(bd)c> <a d><d a> <(ad)>
6 | <cdce> <b c> <c b> <(b c)>
<b d><d b> <(b d)>
LD de><cT>
3 <ccd>...)

i Overview

= [he Roadmap of topics discussed in this tutorial
SP Algorithm

General Constraint issue
SPIRIT [GRS99] PrefixGrowth [PHWO02]

iGSD(U

s General structure Is similar to that of
Apriori sequence phase.

s Key Operations
= Candidate generation

= Counting candidates
= Processing taxonomies

GSP (2)

= Candidate generation
= Join condition

= |f the subseqguence obtained by dropping the first item of s,

IS the same as the subsequence obtained by dropping the
last item of s,

= €.40.
< (10[20) 30 4Q >, <[20 30 40150 >
< 10[20 (30 40) >, <[207(8040 50) >
< 100>, {20 >

= Join operation

= |1he sequence s1 extended with the last item in s2.

= |he added item becomes a separate element if it was a

separate element in s2, and part of the last element of s
otherwise.

= €.40.
< (10 20) 30 40 >, < 20 30 40 BO> — < (10 20) 30 40[BO>

< 10 20 (30 40) >, < 20 (30 40[BO) > — < 10 20 (30 40[50) >
<10>,<20]> — < 10[20]>, < (10 RO) > " <(N)20>, <(N 20)>

i PrefixSpan (1)

s J. Pel, J. Han, B. Mortazavi—Asl, H.
Pinto, Q. Chen, U. Dayal and M. Hsu
[PHMO1]

s Depth first & Divide and conquer
algorithm

PrefixSpan (2)

= J. Pei, J. Han, B. Mortazavi—Asl, H. Pinto, Q. Chen,
U. Dayal and M. Hsu [PHMO1]

» Depth first & Divide and conquer algorithm

s PrefixSpan vs. FreeSpan

= Only prefix—based projection : less projections and
quickly shrinking the projected DB

s PrefixSpan vs. GSP
= PrefixSpan makes no candidate.

= | he longer the sequence patterns, the larger the
candidates GSP has.

= However, PrefixSpan makes projections as many as
frequent patterns, therefore the performance of
PrefixSpan is dependant on projection cost.

PrefixSpan (3)

= Given a sequence a = <e;e,""e,>,

= asequence B=<e" e, e > (m=n)is a prefix of a if and
only if e', = g, for (im-1) , e' < e, and all the items in (e -
e') are alphabetically after those in e'.

= when BEa, subsequence a' of a is a projection of a w.r.t.

prefix B if and only if a' has prefix B and there exists no proper
super—sequence a" of a' such that a" is a subsequence of a
and also has prefix B.

= sequencey=<e_e. . ;-e.> is the postfix of a w.r.t. prefix B,
where e' = (e, — €'), denoted as y=a/B or a = B-y

PrefixSpan (4)

= Outline of the method

1: PrefixSpan(a, I, Sla)

2. Scan S|a once, find the set of frequent items b such that
3: (a) b can be assembled to the last element of a to form
a sequential pattern; or
4. (b) can be appended to a to form a sequential pattern.
5: For each frequent item b, append it to a to form a sequential
pattern a’, and output a’;
6: For each a’, construct a’—projected database S|« , and

call PrefixSpan(a’, I+1, Sl«)

PrefixSpan (5)

= Example (Given min_support = 50%)

10 <(ab) c> 1-frequent sequence
20 <b (c a)> <a>, , <c>
30 <d c (ab)>

Having prefix <aMaving refix <b§€\, Having prefix <c>
10 10 <c> 20 <(La)>

<(_b) c>
30 <(_b)> 20 <(c a)> 30 <(a b)>
1-frequent sequence 1-frequent sequence 1-frequent sequence
<_b> <c> O
Having préﬁx <(ab)> Having pre ix <bc>
1-frequent sequence 1-frequent sequence

[[

PrefixSpan (6)

s Scaling up techniques

= Bi—level projection

=« |0 reduce the number of projection, bi—level
algorithm construct projection not by 1—-sequences,
but by 2—sequences.

= |0 get 2—sequences, bi—-level use a GSP-like method.
= | his method reduces the number of projection, but it
makes a number of candidates.
= Pseudo—projection

« |f the projected database fits in main memory,
Instead of constructing a physical projection,
pseudo—projection uses pointers as a pseudo—
projection.

i summary

= Association rule mining and Sequential pattern
mining have interesting applications

» Breadth—first and Depth first style algorithms are
developed

= Maximal patterns were introduced for compact
representations

References (1)

[AS95] R. Agrawal and R. Srikant. “Mining
sequntial patterns,” |[CDE, 1995.

[AS96] R. Agrawal and R. Srikant. “Mining

Sequential patterns: Generalizations and
performance improvements,” EDBT, 1996.

[GRS99] M. Garofalakis, R. Rastogi, and K. Shim.
“Spirit: Sequential pattern mining with regular
expression constraints,” VLDB, 1999.

[HPMOO]J. Han, J. Pei , B. Mortazavi-Asl|, H.
Chen, U. Dayal and M. Hsu. “FreeSpan: frequent

pattern—projected sequential pattern mining,” KDD,
2000.

i References (2)

= [PHMO1] J. Pei, J. Han, B. Mortazavi—Asl, H.
Pinto, Q. Chen, U. Dayal and M. Hsu. “PrefixSpan:

Mining Sequential Patterns Efficiently by Prefix—
Projected Pattern Growth,” ICDE, 2001.

= [PHPO1] H. Pinto, J. Han, J. Pei, K. Wang, Q.
Chen, U. Dayal. “Multi—-Dimensional Sequential

Pattern Mining,” CIKM, 2001.

= [PHWO02] J. Pei, J. Han, and W. Wang. “Mining

sequential patterns with constraints in large
databases,” CIKM, 2002

