
Overview

Introduction to Data Networks

2008. 3

Prof. Seung-Woo Seo

1
Lecture slides from J. Lexford

Goals for Today’s Class
• Course overview

– Goals of the course
– Structure of the course
– Learning the material
– Programming assignments
– Course grading
– Academic policies

• Key concepts in data networking
– Protocols
– Layering
– Resource allocation
– Naming

2

What You Learn in This Course
• Skill: network programming

– Socket programming

• Knowledge: how the Internet works
– IP protocol suite
– Internet architecture
– Applications (Web, e-mail, P2P, VoIP, …)

• Insight: key concepts in networking
– Protocols
– Layering
– Resource allocation
– Naming

3

Structure of the Course (1st Half)
• Start at the top

– Sockets: how applications view the Internet
– Protocols: essential elements of a protocol

• Then study the “narrow waist” of IP
– IP best-effort packet-delivery service
– IP addressing and packet forwarding

• And how to build on top of the narrow waist
– Transport protocols (TCP, UDP)
– Domain Name System (DNS)
– Glue (ARP, DHCP, ICMP)
– End-system security and privacy (NAT, firewalls)

• Looking underneath IP
– Link technologies (Ethernet, wireless, …)

4

Structure of the Course (2nd Half)
• And how to get the traffic from here to there

– Internet routing architecture (the “inter” in Internet)
– Intradomain and interdomain routing protocols

• Building applications
– Web and content-distribution networks
– E-mail
– Peer-to-peer file sharing
– Multimedia streaming and voice-over-IP

• Other approaching to building networks
– Circuit switching (e.g., ATM, MPLS, …)
– More on wireless networks, multicast, …

5

Policies: Write Your Own Code
Programming in an individual creative process much like

composition. You must reach your own understanding of
the problem and discover a path to its solution. During this
time, discussions with friends are encouraged. However,
when the time comes to write code that solves the problem,
such discussions are no longer appropriate - the program
must be your own work.

If you have a question about how to use some feature of C,
UNIX, etc., you can certainly ask your friends or the TA,
but do not, under any circumstances, copy another
person's program. Letting someone copy your program or
using someone else's code in any form is a violation of
academic regulations. "Using someone else's code"
includes using solutions or partial solutions to assignments
provided by commercial web sites, instructors, preceptors,
teaching assistants, friends, or students from any previous
offering of this course or any other course.

6

Key Concepts in Networking
• Protocols

– Speaking the same language
– Syntax and semantics

• Layering
– Standing on the shoulders of giants
– A key to managing complexity

• Resource allocation
– Dividing scare resources among competing parties
– Memory, link bandwidth, wireless spectrum, paths, …
– Distributed vs. centralized algorithms

• Naming
– What to call computers, services, protocols, …

7

Protocols: Calendar Service
• Making an appointment with your advisor

• Specifying the messages that go back and forth
– And an understanding of what each party is doing 8

Please meet with me for
1.5 hours starting at

1:30pm on February 8, 2006?

I can’t.
I can’t.

Yes!

Please meet with me for
1.5 hours starting at

3:00pm on February 8, 2006?

Please meet with me for
1.5 hours starting at

4:30pm on February 8, 2006?

Okay, So This is Getting Tedious
• You: When are you free to meet for 1.5 hours

during the next two weeks?

• Advisor: 10:30am on Feb 8 and 1:15pm on Feb 9.

• You: Book me for 1.5 hours at 10:30am on Feb 8.

• Advisor: Yes.

9

Well, Not Quite Enough
• Student #1: When can you meet for 1.5 hours during the

next two weeks?
• Advisor: 10:30am on Feb 8 and 1:15pm on Feb 9.
• Student #2: When can you meet for 1.5 hours during the

next two weeks?
• Advisor: 10:30am on Feb 8 and 1:15pm on Feb 9.
• Student #1: Book me for 1.5 hours at 10:30am on Feb 8.
• Advisor: Yes.
• Student #2: Book me for 1.5 hours at 10:30am on Feb 8.
• Advisor: Uh… well… I can no longer meet then. I’m free at

1:15pm on Feb 9.
• Student #2: Book me for 1.5 hours at 1:15pm on Feb 9.
• Advisor: Yes. 10

Specifying the Details
• How to identify yourself?

– Name? Social security number?

• How to represent dates and time?
– Time, day, month, year? In what time zone?
– Number of seconds since Jan 1, 1970?

• What granularities of times to use?
– Any possible start time and meeting duration?
– Multiples of five minutes?

• How to represent the messages?
– Strings? Record with name, start time, and duration?

• What do you do if you don’t get a response?
– Ask again? Reply again? 11

Example: HyperText Transfer Protocol

12

GET /courses/archive/spring08/c461/ HTTP/1.1
Host: www.ee.snu.ac.kr
User-Agent: Mozilla/4.03
CRLF

HTTP/1.1 200 OK
Date: Mon, 6 Feb 2008 13:09:03 GMT
Server: Netscape-Enterprise/3.5.1
Last-Modified: Mon, 6 Feb 2008 11:12:23 GMT
Content-Length: 21
CRLF
Site under construction

Request

Response

Example: IP Packet

13

4-bit
Version

4-bit
Header
Length

8-bit Type of
Service (TOS) 16-bit Total Length (Bytes)

16-bit Identification 3-bit
Flags 13-bit Fragment Offset

8-bit Time to
Live (TTL)

8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

2020--bytebyte
headerheader

IP: Best-Effort Packet Delivery

14

• Packet switching
– Send data in packets
– Header with source & destination address

• Best-effort delivery
– Packets may be lost
– Packets may be corrupted
– Packets may be delivered out of order

source

IP network

destination

Example: Transmission Control Protocol

• Communication service (socket)
– Ordered, reliable byte stream
– Simultaneous transmission in both directions

• Key mechanisms at end hosts
– Retransmit lost and corrupted packets
– Discard duplicate packets and put packets in order
– Flow control to avoid overloading the receiver buffer
– Congestion control to adapt sending rate to network load

15source network destination

TCP connection

Protocol Standardization
• Communicating hosts speaking the same protocol

– Standardization to enable multiple implementations
– Or, the same folks have to write all the software

• Standardization: Internet Engineering Task Force
– Based on working groups that focus on specific issues
– Produces “Request For Comments” (RFCs)

Promoted to standards via rough consensus and running code
E.g., RFC 959 on “File Transfer Protocol”

– IETF Web site is http://www.ietf.org

• De facto standards: same folks writing the code
– P2P file sharing, Skype, <your protocol here>…

16

Layering: A Modular Approach
• Sub-divide the problem

– Each layer relies on services from layer below
– Each layer exports services to layer above

• Interface between layers defines interaction
– Hides implementation details
– Layers can change without disturbing other layers

17
Link hardware

Host-to-host connectivity

Application-to-application channels

Application

IP Suite: End Hosts vs. Routers

18

HTTP

TCP

IP

Ethernet
interface

HTTP

TCP

IP

Ethernet
interface

IP IP

Ethernet
interface

Ethernet
interface

SONET
interface

SONET
interface

host host

router router

HTTP message

TCP segment

IP packet IP packetIP packet

The Internet Protocol Suite

19

UDP TCP

Data Link

Physical

Applications

The Hourglass Model

Waist

The waist facilitates interoperability

FTP HTTP TFTPNV

TCP UDP

IP

NET1 NET2 NETn…

Layer Encapsulation

20

Get index.html

Connection ID

Source/Destination

Link Address

User A User B

What if the Data Doesn’t Fit?

21

Problem: Packet size

• On Ethernet, max IP packet is 1500 bytes

• Typical Web page is 10 kbytes

Solution: Split the data across multiple packets

GETindex.html

GET index.html

Protocol Demultiplexing
• Multiple choices at each layer

22

FTP HTTP TFTPNV

TCP UDP

IP

NET1 NET2 NETn…

TCP/UDPIP

Port
Number

Network

Protocol
Field

Type
Field

Demultiplexing: Port Numbers
• Differentiate between multiple transfers

– Knowing source and destination host is not enough
– Need an id for each transfer between the hosts

• Specify a particular service running on a host
– E.g., HTTP server running on port 80
– E.g., FTP server running on port 21

23

HTTP transfers

FTP transfer

Is Layering Harmful?
• Layer N may duplicate lower level functionality

– E.g., error recovery to retransmit lost data

• Layers may need same information
– E.g., timestamps, maximum transmission unit size

• Strict adherence to layering may hurt performance
– E.g., hiding details about what is really going on

• Some layers are not always cleanly separated
– Inter-layer dependencies for performance reasons
– Some dependencies in standards (header checksums)

• Headers start to get really big
– Sometimes more header bytes than actual content

24

Resource Allocation: Queues

• Sharing access to limited resources
– E.g., a link with fixed service rate

• Simplest case: first-in-first out queue
– Serve packets in the order they arrive
– When busy, store arriving packets in a buffer
– Drop packets when the queue is full

25

What if the Data gets Dropped?

26

Internet
GET index.html

Problem: Lost Data

Internet
GET index.html

Solution: Timeout and Retransmit

GET index.htmlGET index.html

What if the Data is Out of Order?

27

Solution: Add Sequence Numbers

Problem: Out of Order

GETx.htindeml

GET x.htindeml

GET index.html

ml 4 inde 2 x.ht 3 GET 1

Resource Allocation: Congestion Control

• What if too many folks are sending data?
– Senders agree to slow down their sending rates
– … in response to their packets getting dropped

• The essence of TCP congestion control
– Key to preventing congestion collapse of the Internet

28

Transmission Control Protocol
• Flow control: window-based

– Sender limits number of outstanding bytes (window size)
– Receiver window ensures data does not overflow receiver

• Congestion control: adapting to packet losses
– Congestion window tries to avoid overloading the network (increase

with successful delivery, decrease with loss)
– TCP connection starts with small initial congestion window

29timeco
n

ge
st

io
n

 w
in

do
w

slow start
congestion avoidance

Naming: Domain Name System (DNS)

• Properties of DNS
– Hierarchical name space divided into zones
– Translation of names to/from IP addresses
– Distributed over a collection of DNS servers

• Client application
– Extract server name (e.g., from the URL)
– Invoke system call to trigger DNS resolver code

E.g., gethostbyname() on “www.ee.snu.ac.kr”

• Server application
– Extract client IP address from socket
– Optionally invoke system call to translate into name

E.g., gethostbyaddr() on “12.34.158.5”
30

Domain Name System

31

com edu org ac uk zw arpa

unnamed root

bar

west east

foo my

ac

cam

usr

in-
addr

12

34

56

generic domains country domains

my.east.bar.edu usr.cam.ac.uk

12.34.56.0/24

DNS Resolver and Local DNS Server

32

Application

DNS resolver

Local DNS
server

1 10

DNS cache

DNS query
2

DNS response 9

Root server

3

4

Top-level
domain server

5

6

Second-level
domain server

7

8

Caching based on a time-to-live (TTL) assigned by the DNS server
responsible for the host name to reduce latency in DNS translation.

Conclusions
• Course objectives

– Network programming, how the Internet works, and key
concepts in networking

• Key concepts in networking
– Protocols, layers, resource allocation, and naming

• Next lecture: network programming
– Socket abstraction (important for assignment #1)
– Read Chapter 1 of the Peterson/Davie book
– Skim the online reference material on sockets
– (Re)familiarize yourself with C programming on “hats”

33

1

Networked Applications: Sockets

Introduction to Data Networks

2008.3

Lecture slides from J. Lexford

2

Goals of Today’s Lecture
• Client-server paradigm

–End systems
–Clients and servers

• Sockets
–Socket abstraction
–Socket programming

• File-Transfer Protocol (FTP)
–Uploading and downloading files
–Separate control and data connections

3

End System: Computer on the ‘Net

Internet

Also known as a “host”…

4

Clients and Servers
• Client program

–Running on end host
–Requests service
–E.g., Web browser

• Server program
–Running on end host
–Provides service
–E.g., Web server

GET /index.html

“Site under construction”

5

Clients Are Not Necessarily Human
• Example: Web crawler (or spider)

–Automated client program
–Tries to discover & download many Web pages
–Forms the basis of search engines like Google

• Spider client
–Start with a base list of popular Web sites
–Download the Web pages
–Parse the HTML files to extract hypertext links
–Download these Web pages, too
–And repeat, and repeat, and repeat…

6

Client-Server Communication
• Client “sometimes on”

– Initiates a request to the
server when interested

– E.g., Web browser on
your laptop or cell phone

– Doesn’t communicate
directly with other clients

– Needs to know the
server’s address

• Server is “always on”
– Services requests from

many client hosts
– E.g., Web server for the

www.cnn.com Web site
– Doesn’t initiate contact

with the clients
– Needs a fixed, well-

known address

http://www.cnn.com/

7

Peer-to-Peer Communication
• No always-on server at the center of it all

–Hosts can come and go, and change addresses
–Hosts may have a different address each time

• Example: peer-to-peer file sharing
–Any host can request files, send files, query to

find where a file is located, respond to queries,
and forward queries

–Scalability by harnessing millions of peers
–Each peer acting as both a client and server

8

Client and Server Processes
• Program vs. process

– Program: collection of code
– Process: a running program on a host

• Communication between processes
– Same end host: inter-process communication

Governed by the operating system on the end host
– Different end hosts: exchanging messages

Governed by the network protocols

• Client and server processes
– Client process: process that initiates communication
– Server process: process that waits to be contacted

9

Socket: End Point of Communication

• Sending message from one process to another
– Message must traverse the underlying network

• Process sends and receives through a “socket”
– In essence, the doorway leading in/out of the house

• Socket as an Application Programming Interface
– Supports the creation of network applications

socket socket

User process User process

Operating
System

Operating
System

10

Identifying the Receiving Process
• Sending process must identify the receiver

– Name or address of the receiving end host
– Identifier that specifies the receiving process

• Receiving host
– Destination address that uniquely identifies the host
– An IP address is a 32-bit quantity

• Receiving process
– Host may be running many different processes
– Destination port that uniquely identifies the socket
– A port number is a 16-bit quantity

11

Using Ports to Identify Services

Web server
(port 80)

Client host

Server host 128.2.194.242

Echo server
(port 7)

Service request for
128.2.194.242:80

(i.e., the Web server)

Web server
(port 80)

Echo server
(port 7)

Service request for
128.2.194.242:7

(i.e., the echo server)

OS

OS

Client

Client

12

Knowing What Port Number To Use
• Popular applications have well-known ports

– E.g., port 80 for Web and port 25 for e-mail
– Well-known ports listed at http://www.iana.org

• Well-known vs. ephemeral ports
– Server has a well-known port (e.g., port 80)

Between 0 and 1023
– Client picks an unused ephemeral (i.e., temporary) port

Between 1024 and 65535

• Uniquely identifying the traffic between the hosts
– Two IP addresses and two port numbers
– Underlying transport protocol (e.g., TCP or UDP)

http://www.iana.org/

13

Delivering the Data: Division of Labor

• Network
–Deliver data packet to the destination host
–Based on the destination IP address

• Operating system
–Deliver data to the destination socket
–Based on the protocol and destination port #

• Application
–Read data from the socket
–Interpret the data (e.g., render a Web page)

14

UNIX Socket API
• Socket interface

– Originally provided in Berkeley UNIX
– Later adopted by all popular operating systems
– Simplifies porting applications to different OSes

• In UNIX, everything is like a file
– All input is like reading a file
– All output is like writing a file
– File is represented by an integer file descriptor

• System calls for sockets
– Client: create, connect, write, read, close
– Server: create, bind, listen, accept, read, write, close

15

Typical Client Program
• Prepare to communicate

–Create a socket
–Determine server address and port number
–Initiate the connection to the server

• Exchange data with the server
–Write data to the socket
–Read data from the socket
–Do stuff with the data (e.g., render a Web page)

• Close the socket

16

Creating a Socket: socket()
• Operation to create a socket

– int socket(int domain, int type, int protocol)
– Returns a descriptor (or handle) for the socket
– Originally designed to support any protocol suite

• Domain: protocol family
– PF_INET for the Internet

• Type: semantics of the communication
– SOCK_STREAM: reliable byte stream
– SOCK_DGRAM: message-oriented service

• Protocol: specific protocol
– UNSPEC: unspecified
– (PF_INET and SOCK_STREAM already implies TCP)

17

Connecting the Socket to the Server
• Translating the server’s name to an address

– struct hostent *gethostbyname(char *name)
– Argument: the name of the host (e.g., “www.cnn.com”)
– Returns a structure that includes the host address

• Identifying the service’s port number
– struct servent *getservbyname(char *name, char *proto)
– Arguments: service (e.g., “ftp”) and protocol (e.g., “tcp”)

• Establishing the connection
– int connect(int sockfd, struct sockaddr *server_address,

socketlen_t addrlen)
– Arguments: socket descriptor, server address, and

address size
– Returns 0 on success, and -1 if an error occurs

18

Sending and Receiving Data
• Sending data

– ssize_t write(int sockfd, void *buf, size_t len)
– Arguments: socket descriptor, pointer to buffer of data to

send, and length of the buffer
– Returns the number of characters written, and -1 on error

• Receiving data
– ssize_t read(int sockfd, void *buf, size_t len)
– Arguments: socket descriptor, pointer to buffer to place

the data, size of the buffer
– Returns the number of characters read (where 0 implies

“end of file”), and -1 on error

• Closing the socket
– int close(int sockfd)

19

Servers Differ From Clients
• Passive open

– Prepare to accept connections
– … but don’t actually establish one
– … until hearing from a client

• Hearing from multiple clients
– Allow a backlog of waiting clients
– ... in case several try to start a connection at once

• Create a socket for each client
– Upon accepting a new client
– … create a new socket for the communication

20

Typical Server Program
• Prepare to communicate

– Create a socket
– Associate local address and port with the socket

• Wait to hear from a client (passive open)
– Indicate how many clients-in-waiting to permit
– Accept an incoming connection from a client

• Exchange data with the client over new socket
– Receive data from the socket
– Do stuff to handle the request (e.g., get a file)
– Send data to the socket
– Close the socket

• Repeat with the next connection request

21

Server Preparing its Socket
• Bind socket to the local address and port number

– int bind (int sockfd, struct sockaddr *my_addr, socklen_t
addrlen)

– Arguments: socket descriptor, server address, address
length

– Returns 0 on success, and -1 if an error occurs

• Define how many connections can be pending
– int listen(int sockfd, int backlog)
– Arguments: socket descriptor and acceptable backlog
– Returns 0 on success, and -1 on error

22

Accepting a New Client Connection
• Accept a new connection from a client

– int accept(int sockfd, struct sockaddr *addr, socketlen_t
*addrlen)

– Arguments: socket descriptor, structure that will provide
client address and port, and length of the structure

– Returns descriptor for a new socket for this connection

• Questions
– What happens if no clients are around?

The accept() call blocks waiting for a client
– What happens if too many clients are around?

Some connection requests don’t get through
… But, that’s okay, because the Internet makes no promises

23

Putting it All Together

socket()

bind()

listen()

accept()

read()

write()

Server

block

process
request

Client

socket()

connect()

write()

establish

connection

send request

read()

send response

24

Serving One Request at a Time?
• Serializing requests is inefficient

– Server can process just one request at a time
– All other clients must wait until previous one is done

• Need to time share the server machine
– Alternate between servicing different requests

Do a little work on one request, then switch to another
Small tasks, like reading HTTP request, locating the associated
file, reading the disk, transmitting parts of the response, etc.

– Or, start a new process to handle each request
Allow the operating system to share the CPU across processes

– Or, some hybrid of these two approaches

25

Wanna See Real Clients and Servers?
• Apache Web server

– Open source server first released in 1995
– Name derives from “a patchy server” ;-)
– Software available online at http://www.apache.org

• Mozilla Web browser
– http://www.mozilla.org/developer/

• Sendmail
– http://www.sendmail.org/

• BIND Domain Name System
– Client resolver and DNS server
– http://www.isc.org/index.pl?/sw/bind/

• …

http://www.apache.org/
http://www.isc.org/index.pl?/sw/bind/

Socket Programming

26

Socket programming

Socket API
• introduced in BSD4.1 UNIX,

1981

• explicitly created, used,
released by apps

• client/server paradigm

• two types of transport service
via socket API:
– unreliable datagram
– reliable, byte stream-

oriented

a host-local,
application-created,

OS-controlled
interface (a “door”)

into which
application process
can both send and
receive messages
to/from another

application process

socket

Goal: learn how to build client/server application
that communicate using sockets

Socket-programming using TCP

Socket: a door between application process and end-
end-transport protocol (UCP or TCP)

TCP service: reliable transfer of bytes from one
process to another

process

TCP with
buffers,
variables

socket

controlled by
application

developer

controlled by
operating

system

host or
server

process

TCP with
buffers,
variables

socket

controlled by
application
developer

controlled by
operating
system

host or
server

internet

Socket programming with TCP
Client must contact server

• server process must first be
running

• server must have created
socket (door) that welcomes
client’s contact

Client contacts server by:

• creating client-local TCP
socket

• specifying IP address, port
number of server process

• When client creates socket:
client TCP establishes
connection to server TCP

• When contacted by client,
server TCP creates new socket
for server process to
communicate with client
– allows server to talk with

multiple clients
– source port numbers used

to distinguish clients (more
in Chap 3)

TCP provides reliable, in-order
transfer of bytes (“pipe”)
between client and server

application viewpoint

Stream jargon
• A stream is a sequence of

characters that flow into or out of
a process.

• An input stream is attached to
some input source for the
process, e.g., keyboard or
socket.

• An output stream is attached to
an output source, e.g., monitor or
socket.

Socket programming with TCP

Example client-server app:
1) client reads line from standard

input (inFromUser stream) ,
sends to server via socket
(outToServer stream)

2) server reads line from socket

3) server converts line to
uppercase, sends back to client

4) client reads, prints modified line
from socket (inFromServer
stream)

ou
tT

oS
er

ve
r

to network from network

in
Fr

om
S

er
ve

r

in
Fr

om
U

se
r

keyboard monitor

Process

clientSocket

input
stream

input
stream

output
stream

TCP
socket

Client
proces

s

client
TCP

socket

Client/server socket interaction: TCP

wait for incoming
connection request

connectionSocket =
welcomeSocket.accept()

create socket,
port=x, for

incoming request:
welcomeSocket =

ServerSocket()

create socket,
connect to hostid, port=x
clientSocket =

Socket()

close
connectionSocket

read reply from
clientSocket

close
clientSocket

Server (running on hostid) Client

send request using
clientSocketread request from

connectionSocket

write reply to
connectionSocket

TCP
connection setup

Example: Java client (TCP)

import java.io.*;
import java.net.*;
class TCPClient {

public static void main(String argv[]) throws Exception
{

String sentence;
String modifiedSentence;

BufferedReader inFromUser =
new BufferedReader(new InputStreamReader(System.in));

Socket clientSocket = new Socket("hostname", 6789);

DataOutputStream outToServer =
new DataOutputStream(clientSocket.getOutputStream());

Create
input stream

Create
client socket,
onnect to server

Create
output stream

tached to socket

Example: Java client (TCP), cont.

BufferedReader inFromServer =
new BufferedReader(new

InputStreamReader(clientSocket.getInputStream()));

sentence = inFromUser.readLine();

outToServer.writeBytes(sentence + '\n');

modifiedSentence = inFromServer.readLine();

System.out.println("FROM SERVER: " + modifiedSentence);

clientSocket.close();

}
}

Create
input stream
attached to

socket

Send line
to server

Read line
from server

Example: Java server (TCP)
import java.io.*;

import java.net.*;

class TCPServer {

public static void main(String argv[]) throws Exception
{

String clientSentence;
String capitalizedSentence;

ServerSocket welcomeSocket = new ServerSocket(6789);

while(true) {

Socket connectionSocket = welcomeSocket.accept();

BufferedReader inFromClient =
new BufferedReader(new

InputStreamReader(connectionSocket.getInputStream()));

Create
welcoming socket

at port 6789

Wait, on welcoming
ocket for contact

by client

Create input
stream, attached

to socket

Example: Java server (TCP), cont

DataOutputStream outToClient =
new DataOutputStream(connectionSocket.getOutputStream());

clientSentence = inFromClient.readLine();

capitalizedSentence = clientSentence.toUpperCase() + '\n';

outToClient.writeBytes(capitalizedSentence);
}

}
}

Read in line
from socket

Create output
stream,
attached

to socket

Write out line
to socket

End of while loop,
loop back and wait for

another client connection

Building a simple Web server

• handles one HTTP
request

• accepts the request

• parses header

• obtains requested file
from server’s file system

• creates HTTP response
message:
– header lines + file

• sends response to client

• after creating server, you
can request file using a
browser (e.g., IE
explorer)

1

Data Links

Introduction to Data Networks

2008.3

2

Goals of Today’s Lecture
• Link-layer services

– Encoding, framing, and error detection
– Error correction and flow control

• Sharing a shared media
– Channel partitioning
– Taking turns
– Random access

• Ethernet protocol
– Carrier sense, collision detection, and random access
– Frame structure
– Hubs and switches

3

Message, Segment, Packet, and Frame

HTTP

TCP

IP

Ethernet
interface

HTTP

TCP

IP

Ethernet
interface

IP IP

Ethernet
interface

Ethernet
interface

SONET
interface

SONET
interface

host host

router router

HTTP message

TCP segment

IP packet IP packetIP packet

Ethernet frame Ethernet frameSONET frame

4

Link Layer Protocol for Each Hop
• IP packet transferred over multiple hops

– Each hop has a link layer protocol
– May be different on different hops

• Analogy: trip from Princeton to Lausanne
– Limo: Princeton to JFK
– Plane: JFK to Geneva
– Train: Geneva to Lausanne

• Refining the analogy
– Tourist == packet
– Transport segment == communication link
– Transportation mode == link-layer protocol
– Travel agent == routing algorithm

5

Adaptors Communicating

• Link layer implemented in adaptor (network interface card)
– Ethernet card, PCMCI card, 802.11 card

• Sending side:
– Encapsulates datagram in a frame
– Adds error checking bits, flow control, etc.

• Receiving side
– Looks for errors, flow control, etc.
– Extracts datagram and passes to receiving node

sending
node

frame

receiving
node

datagram

frame

adapter adapter

link layer protocol

6

Link-Layer Services
• Encoding

– Representing the 0s and 1s

• Framing
– Encapsulating packet into frame, adding header, trailer
– Using MAC addresses, rather than IP addresses

• Error detection
– Errors caused by signal attenuation, noise.
– Receiver detecting presence of errors

• Error correction
– Receiver correcting errors without retransmission

• Flow control
– Pacing between adjacent sending and receiving nodes

70 0 1 1 0 0 1 1 0 0 0 1 1 1 1 1 0 0

Encoding
• Signals propagate over physical links

–Source node encodes the bits into a signal
–Receiving node decodes the signal back into bits

• Simplify some electrical engineering details
–Assume two discrete signals, high and low
–E.g., could correspond to two different voltages

• Simple approach
–High for a 1, low for a 0

8

Problem With Simple Approach
• Long strings of 0s or 1s introduce problems

– No transitions from low-to-high, or high-to-low

• Receiver keeps average of signal it has received
– Uses the average to distinguish between high and low
– Long flat strings make receiver sensitive to small change

• Transitions also necessary for clock recovery
– Receiver uses transitions to drive its own clock
– Long flat strings do not produce any transitions
– Can lead to clock drift at the receiver

• Alternatives (see Section 2.2)
– Non-return to zero inverted, and Manchester encoding

9

Framing
• Break sequence of bits into a frame

– Typically implemented by the network adaptor

• Sentinel-based
– Delineate frame with special pattern (e.g., 01111110)

– Problem: what if special patterns occurs within frame?
– Solution: escaping the special characters

E.g., sender always inserts a 0 after five 1s
… and receiver always removes a 0 appearing after five 1s

– Similar to escaping special characters in C programs

01111110 01111110Frame contents

10

Framing (Continued)
• Counter-based

– Include the payload length in the header
– … instead of putting a sentinel at the end
– Problem: what if the count field gets corrupted?

Causes receiver to think the frame ends at a different place
– Solution: catch later when doing error detection

And wait for the next sentinel for the start of a new frame

• Clock-based
– Make each frame a fixed size
– No ambiguity about start and end of frame
– But, may be wasteful

11

Error Detection
• Errors are unavoidable

– Electrical interference, thermal noise, etc.

• Error detection
– Transmit extra (redundant) information
– Use redundant information to detect errors
– Extreme case: send two copies of the data
– Trade-off: accuracy vs. overhead

• Techniques for detecting errors
– Parity checking
– Checksum
– Cyclic Redundancy Check (CRC)

Error Detection
EDC= Error Detection and Correction bits (redundancy)
D = Data protected by error checking, may include header fields

• Error detection not 100% reliable!
• protocol may miss some errors, but rarely
• larger EDC field yields better detection and correction

13

Error Detection Techniques
• Parity check

– Add an extra bit to a 7-bit code
– Odd parity: ensure an odd number of 1s

E.g., 0101011 becomes 01010111
– Even parity: ensure an even number of 1s

E.g., 0101011 becomes 01010110

• Checksum
– Treat data as a sequence of 16-bit words
– Compute a sum of all the 16-bit words, with no carries
– Transmit the sum along with the packet

• Cyclic Redundancy Check (CRC)

Parity Checking

Single Bit Parity:
Detect single bit errors

Two Dimensional Bit Parity:
Detect and correct single bit errors

0 0

Internet checksum

Sender:
• treat segment contents as

sequence of 16-bit integers

• checksum: addition (1’s
complement sum) of
segment contents

• sender puts checksum value
into UDP checksum field

Receiver:
• compute checksum of received

segment

• check if computed checksum
equals checksum field value:
– NO - error detected
– YES - no error detected. But

maybe errors nonetheless?
More later ….

Goal: detect “errors” (e.g., flipped bits) in transmitted
segment (note: used at transport layer only)

Cyclic Redundancy Check
• view data bits, D, as a binary number

• choose r+1 bit pattern (generator), G

• goal: choose r CRC bits, R, such that
– <D,R> exactly divisible by G (modulo 2)
– receiver knows G, divides <D,R> by G. If non-zero remainder: error

detected!
– can detect all burst errors less than r+1 bits

• widely used in practice (ATM, HDCL)

CRC Example
Want:

D.2r XOR R = nG

equivalently:
D.2r = nG XOR R

equivalently:

if we divide D.2r by G,
want remainder R

R = remainder[]D.2r

G

18

Point-to-Point vs. Broadcast Media
• Point-to-point

– PPP for dial-up access
– Point-to-point link between Ethernet switch and host

• Broadcast (shared wire or medium)
– Traditional Ethernet
– 802.11 wireless LAN

19

Multiple Access Protocol
• Single shared broadcast channel

– Avoid having multiple nodes speaking at once
– Otherwise, collisions lead to garbled data

• Multiple access protocol
– Distributed algorithm for sharing the channel
– Algorithm determines which node can transmit

• Classes of techniques
– Channel partitioning: divide channel into pieces
– Taking turns: passing a token for the right to transmit
– Random access: allow collisions, and then recover

20

Channel Partitioning: TDMA

TDMA: time division multiple access

• Access to channel in "rounds"
– Each station gets fixed length slot in each round

• Time-slot length is packet transmission time
– Unused slots go idle

• Example: 6-station LAN with slots 1, 3, and 4

21

Channel Partitioning: FDMA

FDMA: frequency division multiple access

• Channel spectrum divided into frequency bands
– Each station assigned fixed frequency band

• Unused transmission time in bands go idle

• Example: 6-station LAN with bands 1, 3, and 4

fr
eq

ue
nc

y
ba

nd
s

time

22

Polling

“Taking Turns” MAC protocols

• Master node “invites”
slave nodes to
transmit in turn

• Concerns:
– Polling overhead
– Latency
– Single point of failure

(master)

Token passing

• Control token passed from one
node to next sequentially

• Token message

• Concerns:
– Token overhead
– Latency
– Single point of failure (token)

23

Random Access Protocols
• When node has packet to send

– Transmit at full channel data rate R.
– No a priori coordination among nodes

• Two or more transmitting nodes ➜ “collision”,

• Random access MAC protocol specifies:
– How to detect collisions
– How to recover from collisions

• Examples
– ALOHA and Slotted ALOHA
– CSMA, CSMA/CD, CSMA/CA

24

Key Ideas of Random Access
• Carrier sense

– Listen before speaking, and don’t interrupt
– Checking if someone else is already sending data
– … and waiting till the other node is done

• Collision detection
– If someone else starts talking at the same time, stop
– Realizing when two nodes are transmitting at once
– …by detecting that the data on the wire is garbled

• Randomness
– Don’t start talking again right away
– Waiting for a random time before trying again

25

Assumptions

Slotted ALOHA

• All frames same size

• Time divided into equal
slots (time to transmit a
frame)

• Nodes start to transmit
frames only at start of slots

• Nodes are synchronized

• If two or more nodes
transmit, all nodes detect
collision

Operation

• When node obtains fresh
frame, transmits in next slot

• No collision: node can send
new frame in next slot

• Collision: node retransmits
frame in each subsequent
slot with probability p until
success

26

Pros

Slotted ALOHA

• Single active node can
continuously transmit at full
rate of channel

• Highly decentralized: only
slots in nodes need to be in
sync

• Simple

Cons

• Collisions, wasting slots

• Idle slots

• Nodes may be able to
detect collision in less than
time to transmit packet

• Clock synchronization

Slotted Aloha efficiency

• Suppose N nodes with
many frames to send,
each transmits in slot
with probability p

• prob that node 1 has
success in a slot =
p(1-p)N-1

• prob that any node has a
success = Np(1-p)N-1

• For max efficiency with
N nodes, find p* that
maximizes
Np(1-p)N-1

• For many nodes, take
limit of Np*(1-p*)N-1 as N
goes to infinity, gives 1/e
= .37

Efficiency is the long-run
fraction of successful slots

when there are many nodes, each
with many frames to send

At best: channel
used for useful

transmissions 37%
of time!

Pure (unslotted) ALOHA

• unslotted Aloha: simpler, no synchronization

• when frame first arrives
– transmit immediately

• collision probability increases:
– frame sent at t0 collides with other frames sent in [t0-1,t0+1]

Pure Aloha efficiency

P(success by given node) = P(node transmits) .

P(no other node transmits in [p0-1,p0] .

P(no other node transmits in [p0-1,p0]

= p . (1-p)N-1 . (1-p)N-1

= p . (1-p)2(N-1)

… choosing optimum p and then letting n -> infty ...

= 1/(2e) = .18

Even worse !

30

CSMA (Carrier Sense Multiple Access)

• Collisions hurt the efficiency of ALOHA protocol
– At best, channel is useful 37% of the time

• CSMA: listen before transmit
– If channel sensed idle: transmit entire frame
– If channel sensed busy, defer transmission

• Human analogy: don’t interrupt others!

31

CSMA Collisions

Collisions can still occur:
propagation delay means
two nodes may not hear
each other’s transmission

Collision:
entire packet transmission
time wasted

32

CSMA/CD (Collision Detection)
• CSMA/CD: carrier sensing, deferral as in CSMA

– Collisions detected within short time
– Colliding transmissions aborted, reducing wastage

• Collision detection
– Easy in wired LANs: measure signal strengths, compare

transmitted, received signals
– Difficult in wireless LANs: receiver shut off while

transmitting

• Human analogy: the polite conversationalist

33

CSMA/CD Collision Detection

34

Three Ways to Share the Media
• Channel partitioning MAC protocols:

– Share channel efficiently and fairly at high load
– Inefficient at low load: delay in channel access, 1/N

bandwidth allocated even if only 1 active node!

• “Taking turns” protocols
– Eliminates empty slots without causing collisions
– Vulnerable to failures (e.g., failed node or lost token)

• Random access MAC protocols
– Efficient at low load: single node can fully utilize channel
– High load: collision overhead

35

Ethernet
• Dominant wired LAN technology:

• First widely used LAN technology

• Simpler, cheaper than token LANs and ATM

• Kept up with speed race: 10 Mbps – 10 Gbps

Metcalfe’s
Ethernet
sketch

36

Ethernet Uses CSMA/CD
• Carrier sense: wait for link to be idle

– Channel idle: start transmitting
– Channel busy: wait until idle

• Collision detection: listen while transmitting
– No collision: transmission is complete
– Collision: abort transmission, and send jam signal

• Random access: exponential back-off
– After collision, wait a random time before trying again
– After mth collision, choose K randomly from {0, …, 2m-1}
– … and wait for K*512 bit times before trying again

37

Limitations on Ethernet Length

• Latency depends on physical length of link
– Time to propagate a packet from one end to the other

• Suppose A sends a packet at time t
– And B sees an idle line at a time just before t+d
– … so B happily starts transmitting a packet

• B detects a collision, and sends jamming signal
– But A doesn’t see collision till t+2d

latency d
A B

38

Limitations on Ethernet Length

• A needs to wait for time 2d to detect collision
– So, A should keep transmitting during this period
– … and keep an eye out for a possible collision

• Imposes restrictions on Ethernet
– Maximum length of the wire: 2500 meters
– Minimum length of the packet: 512 bits (64 bytes)

latency d
A B

39

Ethernet Frame Structure
• Sending adapter encapsulates packet in frame

• Preamble: synchronization
– Seven bytes with pattern 10101010, followed by one

byte with pattern 10101011
– Used to synchronize receiver, sender clock rates

40

Ethernet Frame Structure (Continued)
• Addresses: source and destination MAC addresses

– Adaptor passes frame to network-level protocol
If destination address matches the adaptor
Or the destination address is the broadcast address

– Otherwise, adapter discards frame

• Type: indicates the higher layer protocol
– Usually IP
– But also Novell IPX, AppleTalk, …

• CRC: cyclic redundancy check
– Checked at receiver
– If error is detected, the frame is simply dropped

41

Unreliable, Connectionless Service
• Connectionless

– No handshaking between sending and receiving adapter.

• Unreliable
– Receiving adapter doesn’t send ACKs or NACKs
– Packets passed to network layer can have gaps
– Gaps will be filled if application is using TCP
– Otherwise, the application will see the gaps

42

Hubs: Physical-Layer Repeaters
• Hubs are physical-layer repeaters

–Bits coming from one link go out all other links
–At the same rate, with no frame buffering
–No CSMA/CD at hub: adapters detect collisions

twisted pair

hub

43

Interconnecting with Hubs
• Backbone hub interconnects LAN segments

• All packets seen everywhere, forming one large
collision domain

• Can’t interconnect Ethernets of different speeds

hub hub hub

hub

44

Switch
• Link layer device

–Stores and forwards Ethernet frames
–Examines frame header and selectively forwards

frame based on MAC dest address
–When frame is to be forwarded on segment,

uses CSMA/CD to access segment

• Transparent
–Hosts are unaware of presence of switches

• Plug-and-play, self-learning
–Switches do not need to be configured

45

Switch: Traffic Isolation
• Switch breaks subnet into LAN segments

• Switch filters packets
– Same-LAN-segment frames not usually forwarded onto

other LAN segments
– Segments become separate collision domains

hub hub hub

switch

collision domain collision domain

collision
domain

46

Benefits of Ethernet
• Easy to administer and maintain

• Inexpensive

• Increasingly higher speed

• Moved from shared media to switches
– Change everything except the frame format
– A good general lesson for evolving the Internet

47

Conclusions
• IP runs on a variety of link layer technologies

– Point-to-point links vs. shared media
– Wide varieties within each class

• Link layer performs key services
– Encoding, framing, and error detection
– Optionally error correction and flow control

• Shared media introduce interesting challenges
– Decentralized control over resource sharing
– Partitioned channel, taking turns, and random access
– Ethernet as a wildly popular example

• Next time: switches and bridges

1

Circuit vs. Packet
Switching

Introduction to Data Networks

2008.3

2

Goals of Today’s Lecture
• Connectivity

– Links and nodes
– Circuit switching
– Packet switching

• IP service model
– Best-effort packet delivery
– IP as the Internet’s “narrow waist”
– Design philosophy of IP

• IP packet structure
– Fields in the IP header
– Traceroute using TTL field
– Source-address spoofing

3

Simple Network: Nodes and a Link

• Node: computer
– End host: general-purpose computer, cell phone, PDA
– Network node: switch or router

• Link: physical medium connecting nodes
– Twisted pair: the wire that connects to telephones
– Coaxial cable: the wire that connects to TV sets
– Optical fiber: high-bandwidth long-distance links
– Space: propagation of radio waves, microwaves, …

Node Link Node

4

Fibers

Coaxial Cable

Links Interfaces Switches/routers

Ethernet card

Wireless card

Large router

Telephone
switch

Network Components

http://ascii24.com/news/i/hard/article/2002/05/08/thumbnail/thumb220x174-images683805.jpg

5

Links: Delay and Bandwidth
• Delay

–Latency for propagating data along the link
–Corresponds to the “length” of the link
–Typically measured in seconds

• Bandwidth
–Amount of data sent (or received) per unit time
–Corresponds to the “width” of the link
–Typically measured in bits per second

bandwidth

delay

delay x bandwidth

6

Connecting More Than Two Hosts
• Multi-access link: Ethernet, wireless

–Single physical link, shared by multiple nodes
–Limitations on distance and number of nodes

• Point-to-point links: fiber-optic cable
–Only two nodes (separate link per pair of nodes)
–Limitations on the number of adapters per node

multi-access link point-to-point links

7

Beyond Directly-Connected Networks

• Switched network
–End hosts at the edge
–Network nodes that switch traffic
–Links between the nodes

• Multiplexing
–Many end hosts communicate over the network
–Traffic shares access to the same links

8

Circuit Switching (e.g., Phone Network)

• Source establishes connection to destination
–Node along the path store connection info
–Nodes may reserve resources for the connection

• Source sends data over the connection
–No destination address, since nodes know path

• Source tears down connection when done

9

Circuit Switching With Human Operator

10

Circuit Switching: Multiplexing a Link

• Time-division
–Each circuit allocated

certain time slots

• Frequency-division
–Each circuit allocated

certain frequencies

timef
r
e
q
u
e
n
c
y

time

11

Timing in Circuit Switching

Information

Circuit
Establishment

Transfer

Circuit
Teardown

Host 1 Host 2
Switch 1 Switch 2

propagation delay
between Host 1
and Switch1
propagation delay
between Host 1
and Host 2

Transmission delay

time

12

Advantages of Circuit Switching
• Guaranteed bandwidth

– Predictable communication performance
– Not “best-effort” delivery with no real guarantees

• Simple abstraction
– Reliable communication channel between hosts
– No worries about lost or out-of-order packets

• Simple forwarding
– Forwarding based on time slot or frequency
– No need to inspect a packet header

• Low per-packet overhead
– Forwarding based on time slot or frequency
– No IP (and TCP/UDP) header on each packet

13

Disadvantages of Circuit Switching
• Wasted bandwidth

– Bursty traffic leads to idle connection during silent period
– Unable to achieve gains from statistical multiplexing

• Blocked connections
– Connection refused when resources are not sufficient
– Unable to offer “okay” service to everybody

• Connection set-up delay
– No communication until the connection is set up
– Unable to avoid extra latency for small data transfers

• Network state
– Network nodes must store per-connection information
– Unable to avoid per-connection storage and state

14

Packet Switching (e.g., Internet)
• Data traffic divided into packets

–Each packet contains a header (with address)

• Packets travel separately through network
–Packet forwarding based on the header
–Network nodes may store packets temporarily

• Destination reconstructs the message

15

Packet Switching: Statistical Multiplexing

Packets

16

IP Service: Best-Effort Packet Delivery

• Packet switching
–Divide messages into a sequence of packets
–Headers with source and destination address

• Best-effort delivery
–Packets may be lost
–Packets may be corrupted
–Packets may be delivered out of order

source destination

IP network

17

IP Service Model: Why Packets?
• Data traffic is bursty

– Logging in to remote machines
– Exchanging e-mail messages

• Don’t want to waste reserved bandwidth
– No traffic exchanged during idle periods

• Better to allow multiplexing
– Different transfers share access to same links

• Packets can be delivered by most anything
– RFC 2549: IP over Avian Carriers (aka birds)

• … still, packet switching can be inefficient
– Extra header bits on every packet

18

IP Service Model: Why Best-Effort?

• IP means never having to say you’re sorry…
– Don’t need to reserve bandwidth and memory
– Don’t need to do error detection & correction
– Don’t need to remember from one packet to next

• Easier to survive failures
– Transient disruptions are okay during failover

• … but, applications do want efficient, accurate
transfer of data in order, in a timely fashion

19

IP Service: Best-Effort is Enough
• No error detection or correction

– Higher-level protocol can provide error checking

• Successive packets may not follow the same path
– Not a problem as long as packets reach the destination

• Packets can be delivered out-of-order
– Receiver can put packets back in order (if necessary)

• Packets may be lost or arbitrarily delayed
– Sender can send the packets again (if desired)

• No network congestion control (beyond “drop”)
– Sender can slow down in response to loss or delay

20

Layering in the IP Protocols

Internet Protocol

Transmission Control
Protocol (TCP)

User Datagram
Protocol (UDP)

TelnetHTTP

SONET ATMEthernet

RTPDNSFTP

21

History: Why IP Packets?
• IP proposed in the early 1970s

– Defense Advanced Research Project Agency (DARPA)

• Goal: connect existing networks
– To develop an effective technique for multiplexed

utilization of existing interconnected networks
– E.g., connect packet radio networks to the ARPAnet

• Motivating applications
– Remote login to server machines
– Inherently bursty traffic with long silent periods

• Prior ARPAnet experience with packet switching
– Previous DARPA project
– Demonstrated store-and-forward packet switching

22

Other Main Driving Goals (In Order)
• Communication should continue despite failures

– Survive equipment failure or physical attack
– Traffic between two hosts continue on another path

• Support multiple types of communication services
– Differing requirements for speed, latency, & reliability
– Bidirectional reliable delivery vs. message service

• Accommodate a variety of networks
– Both military and commercial facilities
– Minimize assumptions about the underlying network

23

Other Driving Goals, Somewhat Met
• Permit distributed management of resources

– Nodes managed by different institutions
– … though this is still rather challenging

• Cost-effectiveness
– Statistical multiplexing through packet switching
– … though packet headers and retransmissions wasteful

• Ease of attaching new hosts
– Standard implementations of end-host protocols
– … though still need a fair amount of end-host software

• Accountability for use of resources
– Monitoring functions in the nodes
– … though this is still fairly limited and immature

IP Packet Structure

4-bit
Version

4-bit
Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

25

IP Packet Header Fields
• Version number (4 bits)

– Indicates the version of the IP protocol
– Necessary to know what other fields to expect
– Typically “4” (for IPv4), and sometimes “6” (for IPv6)

• Header length (4 bits)
– Number of 32-bit words in the header
– Typically “5” (for a 20-byte IPv4 header)
– Can be more when “IP options” are used

• Type-of-Service (8 bits)
– Allow packets to be treated differently based on needs
– E.g., low delay for audio, high bandwidth for bulk transfer

26

IP Packet Header Fields (Continued)
• Total length (16 bits)

– Number of bytes in the packet
– Maximum size is 63,535 bytes (216 -1)
– … though underlying links may impose harder limits

• Fragmentation information (32 bits)
– Packet identifier, flags, and fragment offset
– Supports dividing a large IP packet into fragments
– … in case a link cannot handle a large IP packet

• Time-To-Live (8 bits)
– Used to identify packets stuck in forwarding loops
– … and eventually discard them from the network

27

Time-to-Live (TTL) Field
• Potential robustness problem

– Forwarding loops can cause packets to cycle forever
– Confusing if the packet arrives much later

• Time-to-live field in packet header
– TTL field decremented by each router on the path
– Packet is discarded when TTL field reaches 0…
– …and “time exceeded” message is sent to the source

28

Application of TTL in Traceroute
• Time-To-Live field in IP packet header

– Source sends a packet with a TTL of n
– Each router along the path decrements the TTL
– “TTL exceeded” sent when TTL reaches 0

• Traceroute tool exploits this TTL behavior

source destination

TTL=1
Time

exceeded

TTL=2

Send packets with TTL=1, 2, … and record source of “time exceeded” message

29

1 169.229.62.1

2 169.229.59.225

3 128.32.255.169

4 128.32.0.249

5 128.32.0.66

6 209.247.159.109

7 *

8 64.159.1.46

9 209.247.9.170

10 66.185.138.33

11 *

12 66.185.136.17

13 64.236.16.52

inr-daedalus-0.CS.Berkeley.EDU

soda-cr-1-1-soda-br-6-2

vlan242.inr-202-doecev.Berkeley.EDU

gigE6-0-0.inr-666-doecev.Berkeley.EDU

qsv-juniper--ucb-gw.calren2.net

POS1-0.hsipaccess1.SanJose1.Level3.net

?

?

pos8-0.hsa2.Atlanta2.Level3.net

pop2-atm-P0-2.atdn.net

?

pop1-atl-P4-0.atdn.net

www4.cnn.com

Example Traceroute: Berkeley to CNN

Hop number, IP address, DNS name

No response
from router

No name resolution

30

Try Running Traceroute Yourself
• On UNIX machine

– Traceroute
– E.g., “traceroute www.cnn.com” or “traceroute 12.1.1.1”

• On Windows machine
– Tracert
– E.g., “tracert www.cnn.com” or “tracert 12.1.1.1”

• Common uses of traceroute
– Discover the topology of the Internet
– Debug performance and reachability problems

http://www.cnn.com/
http://www.cnn.com/
http://www.cnn.com/

31

IP Packet Header Fields (Continued)
• Protocol (8 bits)

–Identifies the higher-level protocol
E.g., “6” for the Transmission Control Protocol (TCP)
E.g., “17” for the User Datagram Protocol (UDP)

–Important for demultiplexing at receiving host
Indicates what kind of header to expect next

IP header IP header

TCP header UDP header

protocol=6 protocol=17

32

IP Packet Header Fields (Continued)
• Checksum (16 bits)

–Sum of all 16-bit words in the IP packet header
–If any bits of the header are corrupted in transit
–… the checksum won’t match at receiving host
–Receiving host discards corrupted packets

Sending host will retransmit the packet, if needed

134
+ 212

= 346

134
+ 216

= 350
Mismatch!

33

• Two IP addresses
–Source IP address (32 bits)
–Destination IP address (32 bits)

• Destination address
–Unique identifier for the receiving host
–Allows each node to make forwarding decisions

• Source address
–Unique identifier for the sending host
–Recipient can decide whether to accept packet
–Enables recipient to send a reply back to source

IP Packet Header (Continued)

34

What if the Source Lies?
• Source address should be the sending host

– But, who’s checking, anyway?
– You could send packets with any source you want

• Why would someone want to do this?
– Launch a denial-of-service attack

Send excessive packets to the destination
… to overload the node, or the links leading to the node

– Evade detection by “spoofing”
But, the victim could identify you by the source address
So, you can put someone else’s source address in the packets

– Also, an attack against the spoofed host
Spoofed host is wrongly blamed
Spoofed host may receive return traffic from the receiver

35

Summary: Packet Switching Review
• Efficient

– Can send from any input that is ready

• General
– Multiple types of applications

• Accommodates bursty traffic
– Addition of queues

• Store and forward
– Packets are self contained units
– Can use alternate paths – reordering

• Contention (i.e., no isolation)
– Congestion
– Delay

1

Switches
Reading: Section 3.2

COS 461: Computer Networks

Jennifer Rexford

2

Switches

Introduction to Data Networks

2008.3

3

Goals of Today’s Lecture
• Devices that shuttling packets at different layers

– Repeaters and hubs
– Bridges and switches
– Routers

• Switch protocols and mechanisms
– Dedicated access and full-duplex transfers
– Cut-through switching
– Self learning of the switch table
– Spanning trees
– Virtual LANs (VLANs)

4

Shuttling Data at Different Layers
• Different devices switch different things

– Physical layer: electrical signals (repeaters and hubs)
– Link layer: frames (bridges and switches)
– Network layer: packets (routers)

Application gateway

Transport gateway

Router

Bridge, switch

Repeater, hub

Frame
header

Packet
header

TCP
header

User
data

5

Physical Layer: Repeaters
• Distance limitation in local-area networks

– Electrical signal becomes weaker as it travels
– Imposes a limit on the length of a LAN

• Repeaters join LANs together
– Analog electronic device
– Continuously monitors electrical signals on each LAN
– Transmits an amplified copy

Repeater

6

Physical Layer: Hubs
• Joins multiple input lines electrically

– Designed to hold multiple line cards
– Do not necessarily amplify the signal

• Very similar to repeaters
– Also operates at the physical layer

hub hub hub

hub

7

Limitations of Repeaters and Hubs
• One large collision domain

– Every bit is sent everywhere
– So, aggregate throughput is limited
– E.g., three departments each get 10 Mbps independently

… and then connect via a hub and must share 10 Mbps

• Cannot support multiple LAN technologies
– Does not buffer or interpret frames
– So, can’t interconnect between different rates or formats
– E.g., 10 Mbps Ethernet and 100 Mbps Ethernet

• Limitations on maximum nodes and distances
– Does not circumvent the limitations of shared media
– E.g., still cannot go beyond 2500 meters on Ethernet

8

Link Layer: Bridges
• Connects two or more LANs at the link layer

– Extracts destination address from the frame
– Looks up the destination in a table
– Forwards the frame to the appropriate LAN segment

• Each segment is its own collision domain

host host host host host

host host host host host

host

host

Bridge

9

Link Layer: Switches
• Typically connects individual computers

– A switch is essentially the same as a bridge
– … though typically used to connect hosts, not LANs

• Like bridges, support concurrent communication
– Host A can talk to C, while B talks to D

switch

A

B

C

D

10

Dedicated Access and Full Duplex
• Dedicated access

– Host has direct connection to the switch
– … rather than a shared LAN connection

• Full duplex
– Each connection can send in both directions
– Host sending to switch, and host receiving from switch
– E.g., in 10BaseT and 100Base T

• Completely avoids collisions
– Each connection is a bidirectional point-to-point link
– No need for carrier sense, collision detection, and so on

11

Bridges/Switches: Traffic Isolation
• Switch breaks subnet into LAN segments

• Switch filters packets
– Frame only forwarded to the necessary segments
– Segments become separate collision domains

hub hub hub

switch/bridge

collision domain collision domain

collision
domain

12

Advantages Over Hubs/Repeaters
• Only forwards frames as needed

– Filters frames to avoid unnecessary load on segments
– Sends frames only to segments that need to see them

• Extends the geographic span of the network
– Separate collision domains allow longer distances

• Improves privacy by limiting scope of frames
– Hosts can “snoop” the traffic traversing their segment
– … but not all the rest of the traffic

• Applies carrier sense and collision detection
– Does not transmit when the link is busy
– Applies exponential back-off after a collision

• Joins segments using different technologies

13

Disadvantages Over Hubs/Repeaters

• Delay in forwarding frames
– Bridge/switch must receive and parse the frame
– … and perform a look-up to decide where to forward
– Storing and forwarding the packet introduces delay
– Solution: cut-through switching

• Need to learn where to forward frames
– Bridge/switch needs to construct a forwarding table
– Ideally, without intervention from network administrators
– Solution: self-learning

• Higher cost
– More complicated devices that cost more money

14

Motivation For Cut-Through Switching

• Buffering a frame takes time
– Suppose L is the length of the frame
– And R is the transmission rate of the links
– Then, receiving the frame takes L/R time units

• Buffering delay can be a high fraction of total delay
– Propagation delay is small over short distances
– Making buffering delay a large fraction of total
– Analogy: large group walking through NYC

A B

switches

15

Cut-Through Switching
• Start transmitting as soon as possible

– Inspect the frame header and do the look-up
– If outgoing link is idle, start forwarding the frame

• Overlapping transmissions
– Transmit the head of the packet via the outgoing link
– … while still receiving the tail via the incoming link
– Analogy: different folks crossing different intersections

A B

switches

16

Motivation For Self Learning
• Switches forward frames selectively

– Forward frames only on segments that need them

• Switch table
– Maps destination MAC address to outgoing interface
– Goal: construct the switch table automatically

switch

A

B

C

D

17

Self Learning: Building the Table
• When a frame arrives

– Inspect the source MAC address
– Associate the address with the incoming interface
– Store the mapping in the switch table
– Use a time-to-live field to eventually forget the mapping

A

B

C

D

Switch learns
how to reach A.

18

Self Learning: Handling Misses

• When frame arrives with unfamiliar destination
– Forward the frame out all of the interfaces
– … except for the one where the frame arrived
– Hopefully, this case won’t happen very often

A

B

C

D

When in
doubt,
shout!

19

Switch Filtering/Forwarding
When switch receives a frame:

index switch table using MAC dest address

if entry found for destination
then{

if dest on segment from which frame arrived
then drop the frame

else forward the frame on interface indicated

}

else flood forward on all but the interface
on which the frame arrived

20

Flooding Can Lead to Loops
• Switches sometimes need to broadcast frames

– Upon receiving a frame with an unfamiliar destination
– Upon receiving a frame sent to the broadcast address

• Broadcasting is implemented by flooding
– Transmitting frame out every interface
– … except the one where the frame arrived

• Flooding can lead to forwarding loops
– E.g., if the network contains a cycle of switches
– Either accidentally, or by design for higher reliability

21

Solution: Spanning Trees
• Ensure the topology has no loops

– Avoid using some of the links when flooding
– … to avoid forming a loop

• Spanning tree
– Sub-graph that covers all vertices but contains no cycles
– Links not in the spanning tree do not forward frames

22

Constructing a Spanning Tree
• Need a distributed algorithm

– Switches cooperate to build the spanning tree
– … and adapt automatically when failures occur

• Key ingredients of the algorithm
– Switches need to elect a “root”

The switch with the smallest identifier
– Each switch identifies if its interface

is on the shortest path from the root
And it exclude from the tree if not

– Messages (Y, d, X)
From node X
Claiming Y is the root
And the distance is d

root

One hop

Three hops

23

Steps in Spanning Tree Algorithm
• Initially, each switch thinks it is the root

– Switch sends a message out every interface
– … identifying itself as the root with distance 0
– Example: switch X announces (X, 0, X)

• Switches update their view of the root
– Upon receiving a message, check the root id
– If the new id is smaller, start viewing that switch as root

• Switches compute their distance from the root
– Add 1 to the distance received from a neighbor
– Identify interfaces not on a shortest path to the root
– … and exclude them from the spanning tree

24

Example From Switch #4’s Viewpoint

• Switch #4 thinks it is the root
– Sends (4, 0, 4) message to 2 and 7

• Then, switch #4 hears from #2
– Receives (2, 0, 2) message from 2
– … and thinks that #2 is the root
– And realizes it is just one hop away

• Then, switch #4 hears from #7
– Receives (2, 1, 7) from 7
– And realizes this is a longer path
– So, prefers its own one-hop path
– And removes 4-7 link from the tree

1

2

3

4

5

6
7

25

Example From Switch #4’s Viewpoint

• Switch #2 hears about switch #1
– Switch 2 hears (1, 1, 3) from 3
– Switch 2 starts treating 1 as root
– And sends (1, 2, 2) to neighbors

• Switch #4 hears from switch #2
– Switch 4 starts treating 1 as root
– And sends (1, 3, 4) to neighbors

• Switch #4 hears from switch #7
– Switch 4 receives (1, 3, 7) from 7
– And realizes this is a longer path
– So, prefers its own three-hop path
– And removes 4-7 Iink from the tree

1

2

3

4

5

6
7

26

Robust Spanning Tree Algorithm
• Algorithm must react to failures

– Failure of the root node
Need to elect a new root, with the next lowest identifier

– Failure of other switches and links
Need to recompute the spanning tree

• Root switch continues sending messages
– Periodically reannouncing itself as the root (1, 0, 1)
– Other switches continue forwarding messages

• Detecting failures through timeout (soft state!)
– Switch waits to hear from others
– Eventually times out and claims to be the root

See Section 3.2.2 in the textbook for details and another example

27

Evolution Toward Virtual LANs
• In the olden days…

– Thick cables snaked through cable ducts in buildings
– Every computer they passed was plugged in
– All people in adjacent offices were put on the same LAN
– Independent of whether they belonged together or not

• More recently…
– Hubs and switches changed all that
– Every office connected to central wiring closets
– Often multiple LANs (k hubs) connected by switches
– Flexibility in mapping offices to different LANs

Group users based on organizational structure,
rather than the physical layout of the building.

28

Why Group by Organizational Structure?

• Security
– Ethernet is a shared media
– Any interface card can be put into “promiscuous” mode
– … and get a copy of all of the traffic (e.g., midterm exam)
– So, isolating traffic on separate LANs improves security

• Load
– Some LAN segments are more heavily used than others
– E.g., researchers running experiments get out of hand
– … can saturate their own segment and not the others
– Plus, there may be natural locality of communication
– E.g., traffic between people in the same research group

29

People Move, and Roles Change
• Organizational changes are frequent

– E.g., faculty office becomes a grad-student office
– E.g., graduate student becomes a faculty member

• Physical rewiring is a major pain
– Requires unplugging the cable from one port
– … and plugging it into another
– … and hoping the cable is long enough to reach
– … and hoping you don’t make a mistake

• Would like to “rewire” the building in software
– The resulting concept is a Virtual LAN (VLAN)

30

Example: Two Virtual LANs

Red VLAN and Orange VLAN
Bridges forward traffic as needed

R ORO
RO RO

31

Example: Two Virtual LANs

Red VLAN and Orange VLAN
Switches forward traffic as needed

R

O
RO

R

R

R

OOR OR R R
O

O
O

O

32

Making VLANs Work
• Bridges/switches need configuration tables

– Saying which VLANs are accessible via which interfaces

• Approaches to mapping to VLANs
– Each interface has a VLAN color

Only works if all hosts on same segment belong to same VLAN
– Each MAC address has a VLAN color

Useful when hosts on same segment belong to different VLANs
Useful when hosts move from one physical location to another

• Changing the Ethernet header
– Adding a field for a VLAN tag
– Implemented on the bridges/switches
– … but can still interoperate with old Ethernet cards

33

Moving From Switches to Routers
• Advantages of switches over routers

– Plug-and-play
– Fast filtering and forwarding of frames
– No pronunciation ambiguity (e.g., “rooter” vs. “rowter”)

• Disadvantages of switches over routers
– Topology is restricted to a spanning tree
– Large networks require large ARP tables
– Broadcast storms can cause the network to collapse

34

 hubs

Comparing Hubs, Switches, & Routers

 routers switches

traffic
isolation

no yes yes

plug & play yes no yes

optimal
routing

no yes no

cut
through

yes no yes

35

Conclusion
• Shuttling data from one link to another

– Bits, frames, packets, …
– Repeaters/hubs, bridges/switches, routers, …

• Key ideas in switches
– Cut-through switching
– Self learning of the switch table
– Spanning trees
– Virtual LANs (VLANs)

• Next time
– Routing
– Application-level protocols

1

IP Addressing and
Forwarding

Introduction to Data Networks

2008.4

2

Goals of Today’s Lecture
• IP addresses

– Dotted-quad notation
– IP prefixes for aggregation

• Address allocation
– Classful addresses
– Classless InterDomain Routing (CIDR)
– Growth in the number of prefixes over time

• Packet forwarding
– Forwarding tables
– Longest-prefix match forwarding
– Where forwarding tables come from

3

IP Address (IPv4)
• A unique 32-bit number

• Identifies an interface (on a host, on a router, …)

• Represented in dotted-quad notation

00001100 00100010 10011110 00000101

12 34 158 5

4

Grouping Related Hosts
• The Internet is an “inter-network”

– Used to connect networks together, not hosts
– Needs a way to address a network (i.e., group of hosts)

host host host

LAN 1

... host host host

LAN 2

...

router router routerWAN WAN

LAN = Local Area Network
WAN = Wide Area Network

5

Scalability Challenge
• Suppose hosts had arbitrary addresses

– Then every router would need a lot of information
– …to know how to direct packets toward the host

host host host

LAN 1

... host host host

LAN 2

...

router router routerWAN WAN

1.2.3.4 5.6.7.8 2.4.6.8 1.2.3.5 5.6.7.9 2.4.6.9

1.2.3.4

1.2.3.5

forwarding table

6

Hierarchical Addressing in U.S. Mail
• Addressing in the U.S. mail

– Zip code: 08540
– Street: Olden Street
– Building on street: 35
– Room in building: 306
– Name of occupant: Jennifer Rexford

• Forwarding the U.S. mail
– Deliver letter to the post office in the zip code
– Assign letter to mailman covering the street
– Drop letter into mailbox for the building/room
– Give letter to the appropriate person

???

7

Hierarchical Addressing: IP Prefixes
• Divided into network & host portions (left and right)

• 12.34.158.0/24 is a 24-bit prefix with 28 addresses

00001100 00100010 10011110 00000101

Network (24 bits) Host (8 bits)

12 34 158 5

8

IP Address and a 24-bit Subnet Mask

00001100 00100010 10011110 00000101

12 34 158 5

11111111 11111111 11111111 00000000

255 255 255 0

Address

Mask

9

Scalability Improved
• Number related hosts from a common subnet

– 1.2.3.0/24 on the left LAN
– 5.6.7.0/24 on the right LAN

host host host

LAN 1

... host host host

LAN 2

...

router router routerWAN WAN

1.2.3.4 1.2.3.7 1.2.3.156 5.6.7.8 5.6.7.9 5.6.7.212

1.2.3.0/24

5.6.7.0/24

forwarding table

10

Easy to Add New Hosts
• No need to update the routers

– E.g., adding a new host 5.6.7.213 on the right
– Doesn’t require adding a new forwarding entry

host host host

LAN 1

... host host host

LAN 2

...

router router routerWAN WAN

1.2.3.4 1.2.3.7 1.2.3.156 5.6.7.8 5.6.7.9 5.6.7.212

1.2.3.0/24

5.6.7.0/24

forwarding table

host

5.6.7.213

11

Address Allocation

12

Classful Addressing
• In the olden days, only fixed allocation sizes

–Class A: 0*
Very large /8 blocks (e.g., MIT has 18.0.0.0/8)

–Class B: 10*
Large /16 blocks (e.g,. Princeton has 128.112.0.0/16)

–Class C: 110*
Small /24 blocks (e.g., AT&T Labs has 192.20.225.0/24)

–Class D: 1110*
Multicast groups

–Class E: 11110*
Reserved for future use

• This is why folks use dotted-quad notation!

13

Classless Inter-Domain Routing (CIDR)

IP Address : 12.4.0.0 IP Mask: 255.254.0.0

00001100 00000100 00000000 00000000

11111111 11111110 00000000 00000000

Address

Mask

for hosts Network Prefix

Use two 32-bit numbers to represent a network.
Network number = IP address + Mask

Written as 12.4.0.0/15

14

CIDR: Hierarchal Address Allocation

12.0.0.0/8

12.0.0.0/16

12.254.0.0/16

12.1.0.0/16
12.2.0.0/16
12.3.0.0/16

:
:
:

12.3.0.0/24
12.3.1.0/24

:
:

12.3.254.0/24

12.253.0.0/19
12.253.32.0/19
12.253.64.0/19
12.253.96.0/19
12.253.128.0/19
12.253.160.0/19

:
:
:

• Prefixes are key to Internet scalability
– Address allocated in contiguous chunks (prefixes)
– Routing protocols and packet forwarding based on prefixes
– Today, routing tables contain ~150,000-200,000 prefixes

15

Scalability: Address Aggregation

Provider is given 201.10.0.0/21

201.10.0.0/22 201.10.4.0/24 201.10.5.0/24 201.10.6.0/23

Provider

Routers in the rest of the Internet just need to know
how to reach 201.10.0.0/21. The provider can direct the

IP packets to the appropriate customer.

16

But, Aggregation Not Always Possible

201.10.0.0/21

201.10.0.0/22 201.10.4.0/24 201.10.5.0/24 201.10.6.0/23

Provider 1 Provider 2

Multi-homed customer with 201.10.6.0/23 has two
providers. Other parts of the Internet need to know how

to reach these destinations through both providers.

17

Summary : Scalability Through
Hierarchy

• Hierarchical addressing
– Critical for scalable system
– Don’t require everyone to know everyone else
– Reduces amount of updating when something changes

• Non-uniform hierarchy
– Useful for heterogeneous networks of different sizes
– Initial class-based addressing was far too coarse
– Classless InterDomain Routing (CIDR) helps

18

Obtaining a Block of Addresses
• Separation of control

– Prefix: assigned to an institution
– Addresses: assigned by the institution to their nodes

• Who assigns prefixes?
– Internet Corporation for Assigned Names and Numbers

Allocates large address blocks to Regional Internet Registries
– Regional Internet Registries (RIRs)

E.g., ARIN (American Registry for Internet Numbers)
Allocates address blocks within their regions
Allocated to Internet Service Providers and large institutions

– Internet Service Providers (ISPs)
Allocate address blocks to their customers
Who may, in turn, allocate to their customers…

19

Figuring Out Who Owns an Address
• Address registries

–Public record of address allocations
–Internet Service Providers (ISPs) should update

when giving addresses to customers
–However, records are notoriously out-of-date

• Ways to query
–UNIX: “whois –h whois.arin.net 128.112.136.35”
–http://www.arin.net/whois/
–http://www.geektools.com/whois.php
–…

20

Example Output for 128.112.136.35
OrgName: Princeton University
OrgID: PRNU
Address: Office of Information Technology
Address: 87 Prospect Avenue
City: Princeton
StateProv: NJ
PostalCode: 08544-2007
Country: US
NetRange: 128.112.0.0 - 128.112.255.255
CIDR: 128.112.0.0/16
NetName: PRINCETON
NetHandle: NET-128-112-0-0-1
Parent: NET-128-0-0-0-0
NetType: Direct Allocation
RegDate: 1986-02-24

21

Are 32-bit Addresses Enough?
• Not all that many unique addresses

– 232 = 4,294,967,296 (just over four billion)
– Plus, some are reserved for special purposes
– And, addresses are allocated in larger blocks

• And, many devices need IP addresses
– Computers, PDAs, routers, tanks, toasters, …

• Long-term solution: a larger address space
– IPv6 has 128-bit addresses (2128 = 3.403 × 1038)

• Short-term solutions: limping along with IPv4
– Private addresses
– Network address translation (NAT)
– Dynamically-assigned addresses (DHCP)

22

Packet Forwarding

23

Hop-by-Hop Packet Forwarding
• Each router has a forwarding table

– Maps destination addresses…
– … to outgoing interfaces

• Upon receiving a packet
– Inspect the destination IP address in the header
– Index into the table
– Determine the outgoing interface
– Forward the packet out that interface

• Then, the next router in the path repeats
– And the packet travels along the path to the destination

24

Separate Table Entries Per Address
• If a router had a forwarding entry per IP address

– Match destination address of incoming packet
– … to the forwarding-table entry
– … to determine the outgoing interface

host host host

LAN 1

... host host host

LAN 2

...

router router routerWAN WAN

1.2.3.4 5.6.7.8 2.4.6.8 1.2.3.5 5.6.7.9 2.4.6.9

1.2.3.4

1.2.3.5

forwarding table

25

Separate Entry Per 24-bit Prefix
• If the router had an entry per 24-bit prefix

– Look only at the top 24 bits of the destination address
– Index into the table to determine the next-hop interface

host host host

LAN 1

... host host host

LAN

...

router router routerWAN WAN

1.2.3.4 1.2.3.7 1.2.3.156 5.6.7.8 5.6.7.9 5.6.7.212

1.2.3.0/24

5.6.7.0/24

forwarding table

26

Separate Entry Classful Address
• If the router had an entry per classful prefix

– Mixture of Class A, B, and C addresses
– Depends on the first couple of bits of the destination

• Identify the mask automatically from the address
– First bit of 0: class A address (/8)
– First two bits of 10: class B address (/16)
– First three bits of 110: class C address (/24)

• Then, look in the forwarding table for the match
– E.g., 1.2.3.4 maps to 1.2.3.0/24
– Then, look up the entry for 1.2.3.0/24
– … to identify the outgoing interface

27

CIDR Makes Packet Forwarding Harder

• There’s no such thing as a free lunch
– CIDR allows efficient use of the limited address space
– But, CIDR makes packet forwarding much harder

• Forwarding table may have many matches
– E.g., table entries for 201.10.0.0/21 and 201.10.6.0/23
– The IP address 201.10.6.17 would match both!

201.10.0.0/21

201.10.0.0/22 201.10.4.0/24 201.10.5.0/24 201.10.6.0/23

Provider 1 Provider 2

28

Longest Prefix Match Forwarding
• Forwarding tables in IP routers

– Maps each IP prefix to next-hop link(s)

• Destination-based forwarding
– Packet has a destination address
– Router identifies longest-matching prefix
– Cute algorithmic problem: very fast lookups

4.0.0.0/8
4.83.128.0/17
201.10.0.0/21
201.10.6.0/23
126.255.103.0/24

201.10.6.17
destination

forwarding table

Serial0/0.1
outgoing link

29

Simplest Algorithm is Too Slow
• Scan the forwarding table one entry at a time

– See if the destination matches the entry
– If so, check the size of the mask for the prefix
– Keep track of the entry with longest-matching prefix

• Overhead is linear in size of the forwarding table
– Today, that means 150,000-200,000 entries!
– And, the router may have just a few nanoseconds
– … before the next packet is arriving

• Need greater efficiency to keep up with line rate
– Better algorithms
– Hardware implementations

30

Patricia Tree
• Store the prefixes as a tree

– One bit for each level of the tree
– Some nodes correspond to valid prefixes
– ... which have next-hop interfaces in a table

• When a packet arrives
– Traverse the tree based on the destination address
– Stop upon reaching the longest matching prefix

0 1

00 10 11

100 101

0*

00* 11*

31

Even Faster Lookups
• Patricia tree is faster than linear scan

– Proportional to number of bits in the address

• Patricia tree can be made faster
– Can make a k-ary tree

E.g., 4-ary tree with four children (00, 01, 10, and 11)
– Faster lookup, though requires more space

• Can use special hardware
– Content Addressable Memories (CAMs)
– Allows look-ups on a key rather than flat address

• Huge innovations in the mid-to-late 1990s
– After CIDR was introduced (in 1994)
– … and longest-prefix match was a major bottleneck

32

Where do Forwarding Tables Come From?

• Routers have forwarding tables
– Map prefix to outgoing link(s)

• Entries can be statically configured
– E.g., “map 12.34.158.0/24 to Serial0/0.1”

• But, this doesn’t adapt
– To failures
– To new equipment
– To the need to balance load
– …

• That is where other technologies come in…
– Routing protocols, DHCP, and ARP (later in course)

33

What End Hosts Sending to Others?
• End host with single network interface

– PC with an Ethernet link
– Laptop with a wireless link

• Don’t need to run a routing protocol
– Packets to the host itself (e.g., 1.2.3.4/32)

Delivered locally
– Packets to other hosts on the LAN (e.g., 1.2.3.0/24)

Sent out the interface
– Packets to external hosts (e.g., 0.0.0.0/0)

Sent out interface to local gateway

• How this information is learned
– Static setting of address, subnet mask, and gateway
– Dynamic Host Configuration Protocol (DHCP)

34

What About Reaching the End Hosts?
• How does the last router reach the destination?

• Each interface has a persistent, global identifier
– MAC (Media Access Control) address
– Burned in to the adaptors Read-Only Memory (ROM)
– Flat address structure (i.e., no hierarchy)

• Constructing an address resolution table
– Mapping MAC address to/from IP address
– Address Resolution Protocol (ARP)

host host host

LAN

...

router

1.2.3.4 1.2.3.7 1.2.3.156

35

Conclusions
• IP address

– A 32-bit number
– Allocated in prefixes
– Non-uniform hierarchy for scalability and flexibility

• Packet forwarding
– Based on IP prefixes
– Longest-prefix-match forwarding

• We’ll cover some topics later
– Routing protocols, DHCP, and ARP

1

Internet Control Protocols

Introduction to Data Networks

2008.4

2

Goals of Today’s Lecture
• Bootstrapping an end host

– Learning its own configuration parameters (DHCP)
– Learning the link-layer addresses of other nodes (ARP)

• IP routers
– Line cards, switching fabric, and route processor
– Error reporting and monitoring (with ICMP)

3

Thus Far in the Class…

HTTP

TCP

IP

Ethernet
interface

HTTP

TCP

IP

Ethernet
interface

IP IP

Ethernet
interface

Ethernet
interface

SONET
interface

SONET
interface

host host

router router

HTTP message

TCP segment

IP packet IP packetIP packet

4

At Each Layer …
• Application protocols

– Socket abstraction
– HyperText Transfer Protocol, File Transfer Protocol (FTP)

• Transport services built on IP
– TCP: reliable byte stream with congestion control
– UDP: unreliable message delivery

• Name/address translation
– DNS: mapping host names to/from IP addresses

• Internet Protocol (IP)
– Best-effort packet delivery service
– IP addresses and IP prefixes
– Packet forwarding based on longest-prefix match

5

How To Bootstrap an End Host?
• What IP address the host should use?

• What local Domain Name System server to use?

• How to send packets to remote destinations?

• How to ensure incoming packets arrive?

host host DNS... host host DNS...

router router

1.2.3.0/24 5.6.7.0/24

1.2.3.7 1.2.3.156

1.2.3.19

???

router

6

Avoiding Manual Configuration
• Dynamic Host Configuration Protocol (DHCP)

– End host learns how to send packets
– Learn IP address, DNS servers, and gateway

• Address Resolution Protocol (ARP)
– Others learn how to send packets to the end host
– Learn mapping between IP address and MAC address

host host DNS... host host DNS...

router router

1.2.3.0/24 5.6.7.0/24

1.2.3.7 1.2.3.156

1.2.3.19

???

router

7

Key Ideas in Both Protocols
• Broadcasting: when in doubt, shout!

– Broadcast query to all hosts in the local-area-network
– … when you don’t know how to identify the right one

• Caching: remember the past for a while
– Store the information you learn to reduce overhead
– Remember your own address & other host’s addresses

• Soft state: eventually forget the past
– Associate a time-to-live field with the information
– … and either refresh or discard the information
– Key for robustness in the face of unpredictable change

8

Need Yet Another Kind of Identity
• LANs are designed for arbitrary network protocols

– Not just for IP and the Internet

• Using IP address would require reconfiguration
– Every time the adapter was moved or powered up

• Broadcasting all data to all adapters is expensive
– Requires every host on the LAN to inspect each packet

Motivates separate Medium Access Control (MAC) addresses

9

MAC Address vs. IP Address
• MAC addresses

– Hard-coded in read-only memory when adaptor is built
– Like a social security number
– Flat name space of 48 bits (e.g., 00-0E-9B-6E-49-76)
– Portable, and can stay the same as the host moves
– Used to get packet between interfaces on same network

• IP addresses
– Configured, or learned dynamically
– Like a postal mailing address
– Hierarchical name space of 32 bits (e.g., 12.178.66.9)
– Not portable, and depends on where the host is attached
– Used to get a packet to destination IP subnet

10

MAC Addresses on a LAN

= adapter

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN

11

Bootstrapping Problem
• Host doesn’t have an IP address yet

– So, host doesn’t know what source address to use

• Host doesn’t know who to ask for an IP address
– So, host doesn’t know what destination address to use

• Solution: shout to discover a server who can help
– Broadcast a server-discovery message
– Server sends a reply offering an address

host host host...

DHCP server

12

Broadcasting
• Broadcasting: sending to everyone

– Special destination address: FF-FF-FF-FF-FF-FF
– All adapters on the LAN receive the packet

• Delivering a broadcast packet
– Easy on a “shared media”
– Like shouting in a room – everyone can hear you
– E.g., Ethernet, wireless, and satellite links

13

Response from the DHCP Server
• DHCP “offer message” from the server

– Configuration parameters (proposed IP address, mask,
gateway router, DNS server, ...)

– Lease time (the time the information remains valid)

• Multiple servers may respond
– Multiple servers on the same broadcast media
– Each may respond with an offer
– The client can decide which offer to accept

• Accepting one of the offers
– Client sends a DHCP request echoing the parameters
– The DHCP server responds with an ACK to confirm
– … and the other servers see they were not chosen

14

Dynamic Host Configuration Protocol

arriving
client

DHCP server
233.1.2.5

DHCP discover(broadcast)

DHCP offer

DHCP request

DHCP ACK

(broadcast)

15

Deciding What IP Address to Offer
• Server as centralized configuration database

– All parameters are statically configured in the server
– E.g., a dedicated IP address for each MAC address
– Avoids complexity of configuring hosts directly
– … while still having a permanent IP address per host

• Or, dynamic assignment of IP addresses
– Server maintains a pool of available addresses
– … and assigns them to hosts on demand
– Leads to less configuration complexity
– … and more efficient use of the pool of addresses
– Though, it is harder to track the same host over time

16

Soft State: Refresh or Forget
• Why is a lease time necessary?

– Client can release the IP address (DHCP RELEASE)
E.g., “ipconfig /release” at the DOS prompt
E.g., clean shutdown of the computer

– But, the host might not release the address
E.g., the host crashes (blue screen of death!)
E.g., buggy client software

– And you don’t want the address to be allocated forever

• Performance trade-offs
– Short lease time: returns inactive addresses quickly
– Long lease time: avoids overhead of frequent renewals

17

So, Now the Host Knows Things
• IP address

• Mask

• Gateway router

• DNS server

• …

• And can send packets to other IP addresses
– But, how to learn the MAC address of the destination?

18

Sending Packets Over a Link

• Adaptors only understand MAC addresses
– Translate the destination IP address to MAC address
– Encapsulate the IP packet inside a link-level frame

host host Web...
1.2.3.156

router

1.2.3.53

1.2.3.53

1.2.3.156

IP packet

19

Address Resolution Protocol Table
• Every node maintains an ARP table

– (IP address, MAC address) pair

• Consult the table when sending a packet
– Map destination IP address to destination MAC address
– Encapsulate and transmit the data packet

• But, what if the IP address is not in the table?
– Sender broadcasts: “Who has IP address 1.2.3.156?”
– Receiver responds: “MAC address 58-23-D7-FA-20-B0”
– Sender caches the result in its ARP table

• No need for network administrator to get involved

20

Example: A Sending a Packet to B
How does host A send an IP packet to host B?

A

R
B

A sends packet to R, and R sends packet to B.

21

Host A Decides to Send Through R
• Host A constructs an IP packet to send to B

– Source 111.111.111.111, destination 222.222.222.222
• Host A has a gateway router R

– Used to reach destinations outside of 111.111.111.0/24
– Address 111.111.111.110 for R learned via DHCP

A

R
B

22

Host A Sends Packet Through R
• Host A learns the MAC address of R’s interface

– ARP request: broadcast request for 111.111.111.110
– ARP response: R responds with E6-E9-00-17-BB-4B

• Host A encapsulates the packet and sends to R

A

R
B

23

R Decides how to Forward Packet
• Router R’s adaptor receives the packet

– R extracts the IP packet from the Ethernet frame
– R sees the IP packet is destined to 222.222.222.222

• Router R consults its forwarding table
– Packet matches 222.222.222.0/24 via other adaptor

A

R
B

24

R Sends Packet to B
• Router R’s learns the MAC address of host B

– ARP request: broadcast request for 222.222.222.222
– ARP response: B responds with 49-BD-D2-C7-56-2A

• Router R encapsulates the packet and sends to B

A

R
B

25

IP Routers

26

Inside a High-End Router

Switching
Fabric

Processor

Line card

Line card

Line card

Line card

Line card

Line card

27

Router Physical Layout

Juniper T series

Cisco 12000

Crossbar

Linecards

28

Line Cards (Interface Cards, Adaptors)

• Interfacing
– Physical link
– Switching fabric

• Packet handling
– Packet forwarding
– Decrement time-to-live
– Buffer management
– Link scheduling
– Packet filtering
– Rate limiting
– Packet marking
– Measurement

to/from link

to/from switch

lookup

R
ec

ei
ve

Transm
it

29

Switching Fabric
• Deliver packet inside the router

– From incoming interface to outgoing interface
– A small network in and of itself

• Must operate very quickly
– Multiple packets going to same outgoing interface
– Switch scheduling to match inputs to outputs

• Implementation techniques
– Bus, crossbar, interconnection network, …
– Running at a faster speed (e.g., 2X) than links
– Dividing variable-length packets into cells

30

Packet Switching

R1Link 1

Link 2

Link 3

Link 4

Link 1, ingress

Link 2, ingress Link 2, egress

Link 3, ingress Link 3, egress

Link 4, ingress Link 4, egress

Link 1, egressChoose
Egress

Choose
Egress

Choose
Egress

Choose
Egress

“4”

“4”

31

Router Processor
• So-called “Loopback” interface

–IP address of the CPU on the router

• Control-plane software
–Implementation of the routing protocols
–Creation of forwarding table for the line cards

• Interface to network administrators
–Command-line interface for configuration
–Transmission of measurement statistics

• Handling of special data packets
–Packets with IP options enabled
–Packets with expired Time-To-Live field

32

Error Reporting
• Examples of errors a router may see

– Router doesn’t know where to forward a packet
– Packet’s time-to-live field expires

• Router doesn’t really need to respond
– Best effort means never having to say you’re sorry
– So, IP could conceivably just silently drop packets

• But, silent failures are really hard to diagnose
– IP includes basic feedback about network problems
– Internet Control Message Protocol (ICMP)

33

Internet Control Message Protocol
• ICMP runs on top of IP

– In parallel to TCP and UDP
– Though still viewed as an integral part of IP

• Diagnostics
– Triggered when an IP packet encounters a problem

E.g., time exceeded or destination unreachable
– ICMP packet sent back to the source IP address

Includes the error information (e.g., type and code)
… and an excerpt of the original data packet for identification

– Source host receives the ICMP packet
And inspects the except of the packet (e.g., protocol and ports)
… to identify which socket should receive the error

34

ICMP: Internet Control Message Protocol

• used by hosts & routers to
communicate network-level
information
– error reporting: unreachable host,

network, port, protocol
– echo request/reply (used by ping)

• network-layer “above” IP:
– ICMP msgs carried in IP

datagrams

• ICMP message: type, code plus first
8 bytes of IP datagram causing error

Type Code description
0 0 echo reply (ping)
3 0 dest. network unreachable
3 1 dest host unreachable
3 2 dest protocol unreachable
3 3 dest port unreachable
3 6 dest network unknown
3 7 dest host unknown
4 0 source quench (congestion

control - not used)
8 0 echo request (ping)
9 0 route advertisement
10 0 router discovery
11 0 TTL expired
12 0 bad IP header

35

Example: Time Exceeded

host DNS... host host DNS...

router routerrouter

host
1.2.3.7

8.9.10.11

5.6.7.156

• Host sends an IP packet
– Each router decrements the time-to-live field

• If time-to-live field reaches 0
– Router generates an ICMP message
– Sends a “time exceeded” message back to the source

Time exceeded

36

Traceroute and ICMP
• Source sends series of UDP

segments to dest
– First has TTL =1
– Second has TTL=2, etc.
– Unlikely port number

• When nth datagram arrives to
nth router:
– Router discards datagram
– And sends to source an ICMP

message (type 11, code 0)
– Message includes name of

router& IP address

• When ICMP message arrives,
source calculates RTT

• Traceroute does this 3 times

Stopping criterion

• UDP segment eventually arrives
at destination host

• Destination returns ICMP “host
unreachable” packet (type 3,
code 3)

• When source gets this ICMP,
stops.

37

Traceroute: Exploiting “Time Exceeded”
• Time-To-Live field in IP packet header

– Source sends a packet with a TTL of n
– Each router along the path decrements the TTL
– “TTL exceeded” sent when TTL reaches 0

• Traceroute tool exploits this TTL behavior

source destination

TTL=1
Time

exceeded

TTL=2

Send packets with TTL=1, 2, … and record source of “time exceeded” message

38

Ping: Echo and Reply
• ICMP includes a simple “echo” function

– Sending node sends an ICMP “echo” message
– Receiving node sends an ICMP “echo reply”

• Ping tool
– Tests the connectivity with a remote host
– … by sending regularly spaced echo commands
– … and measuring the delay until receiving the reply

• Pinging a host
– “ping www.cs.princeton.edu” or “ping 12.157.34.212”
– Used to test if a machine is reachable and alive
– (However, some nodes have ICMP disabled…)

39

Conclusion
• Important control functions

– Bootstrapping
– Error reporting and monitoring

• Internet control protocols
– Dynamic Host Configuration Protocol (DHCP)
– Address Resolution Protocol (ARP)
– Internet Control Message Protocol (ICMP)

• Components of an IP router
– Line cards, switching fabric, and route processor

1

Shortest-Path Routing

Introduction to Data Networks

2008.4

2

Goals of Today’s Lecture
• Path selection

–Minimum-hop and shortest-path routing
–Dijkstra and Bellman-Ford algorithms

• Topology change
–Using beacons to detect topology changes
–Propagating topology or path information

• Routing protocols
–Link state: Open Shortest Path First
–Distance vector: Routing Information Protocol

3

What is Routing?
• A famous quotation from RFC 791

“A name indicates what we seek.
An address indicates where it is.
A route indicates how we get there.”

-- Jon Postel

4

Forwarding vs. Routing
• Forwarding: data plane

–Directing a data packet to an outgoing link
–Individual router using a forwarding table

• Routing: control plane
–Computing paths the packets will follow
–Routers talking amongst themselves
–Individual router creating a forwarding table

5

Why Does Routing Matter?
• End-to-end performance

–Quality of the path affects user performance
–Propagation delay, throughput, and packet loss

• Use of network resources
–Balance of the traffic over the routers and links
–Avoiding congestion by directing traffic to lightly-

loaded links

• Transient disruptions during changes
–Failures, maintenance, and load balancing
–Limiting packet loss and delay during changes

6

Shortest-Path Routing

• Path-selection model
–Destination-based
–Load-insensitive (e.g., static link weights)
–Minimum hop count or sum of link weights

3

2

1

1
4

1

4

5

3

2

7

Shortest-Path Problem
• Given: network topology with link costs

– c(x,y): link cost from node x to node y
– Infinity if x and y are not direct neighbors

• Compute: least-cost paths to all nodes
– From a given source u to all other nodes
– p(v): predecessor node along path from source to v

3

2

1

1
4

1

4

5

3
v

p(v)

2

u

8

Routing Algorithm classification
Global or decentralized

information?
Global:

• all routers have complete
topology, link cost info

• “link state” algorithms

Decentralized:

• router knows physically-
connected neighbors, link
costs to neighbors

• iterative process of
computation, exchange of info
with neighbors

• “distance vector” algorithms

Static or dynamic?
Static:

• routes change slowly
over time

Dynamic:

• routes change more
quickly
– periodic update
– in response to link

cost changes

9

Dijkstra’s Shortest-Path Algorithm
• Iterative algorithm

– After k iterations, know least-cost path to k nodes

• S: nodes whose least-cost path definitively known
– Initially, S = {u} where u is the source node
– Add one node to S in each iteration

• D(v): current cost of path from source to node v
– Initially, D(v) = c(u,v) for all nodes v adjacent to u
– … and D(v) = ∞ for all other nodes v
– Continually update D(v) as shorter paths are learned

10

Dijsktra’s Algorithm

1 Initialization:
2 S = {u}
3 for all nodes v
4 if v adjacent to u {
5 D(v) = c(u,v)
6 else D(v) = ∞
7
8 Loop
9 find w not in S with the smallest D(w)
10 add w to S
11 update D(v) for all v adjacent to w and not in S:
12 D(v) = min{D(v), D(w) + c(w,v)}
13 until all nodes in S

11

Dijkstra’s Algorithm Example

3
2

2

1

1
4

1

4

5

3

3
2

2

1

1
4

1

4

5

3

3
2

2

1

1
4

1

4

5

3

3
2

2

1

1
4

1

4

5

3

12

Dijkstra’s Algorithm Example

3
2

2

1

1
4

1

4

5

3

3
2

2

1

1
4

1

4

5

3

3
2

2

1

1
4

1

4

5

3

3
2

2

1

1
4

1

4

5

3

13

Shortest-Path Tree
• Shortest-path tree from u • Forwarding table at u

3
2

2

1

1
4

1

4

5

3

u

v

w

x

y

z

s

t

v (u,v)
w (u,w)
x (u,w)
y (u,v)
z (u,v)

link

s (u,w)
t (u,w)

13

Dijkstra’s algorithm: Another
example

Step
0
1
2
3
4
5

S
u

ux
uxy

uxyv
uxyvw

uxyvwz

D(v),p(v)
2,u
2,u
2,u

D(w),p(w)
5,u
4,x
3,y
3,y

D(x),p(x)
1,u

D(y),p(y)
∞

2,x

D(z),p(z)
∞
∞
4,y
4,y
4,y

u

yx

wv

z
2

2
1

3

1

1
2

5
3

5

15

Dijkstra’s algorithm: Another
example

u

yx

wv

z

Resulting shortest-path tree from u:

v
x
y
w
z

(u,v)
(u,x)
(u,x)
(u,x)
(u,x)

destination link
Resulting forwarding table in u:

16

Link-State Routing
• Each router keeps track of its incident links

– Whether the link is up or down
– The cost on the link

• Each router broadcasts the link state
– To give every router a complete view of the graph

• Each router runs Dijkstra’s algorithm
– To compute the shortest paths
– … and construct the forwarding table

• Example protocols
– Open Shortest Path First (OSPF)
– Intermediate System – Intermediate System (IS-IS)

17

Detecting Topology Changes
• Beaconing

–Periodic “hello” messages in both directions
–Detect a failure after a few missed “hellos”

• Performance trade-offs
–Detection speed
–Overhead on link bandwidth and CPU
–Likelihood of false detection

“hello”

18

Broadcasting the Link State
• Flooding

–Node sends link-state information out its links
–And then the next node sends out all of its links
–… except the one where the information arrived

X A

C B D

(a)

X A

C B D

(b)

X A

C B D

(c)

X A

C B D

(d)

19

Broadcasting the Link State
• Reliable flooding

–Ensure all nodes receive link-state information
–… and that they use the latest version

• Challenges
–Packet loss
–Out-of-order arrival

• Solutions
–Acknowledgments and retransmissions
–Sequence numbers
–Time-to-live for each packet

20

When to Initiate Flooding
• Topology change

–Link or node failure
–Link or node recovery

• Configuration change
–Link cost change

• Periodically
–Refresh the link-state information
–Typically (say) 30 minutes
–Corrects for possible corruption of the data

21

Convergence
• Getting consistent routing information to all nodes

– E.g., all nodes having the same link-state database

• Consistent forwarding after convergence
– All nodes have the same link-state database
– All nodes forward packets on shortest paths
– The next router on the path forwards to the next hop

3

2

1

1
4

1

4

5

3

2

22

Transient Disruptions
• Detection delay

–A node does not detect a failed link immediately
–… and forwards data packets into a “blackhole”
–Depends on timeout for detecting lost hellos

3

2

1

1
4

1

4

5

3

2

23

Transient Disruptions
• Inconsistent link-state database

–Some routers know about failure before others
–The shortest paths are no longer consistent
–Can cause transient forwarding loops

3

2

1

1
4

1

4

5

3

2
3

2

1

1
4

1

4 3

2

24

• Sources of convergence delay
–Detection latency
–Flooding of link-state information
–Shortest-path computation
–Creating the forwarding table

• Performance during convergence period
–Lost packets due to blackholes and TTL expiry
–Looping packets consuming resources
–Out-of-order packets reaching the destination

• Very bad for VoIP, online gaming, and video

Convergence Delay

25

Reducing Convergence Delay
• Faster detection

– Smaller hello timers
– Link-layer technologies that can detect failures

• Faster flooding
– Flooding immediately
– Sending link-state packets with high-priority

• Faster computation
– Faster processors on the routers
– Incremental Dijkstra algorithm

• Faster forwarding-table update
– Data structures supporting incremental updates

26

Scaling Link-State Routing
• Overhead of link-state routing

– Flooding link-state packets throughout the network
– Running Dijkstra’s shortest-path algorithm

• Introducing hierarchy through “areas”

Area 0

Area 1 Area 2

Area 3 Area 4

area
border
router

27

Bellman-Ford Algorithm
• Define distances at each node x

– dx(y) = cost of least-cost path from x to y

• Update distances based on neighbors
– dx(y) = min {c(x,v) + dv(y)} over all neighbors v

3

2

1

1
4

1

4

5

3

v

w

x

y

s

2

u z

t du(z) = min{c(u,v) + dv(z),
c(u,w) + dw(z)}

28

Distance Vector Algorithm
• c(x,v) = cost for direct link from x to v

– Node x maintains costs of direct links c(x,v)

• Dx(y) = estimate of least cost from x to y
– Node x maintains distance vector Dx = [Dx(y): y є N]

• Node x maintains its neighbors’ distance vectors
– For each neighbor v, x maintains Dv = [Dv(y): y є N]

• Each node v periodically sends Dv to its neighbors
– And neighbors update their own distance vectors
– Dx(y) ← minv{c(x,v) + Dv(y)} for each node y ∊ N

• Over time, the distance vector Dx converges

29

Distance Vector Algorithm

Iterative, asynchronous:
each local iteration caused by:

• Local link cost change

• Distance vector update
message from neighbor

Distributed:
• Each node notifies neighbors

only when its DV changes

• Neighbors then notify their
neighbors if necessary

wait for (change in local link
cost or message from neighbor)

recompute estimates

if DV to any destination has
changed, notify neighbors

Each node:

30

Distance Vector Example: Step 0

A

E

F

C

D

B

2

3

6

4

1

1

1

3

Table for A

Dst Cst Hop

A 0 A

B 4 B

C ∞ –

D ∞ –

E 2 E

F 6 F

Table for B

Dst Cst Hop

A 4 A

B 0 B

C ∞ –

D 3 D

E ∞ –

F 1 F

Table for C

Dst Cst Hop

A ∞ –

B ∞ –

C 0 C

D 1 D

E ∞ –

F 1 F

Table for D

Dst Cst Hop

A ∞ –

B 3 B

C 1 C

D 0 D

E ∞ –

F ∞ –

Table for E

Dst Cst Hop

A 2 A

B ∞ –

C ∞ –

D ∞ –

E 0 E

F 3 F

Table for F

Dst Cst Hop

A 6 A

B 1 B

C 1 C

D ∞ –

E 3 E

F 0 F

Optimum 1-hop paths

31

Distance Vector Example: Step 2

Table for A

Dst Cst Hop

A 0 A

B 4 B

C 7 F

D 7 B

E 2 E

F 5 E

Table for B

Dst Cst Hop

A 4 A

B 0 B

C 2 F

D 3 D

E 4 F

F 1 F
Table for C

Dst Cst Hop

A 7 F

B 2 F

C 0 C

D 1 D

E 4 F

F 1 F

Table for D

Dst Cst Hop

A 7 B

B 3 B

C 1 C

D 0 D

E ∞ –

F 2 C

Table for E

Dst Cst Hop

A 2 A

B 4 F

C 4 F

D ∞ –

E 0 E

F 3 F

Table for F

Dst Cst Hop

A 5 B

B 1 B

C 1 C

D 2 C

E 3 E

F 0 F

Optimum 2-hop paths

A

E

F

C

D

B

2

3

6

4

1

1

1

3

32

Distance Vector Example: Step 3

Table for A

Dst Cst Hop

A 0 A

B 4 B

C 6 E

D 7 B

E 2 E

F 5 E

Table for B

Dst Cst Hop

A 4 A

B 0 B

C 2 F

D 3 D

E 4 F

F 1 F
Table for C

Dst Cst Hop

A 6 F

B 2 F

C 0 C

D 1 D

E 4 F

F 1 F

Table for D

Dst Cst Hop

A 7 B

B 3 B

C 1 C

D 0 D

E 5 C

F 2 C

Table for E

Dst Cst Hop

A 2 A

B 4 F

C 4 F

D 5 F

E 0 E

F 3 F

Table for F

Dst Cst Hop

A 5 B

B 1 B

C 1 C

D 2 C

E 3 E

F 0 F

Optimum 3-hop paths

A

E

F

C

D

B

2

3

6

4

1

1

1

3

33

Distance Vector: Link Cost Changes

Link cost changes:
• Node detects local link cost change

• Updates the distance table

• If cost change in least cost path, notify neighbors

X Z
14

50

Y
1

algorithm
terminates“good

news
travels
fast”

34

Distance Vector: Link Cost Changes
Link cost changes:
• Good news travels fast

• Bad news travels slow - “count to
infinity” problem!

X Z
14

50

Y
60

algorithm
continues

on!

35

Distance Vector: Poison Reverse
If Z routes through Y to get to X :
• Z tells Y its (Z’s) distance to X is infinite (so Y

won’t route to X via Z)

• Still, can have problems when more than 2
routers are involved

X Z
14

50

Y
60

algorithm
terminates

36

Routing Information Protocol (RIP)
• Distance vector protocol

– Nodes send distance vectors every 30 seconds
– … or, when an update causes a change in routing

• Link costs in RIP
– All links have cost 1
– Valid distances of 1 through 15
– … with 16 representing infinity
– Small “infinity” smaller “counting to infinity” problem

• RIP is limited to fairly small networks
– E.g., used in the Princeton campus network

37

Comparison of LS and DV algorithms

Message complexity
• LS: with n nodes, E links, O(nE)

messages sent

• DV: exchange between
neighbors only
– Convergence time varies

Speed of Convergence
• LS: O(n2) algorithm requires

O(nE) messages

• DV: convergence time varies
– May be routing loops
– Count-to-infinity problem

Robustness: what happens
if router malfunctions?

LS:
– Node can advertise incorrect

link cost
– Each node computes only its

own table

DV:
– DV node can advertise

incorrect path cost
– Each node’s table used by

others (error propagates)

38

Conclusions
• Routing is a distributed algorithm

– React to changes in the topology
– Compute the shortest paths

• Two main shortest-path algorithms
– Dijkstra link-state routing (e.g., OSPF and IS-IS)
– Bellman-Ford distance vector routing (e.g., RIP)

• Convergence process
– Changing from one topology to another
– Transient periods of inconsistency across routers

• Next time: policy-based path-vector routing

1

Policy-Based Path-Vector
Routing

Introduction to Data Networks

2008.4

2

Goals of Today’s Lecture
• Challenges of interdomain routing

– Scale, privacy, and policy
– Limitations of link-state and distance-vector routing

• Path-vector routing
– Faster loop detection than distance-vector routing
– More flexibility than shortest-path routing

• Border Gateway Protocol (BGP)
– Incremental, prefix-based, path-vector protocol
– Programmable import and export policies
– Multi-step decision process for selecting “best” route

• Multiple routers within an AS

• BGP convergence delay

3

Interdomain Routing
• AS-level topology

–Destinations are IP prefixes (e.g., 12.0.0.0/8)
–Nodes are Autonomous Systems (ASes)
–Links are connections & business relationships

1

2

3
4

5

67

Client Web server

4

Challenges for Interdomain Routing
• Scale

–Prefixes: 150,000-200,000, and growing
–ASes: 20,000 visible ones, and growing
–AS paths and routers: at least in the millions…

• Privacy
–ASes don’t want to divulge internal topologies
–… or their business relationships with neighbors

• Policy
–No Internet-wide notion of a link cost metric
–Need control over where you send traffic
–… and who can send traffic through you

5

Shortest-Path Routing is Restrictive
• All traffic must travel on shortest paths

• All nodes need common notion of link costs

• Incompatible with commercial relationships

Regional
ISP1

Regional
ISP2

Regional
ISP3

Cust1Cust3 Cust2

National
ISP1

National
ISP2

YES

NO

6

Link-State Routing is Problematic
• Topology information is flooded

–High bandwidth and storage overhead
–Forces nodes to divulge sensitive information

• Entire path computed locally per node
–High processing overhead in a large network

• Minimizes some notion of total distance
–Works only if policy is shared and uniform

• Typically used only inside an AS
–E.g., OSPF and IS-IS

7

Distance Vector is on the Right Track

• Advantages
–Hides details of the network topology
–Nodes determine only “next hop” toward the dest

• Disadvantages
–Minimizes some notion of total distance, which is

difficult in an interdomain setting
–Slow convergence due to the counting-to-infinity

problem (“bad news travels slowly”)

• Idea: extend the notion of a distance vector

8

Path-Vector Routing
• Extension of distance-vector routing

–Support flexible routing policies
–Avoid count-to-infinity problem

• Key idea: advertise the entire path
–Distance vector: send distance metric per dest d
–Path vector: send the entire path for each dest d

3 2 1

d

“d: path (2,1)” “d: path (1)”

data traffic data traffic

9

Faster Loop Detection
• Node can easily detect a loop

–Look for its own node identifier in the path
–E.g., node 1 sees itself in the path “3, 2, 1”

• Node can simply discard paths with loops
–E.g., node 1 simply discards the advertisement

3 2 1
“d: path (2,1)” “d: path (1)”

“d: path (3,2,1)”

10

Flexible Policies
• Each node can apply local policies

–Path selection: Which path to use?
–Path export: Which paths to advertise?

• Examples
–Node 2 may prefer the path “2, 3, 1” over “2, 1”
–Node 1 may not let node 3 hear the path “1, 2”

2 3

1

11

• Interdomain routing protocol for the Internet
–Prefix-based path-vector protocol
–Policy-based routing based on AS Paths
–Evolved during the past 15 years

• 1989 : BGP-1 [RFC 1105]
– Replacement for EGP (1984, RFC 904)

• 1990 : BGP-2 [RFC 1163]
• 1991 : BGP-3 [RFC 1267]
• 1995 : BGP-4 [RFC 1771]

– Support for Classless Interdomain Routing (CIDR)

Border Gateway Protocol

12

BGP Operations

Establish session on
TCP port 179

Exchange all
active routes

Exchange incremental
updates

AS1

AS2

While connection
is ALIVE exchange
route UPDATE messages

BGP session

13

Incremental Protocol
• A node learns multiple paths to destination

–Stores all of the routes in a routing table
–Applies policy to select a single active route
–… and may advertise the route to its neighbors

• Incremental updates
–Announcement

Upon selecting a new active route, add node id to path
… and (optionally) advertise to each neighbor

–Withdrawal
If the active route is no longer available
… send a withdrawal message to the neighbors

14

BGP Route
• Destination prefix (e.g,. 128.112.0.0/16)

• Route attributes, including
– AS path (e.g., “7018 88”)
– Next-hop IP address (e.g., 12.127.0.121)

AS 88
Princeton

128.112.0.0/16
AS path = 88
Next Hop = 192.0.2.1

AS 7018
AT&T

AS 12654
RIPE NCC
RIS project

192.0.2.1

128.112.0.0/16
AS path = 7018 88
Next Hop = 12.127.0.121

12.127.0.121

15

ASPATH Attribute

AS7018
128.112.0.0/16
AS Path = 88

AS 1239
Sprint

AS 1755
Ebone

AT&T

AS 3549
Global Crossing

128.112.0.0/16
AS Path = 7018 88

128.112.0.0/16
AS Path = 3549 7018 88

AS 88

128.112.0.0/16
Princeton

Prefix Originated

AS 12654
RIPE NCC
RIS project

AS 1129
Global Access

128.112.0.0/16
AS Path = 7018 88

128.112.0.0/16
AS Path = 1239 7018 88

128.112.0.0/16
AS Path = 1129 1755 1239 7018 88

128.112.0.0/16
AS Path = 1755 1239 7018 88

16

BGP Path Selection
• Simplest case

–Shortest AS path
–Arbitrary tie break

• Example
–Four-hop AS path preferred

over a three-hop AS path
–AS 12654 prefers path

through Global Crossing

• But, BGP is not limited to
shortest-path routing
–Policy-based routing AS 3549

Global Crossing

128.112.0.0/16
AS Path = 3549 7018 88

AS 12654
RIPE NCC
RIS project

AS 1129
Global Access

128.112.0.0/16
AS Path = 1129 1755 1239 7018 88

17

BGP Policy: Applying Policy to Routes

• Import policy
–Filter unwanted routes from neighbor

E.g. prefix that your customer doesn’t own
–Manipulate attributes to influence path selection

E.g., assign local preference to favored routes

• Export policy
–Filter routes you don’t want to tell your neighbor

E.g., don’t tell a peer a route learned from other peer
–Manipulate attributes to control what they see

E.g., make a path look artificially longer than it is

18

AS is Not a Single Node
• AS path length can be misleading

– An AS may have many router-level hops

AS 4

AS 3

AS 2

AS 1

BGP says that
path 4 1 is better
than path 3 2 1

19

An AS is Not a Single Node
• Multiple routers in an AS

–Need to distribute BGP information within the AS
–Internal BGP (iBGP) sessions between routers

AS1

AS2

eBGP

iBGP

20

An AS is Not a Single Node
• Multiple connections to neighboring ASes

–Multiple border routers may learn good routes
–… with the same local-pref and AS path length

1

2

3
4

5

67

Multiple links

21

Joining BGP and IGP Information
• Border Gateway Protocol (BGP)

–Announces reachability to external destinations
–Maps a destination prefix to an egress point

128.112.0.0/16 reached via 192.0.2.1

• Interior Gateway Protocol (IGP)
–Used to compute paths within the AS
–Maps an egress point to an outgoing link

192.0.2.1 reached via 10.1.1.1

192.0.2.1

10.1.1.1

22

Forwarding Table

Forwarding Table

Joining BGP with IGP Information

AS 7018 AS 88192.0.2.1

128.112.0.0/16

10.10.10.10

BGP

192.0.2.1135.207.0.0/16

destination next hop

10.10.10.10192.0.2.0/30

destination next hop

128.112.0.0/16
Next Hop = 192.0.2.1

135.207.0.0/16

destination next hop

10.10.10.10

+

192.0.2.0/30 10.10.10.10

23

Causes of BGP Routing Changes
• Topology changes

– Equipment going up or down
– Deployment of new routers or sessions

• BGP session failures
– Due to equipment failures, maintenance, etc.
– Or, due to congestion on the physical path

• Changes in routing policy
– Reconfiguration of preferences
– Reconfiguration of route filters

• Persistent protocol oscillation
– Conflicts between policies in different ASes

24

• BGP runs over TCP
– BGP only sends updates

when changes occur
– TCP doesn’t detect lost

connectivity on its own

• Detecting a failure
– Keep-alive: 60 seconds
– Hold timer: 180 seconds

• Reacting to a failure
– Discard all routes learned

from the neighbor
– Send new updates for any

routes that change

BGP Session Failure

AS1

AS2

25

Routing Change: Before and After

0

1 2

3

0

1 2

3

(2,0)

(3,1,0)

(1,0) (2,0)

(1,2,0)

(3,2,0)

26

Routing Change: Path Exploration

• AS 1
– Delete the route (1,0)
– Switch to next route (1,2,0)
– Send route (1,2,0) to AS 3

• AS 3
– Sees (1,2,0) replace (1,0)
– Compares to route (2,0)
– Switches to using AS 2

0

1 2

3

(2,0)

(1,2,0)

(3,2,0)

27

Routing Change: Path Exploration

• Initial situation
– Destination 0 is alive
– All ASes use direct path

• When destination dies
– All ASes lose direct path
– All switch to longer paths
– Eventually withdrawn

• E.g., AS 2
– (2,0) (2,1,0)
– (2,1,0) (2,3,0)
– (2,3,0) (2,1,3,0)
– (2,1,3,0) null

1 2

3

0

(1,0)
(1,2,0)
(1,3,0)

(2,0)
(2,1,0)
(2,3,0)

(2,1,3,0)

(3,0)
(3,1,0)
(3,2,0)

28

BGP Converges Slowly, if at All
• Path vector avoids count-to-infinity

– But, ASes still must explore many alternate paths
– … to find the highest-ranked path that is still available

• Fortunately, in practice
– Most popular destinations have very stable BGP routes
– And most instability lies in a few unpopular destinations

• Still, lower BGP convergence delay is a goal
– Can be tens of seconds to tens of minutes
– High for important interactive applications
– … or even conventional application, like Web browsing

29

Conclusions
• BGP is solving a hard problem

– Routing protocol operating at a global scale
– With tens of thousands of independent networks
– That each has their own policy goals
– And all want fast convergence

• Key features of BGP
– Prefix-based path-vector protocol
– Incremental updates (announcements and withdrawals)
– Policies applied at import and export of routes
– Internal BGP to distribute information within an AS
– Interaction with the IGP to compute forwarding tables

1

Transport Protocols
Sections 2.5, 5.1, and 5.2

Introduction to Data Networks

2008.4

2

Goals for Today’s Lecture
• Principles underlying transport-layer services

– (De)multiplexing
– Detecting corruption
– Reliable delivery
– Flow control

• Transport-layer protocols in the Internet
– User Datagram Protocol (UDP)
– Transmission Control Protocol (TCP)

3

Role of Transport Layer
• Application layer

– Communication for specific applications
– E.g., HyperText Transfer Protocol (HTTP), File Transfer

Protocol (FTP), Network News Transfer Protocol (NNTP)

• Transport layer
– Communication between processes (e.g., socket)
– Relies on network layer and serves the application layer
– E.g., TCP and UDP

• Network layer
– Logical communication between nodes
– Hides details of the link technology
– E.g., IP

4

Transport Protocols
• Provide logical communication

between application processes
running on different hosts

• Run on end hosts
– Sender: breaks application

messages into segments,
and passes to network layer

– Receiver: reassembles
segments into messages,
passes to application layer

• Multiple transport protocol
available to applications
– Internet: TCP and UDP

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

logical end-end transport

5

Internet Transport Protocols
• Datagram messaging service (UDP)

– No-frills extension of “best-effort” IP

• Reliable, in-order delivery (TCP)
– Connection set-up
– Discarding of corrupted packets
– Retransmission of lost packets
– Flow control
– Congestion control (next lecture)

• Other services not available
– Delay guarantees
– Bandwidth guarantees

6

Multiplexing and Demultiplexing

• Host receives IP datagrams
– Each datagram has source

and destination IP address,
– Each datagram carries one

transport-layer segment
– Each segment has source

and destination port number

• Host uses IP addresses and
port numbers to direct the
segment to appropriate socket

source port # dest port #

32 bits

application
data

(message)

other header fields

TCP/UDP segment format

7

Unreliable Message Delivery Service

• Lightweight communication between processes
– Avoid overhead and delays of ordered, reliable delivery
– Send messages to and receive them from a socket

• User Datagram Protocol (UDP)
– IP plus port numbers to support (de)multiplexing
– Optional error checking on the packet contents

SRC port DST port

checksum length

DATA

8

Connectionless demultiplexing

• Create sockets with port
numbers:

DatagramSocket mySocket1 = new
DatagramSocket(99111);

DatagramSocket mySocket2 = new
DatagramSocket(99222);

• UDP socket identified by two-
tuple:

(dest IP address, dest port number)

• When host receives UDP
segment:
– checks destination port

number in segment
– directs UDP segment to

socket with that port number

• IP datagrams with different
source IP addresses
and/or source port
numbers directed to same
socket

9

Connectionless demux (cont)

DatagramSocket serverSocket = new DatagramSocket(6428);

Client
IP:B

P2

client
IP: A

P1P1P3

server
IP: C

SP: 6428

DP: 9157

SP: 9157

DP: 6428

SP: 6428

DP: 5775

SP: 5775

DP: 6428

SP provides “return address”

10

Why Would Anyone Use UDP?
• Finer control over what data is sent and when

– As soon as an application process writes into the socket
– … UDP will package the data and send the packet

• No delay for connection establishment
– UDP just blasts away without any formal preliminaries
– … which avoids introducing any unnecessary delays

• No connection state
– No allocation of buffers, parameters, sequence #s, etc.
– … making it easier to handle many active clients at once

• Small packet header overhead
– UDP header is only eight-bytes long

11

Popular Applications That Use UDP
• Multimedia streaming

– Retransmitting lost/corrupted packets is not worthwhile
– By the time the packet is retransmitted, it’s too late
– E.g., telephone calls, video conferencing, gaming

• Simple query protocols like Domain Name System
– Overhead of connection establishment is overkill
– Easier to have application retransmit if needed

“Address for www.cnn.com?”

“12.3.4.15”

12

Transmission Control Protocol (TCP)
• Connection oriented

– Explicit set-up and tear-down of TCP session

• Stream-of-bytes service
– Sends and receives a stream of bytes, not messages

• Reliable, in-order delivery
– Checksums to detect corrupted data
– Acknowledgments & retransmissions for reliable delivery
– Sequence numbers to detect losses and reorder data

• Flow control
– Prevent overflow of the receiver’s buffer space

• Congestion control
– Adapt to network congestion for the greater good

13

Connection-oriented demux

• TCP socket identified by
4-tuple:
– source IP address
– source port number
– dest IP address
– dest port number

• recv host uses all four
values to direct segment
to appropriate socket

• Server host may support
many simultaneous TCP
sockets:
– each socket identified by its

own 4-tuple

• Web servers have different
sockets for each
connecting client
– HTTP will have different

socket for each request

14

Connection-oriented demux (cont)

Client
IP:B

P1

client
IP: A

P1P2P4

server
IP: C

SP: 9157

DP: 80

SP: 9157

DP: 80

P5 P6 P3

D-IP:C
S-IP: A

D-IP:C

S-IP: B

SP: 5775

DP: 80

D-IP:C
S-IP: B

15

An Analogy: Talking on a Cell Phone

• Alice and Bob on their cell phones
– Both Alice and Bob are talking

• What if Alice couldn’t understand Bob?
– Bob asks Alice to repeat what she said

• What if Bob hasn’t heard Alice for a while?
– Is Alice just being quiet?
– Or, have Bob and Alice lost reception?
– How long should Bob just keep on talking?
– Maybe Alice should periodically say “uh huh”
– … or Bob should ask “Can you hear me now?” ☺

16

Some Take-Aways from the Example

• Acknowledgments from receiver
– Positive: “okay” or “ACK”
– Negative: “please repeat that” or “NACK”

• Timeout by the sender (“stop and wait”)
– Don’t wait indefinitely without receiving some response
– … whether a positive or a negative acknowledgment

• Retransmission by the sender
– After receiving a “NACK” from the receiver
– After receiving no feedback from the receiver

17

• Over a perfectly reliable channel
– All of the data arrives in order, just as it was sent
– Simple: sender sends data, and receiver receives data

• Over a channel with bit errors
– All of the data arrives in order, but some bits corrupted
– Receiver detects errors and says “please repeat that”
– Sender retransmits the data that were corrupted

• Over a lossy channel with bit errors
– Some data are missing, and some bits are corrupted
– Receiver detects errors but cannot always detect loss
– Sender must wait for acknowledgment (“ACK” or “OK”)
– … and retransmit data after some time if no ACK arrives

Challenges of Reliable Data Transfer

18

TCP Support for Reliable Delivery
• Checksum

– Used to detect corrupted data at the receiver
– …leading the receiver to drop the packet

• Sequence numbers
– Used to detect missing data
– ... and for putting the data back in order

• Retransmission
– Sender retransmits lost or corrupted data
– Timeout based on estimates of round-trip time
– Fast retransmit algorithm for rapid retransmission

19

TCP Segments

20

TCP “Stream of Bytes” Service

B
yt e 0

B
yt e 1

B
yt e 2

B
yt e 3

B
yt e 0

B
yt e 1

B
yt e 2

B
yt e 3

Host A

Host B

B
yt e 80

B
yt e 80

21

…Emulated Using TCP “Segments”

B
yt e 0

B
yt e 1

B
yt e 2

B
yt e 3

B
yt e 0

B
yt e 1

B
yt e 2

B
yt e 3

Host A

Host B

B
yt e 80

TCP Data

TCP Data

B
yt e 80

Segment sent when:
1. Segment full (Max Segment Size),
2. Not full, but times out, or
3. “Pushed” by application.

22

TCP Segment

• IP packet
– No bigger than Maximum Transmission Unit (MTU)
– E.g., up to 1500 bytes on an Ethernet

• TCP packet
– IP packet with a TCP header and data inside
– TCP header is typically 20 bytes long

• TCP segment
– No more than Maximum Segment Size (MSS) bytes
– E.g., up to 1460 consecutive bytes from the stream

IP Hdr
IP Data

TCP HdrTCP Data (segment)

23

Sequence Numbers
Host A

Host B

TCP Data

TCP Data

TCP
HDR

TCP
HDR

ISN (initial sequence number)

Sequence
number = 1st

byte ACK sequence
number = next
expected byte

24

Initial Sequence Number (ISN)
• Sequence number for the very first byte

– E.g., Why not a de facto ISN of 0?

• Practical issue
– IP addresses and port #s uniquely identify a connection
– Eventually, though, these port #s do get used again
– … and there is a chance an old packet is still in flight
– … and might be associated with the new connection

• So, TCP requires changing the ISN over time
– Set from a 32-bit clock that ticks every 4 microseconds
– … which only wraps around once every 4.55 hours!

• But, this means the hosts need to exchange ISNs

25

TCP Three-Way Handshake

26

Establishing a TCP Connection

• Three-way handshake to establish connection
– Host A sends a SYN (open) to the host B
– Host B returns a SYN acknowledgment (SYN ACK)
– Host A sends an ACK to acknowledge the SYN ACK

SYN

SYN ACK

ACK
Data

A B

Data

Each host tells
its ISN to the
other host.

27

TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Flags: SYN
FIN
RST
PSH
URG
ACK

28

Step 1: A’s Initial SYN Packet

A’s port B’s port

A’s Initial Sequence Number

Acknowledgment

Advertised window20 Flags0

Checksum Urgent pointer

Options (variable)

Flags: SYN
FIN
RST
PSH
URG
ACK

A tells B it wants to open a connection…

29

Step 2: B’s SYN-ACK Packet

B’s port A’s port

B’s Initial Sequence Number

A’s ISN plus 1

Advertised window20 Flags0

Checksum Urgent pointer

Options (variable)

Flags: SYN
FIN
RST
PSH
URG
ACK

B tells A it accepts, and is ready to hear the next byte…

… upon receiving this packet, A can start sending data

30

Step 3: A’s ACK of the SYN-ACK

A’s port B’s port

B’s ISN plus 1

Advertised window20 Flags0

Checksum Urgent pointer

Options (variable)

Flags: SYN
FIN
RST
PSH
URG
ACK

A tells B it wants is okay to start sending

Sequence number

… upon receiving this packet, B can start sending data

31

What if the SYN Packet Gets Lost?
• Suppose the SYN packet gets lost

– Packet is lost inside the network, or
– Server rejects the packet (e.g., listen queue is full)

• Eventually, no SYN-ACK arrives
– Sender sets a timer and wait for the SYN-ACK
– … and retransmits the SYN if needed

• How should the TCP sender set the timer?
– Sender has no idea how far away the receiver is
– Hard to guess a reasonable length of time to wait
– Some TCPs use a default of 3 or 6 seconds

32

SYN Loss and Web Downloads
• User clicks on a hypertext link

– Browser creates a socket and does a “connect”
– The “connect” triggers the OS to transmit a SYN

• If the SYN is lost…
– The 3-6 seconds of delay may be very long
– The user may get impatient
– … and click the hyperlink again, or click “reload”

• User triggers an “abort” of the “connect”
– Browser creates a new socket and does a “connect”
– Essentially, forces a faster send of a new SYN packet!
– Sometimes very effective, and the page comes fast

33

TCP Retransmissions

34

Automatic Repeat reQuest (ARQ)

Time

Packet

ACKTi
m

eo
ut

Sender Receiver

• Automatic Repeat Request
– Receiver sends

acknowledgment (ACK) when
it receives packet

– Sender waits for ACK and
timeouts if it does not arrive
within some time period

• Simplest ARQ protocol
– Stop and wait
– Send a packet, stop and wait

until ACK arrives

35

Reasons for Retransmission

Packet

ACK

Ti
m

eo
ut

Packet

ACK

Ti
m

eo
ut

Packet

Ti
m

eo
ut

Packet

ACK

Ti
m

eo
ut

Packet

ACK

Ti
m

eo
ut

Packet

ACK

Ti
m

eo
ut

ACK lost
DUPLICATE

PACKET

Packet lost Early timeout
DUPLICATE
PACKETS

36

How Long Should Sender Wait?
• Sender sets a timeout to wait for an ACK

– Too short: wasted retransmissions
– Too long: excessive delays when packet lost

• TCP sets timeout as a function of the RTT
– Expect ACK to arrive after an RTT
– … plus a fudge factor to account for queuing

• But, how does the sender know the RTT?
– Can estimate the RTT by watching the ACKs
– Smooth estimate: keep a running average of the RTT
y EstimatedRTT = a * EstimatedRTT + (1 –a) * SampleRTT

– Compute timeout: TimeOut = 2 * EstimatedRTT

37

Example RTT Estimation
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

RT
T

(m
ill

ise
co

nd
s)

SampleRTT Estimated RTT

38

A Flaw in This Approach
• An ACK doesn’t really acknowledge a transmission

– Rather, it acknowledges receipt of the data

• Consider a retransmission of a lost packet
– If you assume the ACK goes with the 1st transmission
– … the SampleRTT comes out way too large

• Consider a duplicate packet
– If you assume the ACK goes with the 2nd transmission
– … the Sample RTT comes out way too small

• Simple solution in the Karn/Partridge algorithm
– Only collect samples for segments sent one single time

39

Yet Another Limitation…
• Doesn’t consider variance in the RTT

– If variance is small, the EstimatedRTT is pretty accurate
– … but, if variance is large, the estimate isn’t all that good

• Better to directly consider the variance
– Consider difference: SampleRTT – EstimatedRTT
– Boost the estimate based on the difference

• Jacobson/Karels algorithm
– See Section 5.2 of the Peterson/Davie book for details

40

TCP Sliding Window

41

Motivation for Sliding Window
• Stop-and-wait is inefficient

– Only one TCP segment is “in flight” at a time
– Especially bad when delay-bandwidth product is high

• Numerical example
– 1.5 Mbps link with a 45 msec round-trip time (RTT)
y Delay-bandwidth product is 67.5 Kbits (or 8 KBytes)

– But, sender can send at most one packet per RTT
y Assuming a segment size of 1 KB (8 Kbits)
y … leads to 8 Kbits/segment / 45 msec/segment Î 182 Kbps
y That’s just one-eighth of the 1.5 Mbps link capacity

42

Performance of Stop & Wait

• Example: 1 Gbps link, 15 ms e-e prop. delay, 1KB packet:

T
transmit = 8kb/pkt

10**9 b/sec
= 8 microsec

� U sender: utilization – fraction of time sender busy
sending

� 1KB pkt every 30 msec -> 33kB/sec thruput over 1 Gbps
link

� network protocol limits use of physical resources!

U
sender =

.008
30.008

= 0.00027 L / R
RTT + L / R

=

L (packet length in bits)

R (transmission rate, bps)
=

43

Pipelined protocols
Pipelining: sender allows multiple, “in-flight”, yet-to-be-

acknowledged pkts
– range of sequence numbers must be increased
– buffering at sender and/or receiver

• Two generic forms of pipelined protocols: go-Back-N,
selective repeat

44

Pipelining: increased utilization

first packet bit transmitted, t = 0
sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

U
sender =

.024
30.008

= 0.0008 3 * L / R
RTT + L / R

=

Increase utilization
by a factor of 3!

45

Sliding Window
• Allow a larger amount of data “in flight”

– Allow sender to get ahead of the receiver
– … though not too far ahead

Sending process Receiving process

Last byte ACKed

Last byte sent

TCP TCP

Next byte expected

Last byte written Last byte read

Last byte received

46

Receiver Buffering
• Window size

– Amount that can be sent without acknowledgment
– Receiver needs to be able to store this amount of data

• Receiver advertises the window to the receiver
– Tells the receiver the amount of free space left
– … and the sender agrees not to exceed this amount

Window Size

Outstanding
Un-ack’d data

Data not OK
to send yet

Data OK
to send

Data ACK’d

47

TCP Header for Receiver Buffering

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Flags: SYN
FIN
RST
PSH
URG
ACK

48

Selective Repeat

• receiver individually acknowledges all correctly
received pkts
– buffers pkts, as needed, for eventual in-order delivery to

upper layer

• sender only resends pkts for which ACK not received
– sender timer for each unACKed pkt

• sender window
– N consecutive seq #’s
– again limits seq #s of sent, unACKed pkts

49

Selective repeat: sender, receiver windows

50

Selective repeat in action

51

Selective repeat:
dilemma
Example:
• seq #’s: 0, 1, 2, 3

• window size=3

• receiver sees no difference in
two scenarios!

• incorrectly passes duplicate
data as new in (a)

Q: what relationship between
seq # size and window size?

52

TCP: retransmission scenarios
Host A

Seq=100, 20 bytes data

ACK=100

time
premature timeout

Host B

Seq=92, 8 bytes data

ACK=120

Seq=92, 8 bytes data

S
e
q
=
9
2

t
i
m
e
o
u
t

ACK=120

Host A

Seq=92, 8 bytes data

ACK=100

losst
i
m
e
o
u
t

lost ACK scenario

Host B

X
Seq=92, 8 bytes data

ACK=100

time

S
e
q
=
9
2

t
i
m
e
o
u
t

SendBase
= 100

SendBase
= 120

SendBase
= 120

Sendbase
= 100

53

TCP retransmission scenarios (more)
Host A

Seq=92, 8 bytes data

ACK=100

losst
i
m
e
o
u
t

Cumulative ACK scenario

Host B

X
Seq=100, 20 bytes data

ACK=120

time

SendBase
= 120

54

TCP ACK generation [RFC 1122, RFC 2581]

Event at Receiver

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Arrival of in-order segment with
expected seq #. One other
segment has ACK pending

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Arrival of segment that
partially or completely fills gap

TCP Receiver action

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Immediately send single cumulative
ACK, ACKing both in-order segments

Immediately send duplicate ACK,
indicating seq. # of next expected byte

Immediately send ACK, provided that
segment starts at lower end of gap

55

Fast Retransmission

56

Timeout is Inefficient
• Timeout-based retransmission

– Sender transmits a packet and waits until timer expires
– … and then retransmits from the lost packet onward

57

Fast Retransmission
• Better solution possible under sliding window

– Although packet n might have been lost
– … packets n+1, n+2, and so on might get through

• Idea: have the receiver send ACK packets
– ACK says that receiver is still awaiting nth packet
y And repeated ACKs suggest later packets have arrived

– Sender can view the “duplicate ACKs” as an early hint
y … that the nth packet must have been lost
y … and perform the retransmission early

• Fast retransmission
– Sender retransmits data after the triple duplicate ACK

58

Effectiveness of Fast Retransmit
• When does Fast Retransmit work best?

– Long data transfers
y High likelihood of many packets in flight

– High window size
y High likelihood of many packets in flight

– Low burstiness in packet losses
y Higher likelihood that later packets arrive successfully

• Implications for Web traffic
– Most Web transfers are short (e.g., 10 packets)
y Short HTML files or small images

– So, often there aren’t many packets in flight
– … making fast retransmit less likely to “kick in”
– Forcing users to like “reload” more often… ☺

59

Tearing Down the Connection

60

Tearing Down the Connection

• Closing the connection
– Finish (FIN) to close and receive remaining bytes
– And other host sends a FIN ACK to acknowledge
– Reset (RST) to close and not receive remaining bytes

SY
N

SY
N

 A
C

K

A
CK

D
at

a

FI
N

FIN
 A

CK

A
CK

time
A

B
FIN

A
CK

61

Sending/Receiving the FIN Packet
• Sending a FIN: close()

– Process is done sending
data via the socket

– Process invokes
“close()” to close the
socket

– Once TCP has sent all of
the outstanding bytes…

– … then TCP sends a FIN

• Receiving a FIN: EOF
– Process is reading data

from the socket
– Eventually, the attempt

to read returns an EOF

62

Conclusions
• Transport protocols

– Multiplexing and demultiplexing
– Sequence numbers
– Window-based flow control
– Timer-based retransmission
– Checksum-based error detection

• Reading for this week
– Sections 2.5, 5.1-5.2, and 6.1-6.4

• Next lecture
– Congestion control

1

Congestion Control
Sections 6.1-6.4

Introduction to Data Networks

2008.4

2

Goals of Today’s Lecture
• Principles of congestion control

– Learning that congestion is occurring
– Adapting to alleviate the congestion

• TCP congestion control
– Additive-increase, multiplicative-decrease
– Slow start and slow-start restart

• Related TCP mechanisms
– Nagle’s algorithm and delayed acknowledgments

• Active Queue Management (AQM)
– Random Early Detection (RED)
– Explicit Congestion Notification (ECN)

3

Resource Allocation vs. Congestion Control

• Resource allocation
– How nodes meet competing demands for resources
– E.g., link bandwidth and buffer space
– When to say no, and to whom

• Congestion control
– How nodes prevent or respond to overload conditions
– E.g., persuade hosts to stop sending, or slow down
– Typically has notions of fairness (i.e., sharing the pain)

4

Flow Control vs. Congestion Control

• Flow control
– Keeping one fast sender from overwhelming a slow

receiver

• Congestion control
– Keep a set of senders from overloading the network

• Different concepts, but similar mechanisms
– TCP flow control: receiver window
– TCP congestion control: congestion window
– TCP window: min{congestion window, receiver window}

5

Three Key Features of Internet
• Packet switching

– A given source may have enough capacity to send data
– … and yet the packets may encounter an overloaded link

• Connectionless flows
– No notions of connections inside the network
– … and no advance reservation of network resources
– Still, you can view related packets as a group (“flow”)
– … e.g., the packets in the same TCP transfer

• Best-effort service
– No guarantees for packet delivery or delay
– No preferential treatment for certain packets

6

Congestion is Unavoidable
• Two packets arrive at the same time

– The node can only transmit one
– … and either buffer or drop the other

• If many packets arrive in a short period of time
– The node cannot keep up with the arriving traffic
– … and the buffer may eventually overflow

7

Congestion Collapse
• Definition: Increase in network load results
in a decrease of useful work done

• Many possible causes
–Spurious retransmissions of packets still in flight
y Classical congestion collapse
y Solution: better timers and TCP congestion control

–Undelivered packets
y Packets consume resources and are dropped

elsewhere in network
y Solution: congestion control for ALL traffic

8

What Do We Want, Really?
• High throughput

– Throughput: measured performance of a system
– E.g., number of bits/second of data that get through

• Low delay
– Delay: time required to deliver a packet or message
– E.g., number of msec to deliver a packet

• These two metrics are sometimes at odds
– E.g., suppose you drive a link as hard as possible
– … then, throughput will be high, but delay will be, too

9

Load, Delay, and Power

Average
Packet delay

Load

Typical behavior of queuing
systems with random arrivals:

Power

Load

A simple metric of how well the
network is performing:

LoadPower
Delay

=

“optimal
load”

Goal: maximize power

10

Fairness
• Effective utilization is not the only goal

– We also want to be fair to the various flows
– … but what the heck does that mean?

• Simple definition: equal shares of the bandwidth
– N flows that each get 1/N of the bandwidth?
– But, what if the flows traverse different paths?

11

Simple Resource Allocation
• Simplest approach: FIFO queue and drop-tail

• Link bandwidth: first-in first-out queue
– Packets transmitted in the order they arrive

• Buffer space: drop-tail queuing
– If the queue is full, drop the incoming packet

12

Simple Congestion Detection
• Packet loss

– Packet gets dropped along the way

• Packet delay
– Packet experiences high delay

• How does TCP sender learn this?
– Loss
y Timeout
y Triple-duplicate acknowledgment

– Delay
y Round-trip time estimate

13

Idea of TCP Congestion Control
• Each source determines the available capacity

– … so it knows how many packets to have in transit

• Congestion window
– Maximum # of unacknowledged bytes to have in transit
– The congestion-control equivalent of receiver window
– MaxWindow = min{congestion window, receiver window}
– Send at the rate of the slowest component

• Adapting the congestion window
– Decrease upon losing a packet: backing off
– Increase upon success: optimistically exploring

14

Additive Increase, Multiplicative Decrease

• How much to increase and decrease?
– Increase linearly, decrease multiplicatively
– A necessary condition for stability of TCP
– Consequences of over-sized window are much worse

than having an under-sized window
y Over-sized window: packets dropped and retransmitted
y Under-sized window: somewhat lower throughput

• Multiplicative decrease
– On loss of packet, divide congestion window in half

• Additive increase
– On success for last window of data, increase linearly

15

Leads to the TCP “Sawtooth”

t

Window

halved

Loss

16

Practical Details
• Congestion window

– Represented in bytes, not in packets (Why?)
– Packets have MSS (Maximum Segment Size) bytes

• Increasing the congestion window
– Increase by MSS on success for last window of data
– In practice, increase a fraction of MSS per received ACK
y # packets per window: CWND / MSS
y Increment per ACK: MSS * (MSS / CWND)

• Decreasing the congestion window
– Never drop congestion window below 1 MSS

17

Getting Started

t

Window

But, could take a long
time to get started!

Need to start with a small CWND to avoid overloading the network.

18

“Slow Start” Phase
• Start with a small congestion window

–Initially, CWND is 1 MSS
–So, initial sending rate is MSS/RTT

• That could be pretty wasteful
–Might be much less than the actual bandwidth
–Linear increase takes a long time to accelerate

• Slow-start phase (really “fast start”)
–Sender starts at a slow rate (hence the name)
–… but increases the rate exponentially
–… until the first loss event

19

Slow Start in Action
Double CWND per round-trip time

D A D D A A D D

A A

D

A

Dest

Src

D

A

1 2 4 8

20

Slow Start and the TCP Sawtooth

Loss

Exponential “slow
start”

t

Window

Why is it called slow-start? Because TCP originally had
no congestion control mechanism. The source would just

start by sending a whole window’s worth of data.

21

Two Kinds of Loss in TCP
• Triple duplicate ACK

– Packet n is lost, but packets n+1, n+2, etc. arrive
– Receiver sends duplicate acknowledgments
– … and the sender retransmits packet n quickly
– Do a multiplicative decrease and keep going

• Timeout
– Packet n is lost and detected via a timeout
– E.g., because all packets in flight were lost
– After the timeout, blasting away for the entire CWND
– … would trigger a very large burst in traffic
– So, better to start over with a low CWND

22

Repeating Slow Start After Timeout

t

Window

Slow-start restart: Go back to CWND of 1, but take
advantage of knowing the previous value of CWND.

Slow start in operation
until it reaches half of

previous cwnd.

timeout

23

Repeating Slow Start After Idle Period

• Suppose a TCP connection goes idle for a while
– E.g., Telnet session where you don’t type for an hour

• Eventually, the network conditions change
– Maybe many more flows are traversing the link
– E.g., maybe everybody has come back from lunch!

• Dangerous to start transmitting at the old rate
– Previously-idle TCP sender might blast the network
– … causing excessive congestion and packet loss

• So, some TCP implementations repeat slow start
– Slow-start restart after an idle period

24

TCP sender congestion control
State Event TCP Sender Action Commentary

Slow Start
(SS)

ACK receipt
for previously
unacked
data

CongWin = CongWin + MSS,
If (CongWin > Threshold)

set state to “Congestion
Avoidance”

Resulting in a doubling of
CongWin every RTT

Congestion
Avoidance
(CA)

ACK receipt
for previously
unacked
data

CongWin = CongWin+MSS *
(MSS/CongWin)

Additive increase, resulting
in increase of CongWin by
1 MSS every RTT

SS or CA Loss event
detected by
triple
duplicate
ACK

Threshold = CongWin/2,
CongWin = Threshold,
Set state to “Congestion
Avoidance”

Fast recovery,
implementing multiplicative
decrease. CongWin will not
drop below 1 MSS.

SS or CA Timeout Threshold = CongWin/2,
CongWin = 1 MSS,
Set state to “Slow Start”

Enter slow start

SS or CA Duplicate
ACK

Increment duplicate ACK count
for segment being acked

CongWin and Threshold not
changed

25

Other TCP Mechanisms

Nagle’s Algorithm and Delayed ACK

26

Motivation for Nagle’s Algorithm
• Interactive applications

– Telnet and rlogin
– Generate many small packets (e.g., keystrokes)

• Small packets are wasteful
– Mostly header (e.g., 40 bytes of header, 1 of data)

• Appealing to reduce the number of packets
– Could force every packet to have some minimum size
– … but, what if the person doesn’t type more characters?

• Need to balance competing trade-offs
– Send larger packets
– … but don’t introduce much delay by waiting

27

Nagle’s Algorithm
• Wait if the amount of data is small

– Smaller than Maximum Segment Size (MSS)

• And some other packet is already in flight
– I.e., still awaiting the ACKs for previous packets

• That is, send at most one small packet per RTT
– … by waiting until all outstanding ACKs have arrived

• Influence on performance
– Interactive applications: enables batching of bytes
– Bulk transfer: transmits in MSS-sized packets anyway

vs.

ACK

28

Motivation for Delayed ACK
• TCP traffic is often bidirectional

–Data traveling in both directions
–ACKs traveling in both directions

• ACK packets have high overhead
–40 bytes for the IP header and TCP header
–… and zero data traffic

• Piggybacking is appealing
–Host B can send an ACK to host A
–… as part of a data packet from B to A

29

TCP Header Allows Piggybacking

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Flags: SYN
FIN
RST
PSH
URG
ACK

30

Example of Piggybacking

Data

Data+ACK

Data

A B

ACK

Data

Data + ACK

B doesn’t have data to send

B has data to send

A has data to send

31

Increasing Likelihood of Piggybacking

• Increase piggybacking
– TCP allows the receiver to wait

to send the ACK
– … in the hope that the host will

have data to send

• Example: rlogin or telnet
– Host A types characters at a

UNIX prompt
– Host B receives the character

and executes a command
– … and then data are generated
– Would be nice if B could send

the ACK with the new data

Data

Data+ACK

Data

A B

ACK

Data

Data + ACK

32

Delayed ACK
• Delay sending an ACK

– Upon receiving a packet, the host B sets a timer
y Typically, 200 msec or 500 msec

– If B’s application generates data, go ahead and send
y And piggyback the ACK bit

– If the timer expires, send a (non-piggybacked) ACK

• Limiting the wait
– Timer of 200 msec or 500 msec
– ACK every other full-sized packet

33

Queuing Mechanisms

Random Early Detection (RED)

Explicit Congestion Notification (ECN)

34

Bursty Loss From Drop-Tail Queuing

• TCP depends on packet loss
– Packet loss is the indication of congestion
– In fact, TCP drives the network into packet loss
– … by continuing to increase the sending rate

• Drop-tail queuing leads to bursty loss
– When a link becomes congested…
– … many arriving packets encounter a full queue
– And, as a result, many flows divide sending rate in half
– … and, many individual flows lose multiple packets

35

Slow Feedback from Drop Tail
• Feedback comes when buffer is completely full

– … even though the buffer has been filling for a while

• Plus, the filling buffer is increasing RTT
– … and the variance in the RTT

• Might be better to give early feedback
– Get one or two flows to slow down, not all of them
– Get these flows to slow down before it is too late

36

Random Early Detection (RED)
• Basic idea of RED

– Router notices that the queue is getting backlogged
– … and randomly drops packets to signal congestion

• Packet drop probability
– Drop probability increases as queue length increases
– If buffer is below some level, don’t drop anything
– … otherwise, set drop probability as function of queue

Average Queue Length

Pr
ob

ab
ili

ty

37

Properties of RED
• Drops packets before queue is full

– In the hope of reducing the rates of some flows

• Drops packet in proportion to each flow’s rate
– High-rate flows have more packets
– … and, hence, a higher chance of being selected

• Drops are spaced out in time
– Which should help desynchronize the TCP senders

• Tolerant of burstiness in the traffic
– By basing the decisions on average queue length

38

Problems With RED
• Hard to get the tunable parameters just right

– How early to start dropping packets?
– What slope for the increase in drop probability?
– What time scale for averaging the queue length?

• Sometimes RED helps but sometimes not
– If the parameters aren’t set right, RED doesn’t help
– And it is hard to know how to set the parameters

• RED is implemented in practice
– But, often not used due to the challenges of tuning right

• Many variations
– With cute names like “Blue” and “FRED”… ☺

39

Explicit Congestion Notification
• Early dropping of packets

– Good: gives early feedback
– Bad: has to drop the packet to give the feedback

• Explicit Congestion Notification
– Router marks the packet with an ECN bit
– … and sending host interprets as a sign of congestion

• Surmounting the challenges
– Must be supported by the end hosts and the routers
– Requires two bits in the IP header (one for the ECN

mark, and one to indicate the ECN capability)
– Solution: borrow two of the Type-Of-Service bits in the

IPv4 packet header

40

Conclusions
• Congestion is inevitable

– Internet does not reserve resources in advance
– TCP actively tries to push the envelope

• Congestion can be handled
– Additive increase, multiplicative decrease
– Slow start, and slow-start restart

• Active Queue Management can help
– Random Early Detection (RED)
– Explicit Congestion Notification (ECN)

1

Virtual Circuit Switching
and QoS

Reading: 3.1.2, 3.3, 4.5, and 6.5

Introduction to Data Networks

2008.5

2

Goals of Today’s Lecture
• Circuit switching

– Establish, transfer, and teardown
– Comparison with packet switching
– Virtual circuits as a hybrid scheme

• Quality of service in virtual-circuit networks
– Traffic specification and enforcement
– Admission control and resource reservation
– Link scheduling (FIFO, priority, and weighted fairness)
– Path selection (quality-of-service routing)

• Quality of service for IP traffic
– IP over virtual circuits
– Differentiated services

3

Circuit Switching (e.g., Phone Network)

• Establish: source creates circuit to destination
– Node along the path store connection info
– Nodes may reserve resources for the connection

• Transfer: source sends data over the circuit
– No destination address, since nodes know path

• Teardown: source tears down circuit when done

4

Advantages of Circuit Switching
• Guaranteed bandwidth

– Predictable communication performance
– Not “best-effort” delivery with no real guarantees

• Simple abstraction
– Reliable communication channel between hosts
– No worries about lost or out-of-order packets

• Simple forwarding
– Forwarding based on time slot or frequency
– No need to inspect a packet header

• Low per-packet overhead
– Forwarding based on time slot or frequency
– No IP (and TCP/UDP) header on each packet

5

Disadvantages of Circuit Switching
• Wasted bandwidth

– Bursty traffic leads to idle connection during silent period
– Unable to achieve gains from statistical multiplexing

• Blocked connections
– Connection refused when resources are not sufficient
– Unable to offer “okay” service to everybody

• Connection set-up delay
– No communication until the connection is set up
– Unable to avoid extra latency for small data transfers

• Network state
– Network nodes must store per-connection information
– Unable to avoid per-connection storage and state

6

Virtual Circuit (VC)
• Hybrid of packets and circuits

– Circuits: establish and teardown along end-to-end path
– Packets: divide the data into packets with identifiers

• Packets carry a virtual-circuit identifier
– Associates each packet with the virtual circuit
– Determines the next link along the path

• Intermediate nodes maintain state VC
– Forwarding table entry
– Allocated resources

7

Establishing the Circuit
• Signaling

– Creating the entries in the forwarding tables
– Reserving resources for the virtual circuit, if needed

• Two main approaches to signaling
– Network administrator configures each node
– Source sends set-up message along the path

• Set-up latency
– Time for the set-up message to traverse the path
– … and return back to the source

• Routing
– End-to-end path is selected during circuit set-up

8

Virtual Circuit Identifier (VC ID)

• Virtual Circuit Identifier (VC ID)
–Source set-up: establish path for the VC
–Switch: mapping VC ID to an outgoing link
–Packet: fixed length label in the header

1

2

1: 7
2: 7

link 7 1: 14
2: 8

link 14
link 8

9

Swapping the Label at Each Hop

• Problem: using VC ID along the whole path
– Each virtual circuit consumes a unique ID
– Starts to use up all of the ID space in the network

• Label swapping
– Map the VC ID to a new value at each hop
– Table has old ID, and next link and new ID

1

2

1: 7, 20
2: 7, 53 link 7

20: 14, 78
53: 8, 42

link 14
link 8

10

Virtual Circuits Similar to IP Datagrams

• Data divided in to packets
–Sender divides the data into packets
–Packet has address (e.g., IP address or VC ID)

• Store-and-forward transmission
–Multiple packets may arrive at once
–Need buffer space for temporary storage

• Multiplexing on a link
–No reservations: statistical multiplexing

Packets are interleaved without a fixed pattern
–Reservations: resources for group of packets

Guarantees to get a certain number of “slots”

11

Virtual Circuits Differ from IP Datagrams
• Forwarding look-up

–Virtual circuits: fixed-length connection id
–IP datagrams: destination IP address

• Initiating data transmission
–Virtual circuits: must signal along the path
–IP datagrams: just start sending packets

• Router state
–Virtual circuits: routers know about connections
–IP datagrams: no state, easier failure recovery

• Quality of service
–Virtual circuits: resources and scheduling per VC
–IP datagrams: difficult to provide QoS

12

Quality of Service
• Allocating resources to the virtual circuit

– E.g., guaranteed bandwidth on each link in the path
– E.g., guaranteeing a maximum delay along the path

• Admission control
– Check during signaling that the resources are available
– Saying “no” if they are not, and reserving them if they are

• Resource scheduling
– Apply scheduling algorithms during the data transfer
– To ensure that the performance guarantees are met

13

Admission Control
• Source sends a reservation message

–E.g., “this virtual circuit needs 5 Mbps”

• Each switch along the path
–Keeps track of the reserved resources

E.g., “the link has 6 Mbps left”
–Checks if enough resources remain

E.g., “6 Mbps > 5 Mbps, so circuit can be accepted”
–Creates state for circuit and reserves resources

E.g., “now only 1 Mbps is available”

14

Admission Control: Flowspec
• Flowspec: information about the traffic

– The traffic characteristics of the flow
– The service requested from the network

• Specifying the traffic characteristics
– Simplest case: constant bit rate (some # of bits per sec)
– Yet, many applications have variable bit rates
– … and will send more than their average bit rate

B
it

ra
te

time

15

Specifying Bursty Traffic
• Option #1: Specify the maximum bit rate

– Maximum bit rate may be much higher average
– Reserving for the worst case is wasteful

• Option #2: Specify the average bit rate
– Average bit rate is not sufficient
– Network will not be able to carry all of the packets
– Reserving for average case leads to bad performance

• Option #3: Specify the burstiness of the traffic
– Specify both the average rate and the burst size
– Allows the sender to transmit bursty traffic
– … and the network to reserve the necessary resources

16

Leaky Bucket Traffic Model
• Traffic characterization with two parameters

– Token rate r
– Bucket depth d

• Sending data requires a token
– Can send at rate r all the time
– Can send at a higher rate for a short time

Tokens arrive (rate r)

Max # of tokens
(d tokens)

packets
tokens

17

Service Requested From the Network

• Variety of service models
– Bandwidth guarantee (e.g., 5 Mbps)
– Delay guarantee (e.g., no more than 100 msec)
– Loss rate (e.g., no more than 1% packet loss)

• Signaling during admission control
– Translate end-to-end requirement into per-hop
– Easy for bandwidth (e.g., 5 Mbps on each hop)
– Harder for delay and loss
– … since each hop contributes to the delay and loss

• Per-hop admission control
– Router takes the service requirement and traffic spec
– … and determines whether it can accept the circuit

18

Ensuring the Source Behaves
• Guarantees depend on the source behaving

– Extra traffic might overload one or more links
– Leading to congestion, and resulting delay and loss
– Solution: need to enforce the traffic specification

• Solution #1: policing
– Drop all data in excess of the traffic specification

• Solution #2: shaping
– Delay the data until it obeys the traffic specification

• Solution #3: marking
– Mark all data in excess of the traffic specification
– … and give these packets lower priority in the network

19

Enforcing Behavior
• Applying a leaky bucket to the traffic

– Simulating a leaky bucket (r, d) at the edge
– Discarding, delaying, or marking packets accordingly

• Ensures that the incoming traffic obeys the profile
– So that the network can provide the guarantees

• Technical challenge
– Applying leaky buckets for many flows at a high rate

20

Link Scheduling: FIFO
• First-in first-out scheduling

– Simple to implement
– But, restrictive in providing guarantees

• Example: two kinds of traffic
– Video conferencing needs high bandwidth and low delay

E.g., 1 Mbps and 100 msec delay
– E-mail transfers are not that sensitive about delay

• Cannot admit much e-mail traffic
– Since it will interfere with the video conference traffic

21

Link Scheduling: Strict Priority
• Strict priority

– Multiple levels of priority
– Always transmit high-priority traffic, when present
– .. and force the lower priority traffic to wait

• Isolation for the high-priority traffic
– Almost like it has a dedicated link
– Except for the (small) delay for packet transmission

High-priority packet arrives during transmission of low-priority
Router completes sending the low-priority traffic first

22

Link Scheduling: Weighted Fairness
• Limitations of strict priority

– Lower priority queues may starve for long periods
– … even if the high-priority traffic can afford to wait

• Weighted fair scheduling
– Assign each queue a fraction of the link bandwidth
– Rotate across the queues on a small time scale
– Send extra traffic from one queue if others are idle

50% red, 25% blue, 25% green

23

Link Schedulers: Trade-Offs
• Implementation complexity

– FIFO is easy
One queue, trivial scheduler

– Strict priority is a little harder
One queue per priority level, simple scheduler

– Weighted fair scheduling
One queue per virtual circuit, and more complex scheduler

• Admission control
– Using more sophisticated schedulers can allow the

router to admit more virtual circuits into the network
– Getting close to making full use of the network resources
– E.g., FIFO requires very conservative admission control

24

Routing in Virtual Circuit Networks
• Routing decisions take place at circuit set-up

– Resource reservations made along end-to-end path
– Data packets flow along the already-chosen path

• Simplest case: routing based only on the topology
– Routing based on the topology and static link weights
– Source picks the end-to-end path, and signals along it
– If the path lacks sufficient resources, that’s too bad!

25

Quality-of-Service Routing

• QoS routing: source selects the path intelligently
– Tries to find a path that can satisfy the requirements

• Traffic performance requirement
– Guaranteed bandwidth b per connection

• Link resource reservation
– Reserved bandwidth ri on link I
– Capacity ci on link i

• Signaling: admission control on path P
– Reserve bandwidth b on each link i on path P
– Block: if (ri+b>ci) then reject (or try again)
– Accept: else ri = ri + b

26

Source-Directed QoS Routing

• New connection with b =3
– Routing: select path with available resources
– Signaling: reserve bandwidth along the path (r = r +3)
– Forward data packets along the selected path
– Teardown: free the link bandwidth (r =r -3)

r=8, c=
10 r=6, c=7

r=1, c=5
r=15, c=

20

b=3

27

QoS Routing: Link-State Advertisements
• Advertise available resources per link

– E.g., advertise available bandwidth (ci – ri) on link i
– Every T seconds, independent of changes
– … or, when the metric changes beyond threshold

• Each router constructs view of topology
– Topology including the latest link metrics

• Each router computes the paths
– Looks at the requirements of the connection
– … as well as the available resources in the network
– And selects a path that satisfies the needs

• Then, the router signals to set up the path
– With a high likelihood that the request is accepted

28

QoS Routing: Example Path Selection

• Shortest widest path
–Find the path with highest available bandwidth

To increase the likelihood that set-up is successful
–That is, consider paths with largest mini(ci-ri)

Tie-break on smallest number of hops

• Widest shortest path
–Consider only paths with minimum hops

To minimize the total amount of resources required
–Tie-break on largest value of mini(ci-ri)

To increase the likelihood that set-up is successful

Vs.

29

Asynchronous Transfer Mode (ATM)

• ATM history
– Important technology in the 1980s and early 1990s
– Embraced by the telecommunications industry

• ATM goals
– A single unified network standard
– Supporting synchronous and packet-based networking
– With multiple levels of quality of service

• ATM technology
– Virtual circuits
– Small, fixed-sized packets (called cells)

Fixed size simplifies the switch design
Small makes it easier to support delay-sensitive traffic

30

Picking the ATM Cell Size
• Cell size too small

– Header overhead relative to total packet size
– Processing overhead on devices

• Cell size too large
– Wasted padding when the data is smaller
– Delay to wait for transmission of previous packet

• ATM cell: 53 bytes (designed by committee!)
– The U.S. wanted 64 bytes, and Europe wanted 32
– Smaller packets avoid the need for echo cancellation
– Compromise: 5-byte header and 48 bytes of data

53

31

Interfacing to End Hosts
• ATM works best as an end-to-end technology

– End host requests a virtual circuit to another host
– … with a traffic specification and QoS requirements
– And the network establishes an end-to-end circuit

• But, requires some support in the end host
– To initiate the circuit establishment process
– And for applications to specify the traffic and the QoS

• What to do if the end hosts don’t support ATM?
– Carry packets from the end host to a network device
– And, then have the network device create the circuit

32

Inferring the Need for a Virtual Circuit

• Which IP packets go on a virtual circuit?
–All packets in the same TCP or UDP transfer?
–All packets between same pair of end hosts?
–All packets between same pair of IP subnets?

• Edge router can infer the need for a circuit
–Match on packet header bits

E.g., source, destination, port numbers, etc.
–Apply policy for picking bandwidth parameters

E.g., Web traffic get 10 Kbps, video gets 2 Mbps
–Trigger establishment of circuit for the traffic

Select path based on load and requirements
Signal creation of the circuit
Tear down circuit after an idle period

33

Grouping IP Packets Into Flows

• Group packets with the “same” end points
– Application level: single TCP connection
– Host level: single source-destination pair
– Subnet level: single source prefix and dest prefix

• Group packets that are close together in time
– E.g., 60-sec spacing between consecutive packets

flow 1 flow 2 flow 3 flow 4

34

Challenges for IP Over ATM
• Many IP flows are short

– Most Web transfers are less than 10 packets
– Is it worthwhile to set up a circuit?

• Subdividing an IP packet into cells
– Wasted space if packet is not multiples of 48 bytes

• Difficult to know what resources to reserve
– Internet applications don’t specify traffic or QoS

• Two separate addressing schemes
– IP addresses and ATM end-points

• Complexity of two sets of protocols
– Supporting both IP and ATM protocols

35

ATM Today
• Still used in some contexts

– Some backbones and edge networks
– But, typically the circuits are not all that dynamic
– E.g., ATM circuit used as a link for aggregated traffic

• Some key ideas applicable to other technologies
– Huge body of work on quality of service
– Idea of virtual circuits (becoming common now in

MultiProtocol Label Switching)

36

Differentiated Services in IP
• Compromise solution for QoS

– Not as strong guarantees as per-circuit solutions
– Not as simple as best-effort service

• Allocate resources for classes of traffic
– Gold, silver, and bronze

• Scheduling resources based on ToS bits
– Put packets in separate queues based on ToS bits

• Packet classifiers to set the ToS bits
– Mark the “Type of Service” bits in the IP packet header
– Based on classification rules at the network edge

37

Example Packet Classifier
• Gold traffic

– All traffic to/from Shirley Tilgman’s IP address
– All traffic to/from the port number for DNS

• Silver traffic
– All traffic to/from academic and administrative buildings

• Bronze traffic
– All traffic on the public wireless network

• Then, schedule resources accordingly
– E.g., 50% for gold, 30% for silver, and 20% for bronze

38

Real Guarantees?
• It depends…

– Must limit volume of traffic that can be classified as gold
– E.g., by marking traffic “bronze” by default
– E.g., by policing traffic at the edge of the network

• QoS through network management
– Configuring packet classifiers
– Configuring policers
– Configuring link schedulers

• Rather than through dynamic circuit set-up

39

Example Uses of QoS Today
• Virtual Private Networks

– Corporate networks interconnecting via the Internet
– E.g., IBM sites throughout the world on AT&T backbone
– Carrying VPN traffic in “gold” queue protects the QoS
– Limiting the amount of gold traffic avoids overloads

• Routing-protocol traffic
– Routing protocol messages are “in band”
– So, routing messages may suffer from congestion
– Carrying routing messages in the “gold” queue helps

• Challenge: end-to-end QoS across domains…

40

Conclusions
• Virtual circuits

– Establish a path and reserve resources in advance
– Enable end-to-end quality-of-service guarantees
– Importance of admission control, policing, & scheduling

• Best effort vs. QoS
– IP won the “IP vs. ATM” competition
– Yet, QoS is increasingly important, for multimedia,

business transactions, protecting against attacks, etc.
– And, virtual circuits are useful for controlling the flow of

traffic, providing value-added services, and so on
– So, virtual circuits and QoS exist in some form today
– … and the debate continues about the role in the future

1

Multimedia Networking

Introduction to Data Networks

2008.5

2

Goals of Today’s Lecture
• Digital audio and video

– Sampling, quantizing, and compressing

• Multimedia applications
– Streaming audio and video for playback
– Live, interactive audio and video

• Multimedia transfers over a best-effort network
– Tolerating packet loss, delay, and jitter
– Forward error correction and playout buffers

• Improving the service the network offers
– Marking, policing, scheduling, and admission control

3

Digital Audio
• Sampling the analog signal

– Sample at some fixed rate
– Each sample is an arbitrary real number

• Quantizing each sample
– Round each sample to one of a finite number of values
– Represent each sample in a fixed number of bits

4 bit representation
(values 0-15)

4

Audio Examples
• Speech

– Sampling rate: 8000 samples/second
– Sample size: 8 bits per sample
– Rate: 64 kbps

• Compact Disc (CD)
– Sampling rate: 44,100 samples/second
– Sample size: 16 bits per sample
– Rate: 705.6 kbps for mono,

1.411 Mbps for stereo

5

Audio Compression
• Audio data requires too much bandwidth

– Speech: 64 kbps is too high for a dial-up modem user
– Stereo music: 1.411 Mbps exceeds most access rates

• Compression to reduce the size
– Remove redundancy
– Remove details that human tend not to perceive

• Example audio formats
– Speech: GSM (13 kbps), G.729 (8 kbps), and G.723.3

(6.4 and 5.3 kbps)
– Stereo music: MPEG 1 layer 3 (MP3) at 96 kbps, 128

kbps, and 160 kbps

6

Digital Video
• Sampling the analog signal

– Sample at some fixed rate (e.g., 24 or 30 times per sec)
– Each sample is an image

• Quantizing each sample
– Representing an image as an array of picture elements
– Each pixel is a mixture of colors (red, green, and blue)
– E.g., 24 bits, with 8 bits per color

http://en.wikipedia.org/wiki/Image:AdditiveColorMixing.png

7

The
320 x 240

hand

The
2272 x 1704

hand

8

Video Compression: Within an Image

• Image compression
– Exploit spatial redundancy (e.g., regions of same color)
– Exploit aspects humans tend not to notice

• Common image compression formats
– Joint Pictures Expert Group (JPEG)
– Graphical Interchange Format (GIF)

Uncompressed: 167 KB Good quality: 46 KB Poor quality: 9 KB

9

Video Compression: Across Images
• Compression across images

– Exploit temporal redundancy across images

• Common video compression formats
– MPEG 1: CD-ROM quality video (1.5 Mbps)
– MPEG 2: high-quality DVD video (3-6 Mbps)
– Proprietary protocols like QuickTime and RealNetworks

10

Transferring Audio and Video Data
• Simplest case: just like any other file

– Audio and video data stored in a file
– File downloaded using conventional protocol
– Playback does not overlap with data transfer

• A variety of more interesting scenarios
– Live vs. pre-recorded content
– Interactive vs. non-interactive
– Single receiver vs. multiple receivers

• Examples
– Streaming audio and video data from a server
– Interactive audio in a phone call

11

Streaming Stored Audio and Video
• Client-server system

– Server stores the audio and video files
– Clients request files, play them as they download, and

perform VCR-like functions (e.g., rewind and pause)

• Playing data at the right time
– Server divides the data into segments
– … and labels each segment with timestamp or frame id
– … so the client knows when to play the data

• Avoiding starvation at the client
– The data must arrive quickly enough
– … otherwise the client cannot keep playing

12

Playout Buffer
• Client buffer

– Store the data as it arrives from the server
– Play data for the user in a continuous fashion

• Playout delay
– Client typically waits a few seconds to start playing
– … to allow some data to build up in the buffer
– … to help tolerate some delays down the road

13

Influence of Playout Delay

14

Requirements for Data Transport
• Delay

– Some small delay at the beginning is acceptable
– E.g., start-up delays of a few seconds are okay

• Jitter
– Variability of packet delay within the same packet stream
– Client cannot tolerate high variation if the buffer starves

• Loss
– Small amount of missing data does not disrupt playback
– Retransmitting a lost packet might take too long anyway

15

Streaming From Web Servers
• Data stored in a file

– Audio: an audio file
– Video: interleaving of audio and images in a single file

• HTTP request-response
– TCP connection between client and server
– Client HTTP request and server HTTP response

• Client invokes the media player
– Content-type indicates the encoding
– Browser launches the media player
– Media player then renders the file

16

Initiating Streams from Web Servers
• Avoid passing all data through the Web browser

– Web server returns a meta file describing the object
– Browser launches media player and passes the meta file
– The player sets up its own connection to the Web server

17

Using a Streaming Server
• Avoiding the use of HTTP (and perhaps TCP, too)

– Web server returns a meta file describing the object
– Player requests the data using a different protocol

18

TCP is Not a Good Fit
• Reliable delivery

– Retransmission of lost packets
– … even though it may not be useful

• Adapting the sending rate
– Slowing down after a packet loss
– … even though it may cause starvation at the client

• Protocol overhead
– TCP header of 20 bytes in every packet
– … which is large for sending audio samples
– Sending ACKs for every other packet
– … which may be more feedback than needed

19

Better Ways of Transporting Data
• User Datagram Protocol (UDP)

– No automatic retransmission of lost packets
– No automatic adaptation of sending rate
– Smaller packet header

• UDP leaves many things up to the application
– When to transmit the data
– Whether to retransmit lost data
– Whether to adapt the sending rate
– … or adapt the quality of the audio/video encoding

20

Recovering From Packet Loss
• Loss is defined in a broader sense

– Does a packet arrive in time for playback?
– A packet that arrives late is as good as lost
– Retransmission is not useful if the deadline has passed

• Selective retransmission
– Sometimes retransmission is acceptable
– E.g., if the client has not already started playing the data
– Data can be retransmitted within the time constraint

21

Forward Error Correction (FEC)
• Forward error correction

– Add redundant information to the packet stream
– So the client can reconstruct data even after a loss

• Send redundant chunk after every n chunks
– E.g., extra chunk is an XOR of the other n chunks
– Receiver can recover from losing a single chunk

• Send low-quality version along with high quality
– E.g., 13 kbps audio along with 64 kbps version
– Receiver can play low quality version

if the high-quality version is lost

22

Interactive Audio and Video
• Two or more users interacting

– Telephone call
– Video conference
– Video game

• Strict delay constraints
– Delays over 150-200 msec are very noticeable
– … and delays over 400 msec are a disaster for voice

• Much harder than streaming applications
– Receiver cannot introduce much playout delay
– Difficult if the network does not guarantee performance

23

Voice Over IP (VoIP)
• Delivering phone calls over IP

– Computer to computer
– Analog phone to/from computer
– Analog phone to analog phone

• Motivations for VoIP
– Cost reduction
– Simplicity
– Advanced applications

Web-enabled call centers
Collaborative white boarding
Do Not Disturb, Locate Me, etc.
Voicemail sent as e-mail

24

Traditional Telecom InfrastructureTraditional Telecom Infrastructure

7043

7040

7041

7042

External line

Telephone
switchPrivate Branch

Exchange

212-8538080

Another
switch

Corporate/Campus

InternetCorporate/Campus LAN

25

VoIP GatewaysVoIP Gateways

External line

7043

7040

7041

7042

PBX

Corporate/Campus

InternetLAN

8154

8151

8152

8153

PBX

Another campus

LAN

IP Phone Client

VoIP Gateway VoIP Gateway

26

VoIP With an Analog Phone

• Adapter
– Converts between analog and digital
– Sends and receives data packets
– Communicates with the phone in standard way

27

Skype

• Niklas Zennström and
Janus Friis in 2003

• Developed by KaZaA

• Instant Messenger (IM)
with voice support

• Based on peer-to-peer
(P2P) networking
technology

28

• Login server is the only
central server (consisting
of multiple machines)

• Both ordinary host and
super nodes are Skype
clients

• Any node with a public IP
address and having
sufficient resources can
become a super node

• Skype maintains their own
super nodes

Skype Network Architecture

29

Skype Data Transfer
• Audio compression

– Voice packets around 67 bytes
– Up to 140 packets per second
– Around 5 KB/sec (40 kbps) in each direction

• Encryption
– Data packets are encrypted in both directions
– To prevent snooping on the phone call
– … by someone snooping on the network
– … or by the intermediate peers forwarding data

30

VoIP Quality
• The application can help

– Good audio compression algorithms
– Avoiding hops through far-away hosts
– Forward error correction
– Adaptation to the available bandwidth

• But, ultimately the network is a major factor
– Long propagation delay?
– High congestion?
– Disruptions during routing changes?

• Leads to an interest in Quality of Service

31

Principles for QoS Guarantees
• Applications compete for bandwidth

– Consider a 1 Mbps VoIP application and an FTP transfer
sharing a single 1.5 Mbps link

– Bursts of FTP traffic can cause congestion and losses
– We want to give priority to the audio packets over FTP

• Principle 1: Packet marking
– Marking of packets is needed for the router
– To distinguish between different classes

32

Principles for QoS Guarantees
• Applications misbehave

– Audio sends packets at a rate higher than 1 Mbps

• Principle 2: Policing
– Provide protection for one class from other classes
– Ensure sources adhere to bandwidth restrictions
– Marking and policing need to be done at the edge

33

Principles for QoS Guarantees
• Alternative to marking and policing

– Allocate fixed bandwidth to each application flow
– But, this can lead to inefficient use of bandwidth
– … if one of the flows does not use its allocation

• Principle 3: Link scheduling
– While providing isolation, it is desirable to use resources

as efficiently as possible
– E.g., weighted fair queuing or round-robin scheduling

34

Principles for QoS Guarantees
• Cannot support traffic beyond link capacity

– If total traffic exceeds capacity, you are out of luck
– Degrade the service for all, or deny someone access

• Principle 4: Admission control
– Application flow declares its needs in advance
– The network may block call if it cannot satisfy the needs

35

Quality of Service
• Significant change to Internet architecture

– Guaranteed service rather than best effort
– Routers keeping state about the traffic

• A variety of new protocols and mechanisms
– Reserving resources along a path
– Identifying paths with sufficient resources
– Link scheduling and buffer management
– Packet marking with the Type-of-Service bits
– Packet classifiers to map packets to ToS classes
– …

• Seeing some deployment within individual ASes
– E.g., corporate/campus networks, and within an ISP

36

Conclusions
• Digital audio and video

– Increasingly popular media on the Internet
– Video on demand, VoIP, online gaming, IPTV, …

• Interaction with the network
– Adapt to delivering the data over a best-effort network
– Adapt the network to offer better quality-of-service

1

Middleboxes

Introduction to Data Networks

2008.5

2

Network-Layer Principles
• Globally unique identifiers

–Each node has a unique, fixed IP address
–… reachable from everyone and everywhere

• Simple packet forwarding
–Network nodes simply forward packets
–… rather than modifying or filtering them

source destination

IP network

3

Internet Reality
• Host mobility

–Changes in IP addresses as hosts move

• IP address depletion
–Dynamic assignment of IP addresses
–Use of private addresses

• Security concerns
–Discarding suspicious or unwanted packets
–Detecting suspicious traffic

• Performance concerns
–Controlling how link bandwidth is allocated
–Storing popular Web content near the clients

4

Middleboxes
• Middleboxes are intermediaries

–Interposed in-between the communicating hosts
–Often without knowledge of one or both parties

• Examples
–Network address translators
–Firewalls
–Traffic shapers
–Intrusion detection systems
–Transparent Web proxy caches

5

Two Views of Middleboxes
• An abomination

–Violation of layering
–Cause confusion in reasoning about the network
–Responsible for many subtle bugs

• A necessity
–Solving real and pressing problems
–Needs that are not likely to go away

6

Network Address Translation

7

History of NATs
• IP address space depletion

–Clear in early 90s that 232 addresses not enough
–Work began on a successor to IPv4

• In the meantime…
–Share addresses among numerous devices
–… without requiring changes to existing hosts

• Meant to provide temporary relief
–Intended as a short-term remedy
–Now, NAT are very widely deployed
–… much moreso than IPv6

8

Active Component in the Data Path

NAT

inside

outside

9

IP Header Translators
• Local network addresses not globally unique

–E.g., private IP addresses (in 10.0.0.0/8)

• NAT box rewrites the IP addresses
–Make the “inside” look like a single IP address
–… and change header checksums accordingly

• Outbound traffic: from inside to outside
–Rewrite the source IP address

• Inbound traffic: from outside to inside
–Rewrite the destination IP address

10

Using a Single Source Address

NAT

inside

10.0.0.1

10.0.0.2

outside

138.76.29.7

11

What if Both Hosts Contact Same Site?

• Suppose hosts contact the same destination
–E.g., both hosts open a socket with local port

3345 to destination 128.119.40.186 on port 80

• NAT gives packets same source address
–All packets have source address 138.76.29.7

• Problems
–Can destination differentiate between senders?
–Can return traffic get back to the correct hosts?

12

Port-Translating NAT
• Map outgoing packets

– Replace source address with NAT address
– Replace source port number with a new port number
– Remote hosts respond using (NAT address, new port #)

• Maintain a translation table
– Store map of (source address, port #) to (NAT address,

new port #)

• Map incoming packets
– Consult the translation table
– Map the destination address and port number
– Local host receives the incoming packet

13

Network Address Translation Example

10.0.0.1

10.0.0.2

10.0.0.3

S: 10.0.0.1, 3345
D: 128.119.40.186, 80

1
10.0.0.4

138.76.29.7

1: host 10.0.0.1
sends datagram to
128.119.40.186, 80

NAT translation table
WAN side addr LAN side addr
138.76.29.7, 5001 10.0.0.1, 3345
…… ……

S: 128.119.40.186, 80
D: 10.0.0.1, 3345 4

S: 138.76.29.7, 5001
D: 128.119.40.186, 802

2: NAT router
changes datagram
source addr from
10.0.0.1, 3345 to
138.76.29.7, 5001,
updates table

S: 128.119.40.186, 80
D: 138.76.29.7, 5001 3

3: Reply arrives
dest. address:
138.76.29.7, 5001

4: NAT router
changes datagram
dest addr from
138.76.29.7, 5001 to 10.0.0.1, 3345

14

Maintaining the Mapping Table
• Create an entry upon seeing a packet

–Packet with new (source addr, source port) pair

• Eventually, need to delete the map entry
–But when to remove the binding?

• If no packets arrive within a time window
–… then delete the mapping to free up the port #s

• Yet another example of “soft state”
–I.e., removing state if not refreshed for a while

15

Objections Against NAT

• Port #s are meant for addressing processes
–Yet, NAT uses them to identify end hosts
–Makes it hard to run a server behind a NAT

NAT

10.0.0.1

10.0.0.2

138.76.29.7
Requests to
138.76.29.7
on port 80

Which host should get the request???

16

Objections Against NAT
• Difficult to support peer-to-peer applications

–P2P needs a host to act as a server
–… difficult if both hosts are behind NATs

• Routers are not supposed to look at port #s
–Network layer should care only about IP header
–… and not be looking at the port numbers at all

• NAT violates the end-to-end argument
–Network nodes should not modify the packets

• IPv6 is a cleaner solution
–Better to migrate than to limp along with a hack

17

Where is NAT Implemented?
• Home router (e.g., Linksys box)

–Integrates router, DHCP server, NAT, etc.
–Use single IP address from the service provider
–… and have a bunch of hosts hiding behind it

• Campus or corporate network
–NAT at the connection to the Internet
–Share a collection of public IP addresses
–Avoid complexity of renumbering end hosts and

local routers when changing service providers

18

Firewalls

19

Firewalls

Isolates organization’s internal net
from larger Internet, allowing some
packets to pass, blocking others.

administered
network

public
Internet

firewall

20

Internet Attacks: Denial of Service
• Denial-of-service attacks

– Outsider overwhelms the host with unsolicited traffic
– … with the goal of preventing any useful work

• Example
– Bad guys take over a large collection of hosts
– … and program these hosts to send traffic to your host
– Leading to excessive traffic

• Motivations for denial-of-service attacks
– Malice (e.g., just to be mean)
– Revenge (e.g. for some past perceived injustice)
– Greed (e.g., blackmailing)

21

Internet Attacks: Break-Ins
• Breaking in to a host

– Outsider exploits a vulnerability in the end host
– … with the goal of changing the behavior of the host

• Example
– Bad guys know a Web server has a buffer-overflow

vulnerability
– … and, say, send an HTTP request with a long URL
– Allowing them to break in

• Motivations for break-ins
– Take over the machine to launch other attacks
– Steal information stored on the machine
– Modify/replace the content the site normally returns

22

Packet Filtering

• Internal network connected to Internet via firewall

• Firewall filters packet-by-packet, based on:
– Source IP address, destination IP address
– TCP/UDP source and destination port numbers
– ICMP message type
– TCP SYN and ACK bits

Should arriving
packet be allowed

in? Departing packet
let out?

23

Packet Filtering Examples
• Block all packets with IP protocol field = 17
and with either source or dest port = 23.
–All incoming and outgoing UDP flows blocked
–All Telnet connections are blocked

• Block inbound TCP packets with SYN but no
ACK
–Prevents external clients from making TCP

connections with internal clients
–But allows internal clients to connect to outside

• Block all packets with TCP port of Doom3

24

Firewall Configuration
• Firewall applies a set of rules to each packet

– To decide whether to permit or deny the packet

• Each rule is a test on the packet
– Comparing IP and TCP/UDP header fields
– … and deciding whether to permit or deny

• Order matters
– Once the packet matches a rule, the decision is done

25

Firewall Configuration Example
• Alice runs a network in 222.22.0.0/16

–Wants to let Bob’s school access certain hosts
Bob is on 111.11.0.0/16
Alice’s special hosts on 222.22.22.0/24

–Alice doesn’t trust Trudy, inside Bob’s network
Trudy is on 111.11.11.0/24

–Alice doesn’t want any other traffic from Internet

• Rules
–#1: Don’t let Trudy machines in

Deny (src = 111.11.11.0/24, dst = 222.22.0.0/16)
–#2: Let rest of Bob’s network in to special dsts

Permit (src=111.11.0.0/16, dst = 222.22.22.0/24)
–#3: Block the rest of the world

Deny (src = 0.0.0.0/0, dst = 0.0.0.0/0)

26

A Variation: Traffic Management
• Permit vs. deny is a too binary decision

– Maybe better to classify the traffic based on rules
– … and then handle the classes of traffic differently

• Traffic shaping (rate limiting)
– Limit the amount of bandwidth for certain traffic
– E.g., rate limit on Web or P2P traffic

• Separate queues
– Use rules to group related packets
– And then do round-robin scheduling across the groups
– E.g., separate queue for each internal IP address

27

Firewall Implementation Challenges
• Per-packet handling

– Must inspect every packet
– Challenging on very high-speed links

• Complex filtering rules
– May have large # of rules
– May have very complicated rules

• Location of firewalls
– Complex firewalls near the edge, at low speed
– Simpler firewalls in the core, at higher speed

28

Clever Users Subvert Firewalls
• Example: filtering dorm access to a server

–Firewall rule based on IP addresses of dorms
–… and the server IP address and port number
–Problem: users may log in to another machine

E.g., connect from the dorms to another host
… and then onward to the blocked server

• Example: filtering P2P based on port #s
–Firewall rule based on TCP/UDP port numbers

E.g., allow only port 80 (e.g., Web) traffic
–Problem: software using non-traditional ports

E.g., write P2P client to use port 80 instead

29

Application Gateways
• Filter packets on application data

– Not just on IP and TCP/UDP headers

• Example: restricting Telnet usage
– Don’t allow any external clients to Telnet inside
– Only allow certain internal users to Telnet outside

• Solution: Telnet gateway
– Force all Telnet traffic to go through a gateway
– I.e. filter Telnet traffic that doesn’t originate from the IP

address of the gateway

• At the gateway…
– Require user to login and provide password
– Apply policy to decide whether they can proceed

30

Telnet Gateway Example

host-to-gateway
telnet session

gateway-to-remote
host telnet session

application
gateway

firewall

31

Motivation for Gateways
• Enable more detailed policies

– E.g., login id and password at Telnet gateway

• Avoid rogue machines sending traffic
– E.g., e-mail “server” running on user machines
– … probably a sign of a spammer

• Enable a central place to perform logging
– E.g., forcing all Web accesses through a gateway
– … to log the IP addresses and URLs

• Improve performance through caching
– E.g., forcing all Web accesses through a gateway
– … to enable caching of the popular content

32

Web Proxies

33

Web Clients and Servers
• Web is a client-server protocol

– Client sends a request
– Server sends a response

• Proxies play both roles
– A server to the client
– A client to the server

www.cnn.com

www.google.com

Proxy

34

Proxy Caching
• Client #1 requests http://www.foo.com/fun.jpg

– Client sends “GET fun.jpg” to the proxy
– Proxy sends “GET fun.jpg” to the server
– Server sends response to the proxy
– Proxy stores the response, and forwards to client

• Client #2 requests http://www.foo.com/fun.jpg
– Client sends “GET fun.jpg” to the proxy
– Proxy sends response to the client from the cache

• Benefits
– Faster response time to the clients
– Lower load on the Web server
– Reduced bandwidth consumption inside the network

35

Getting Requests to the Proxy
• Explicit configuration

–Browser configured to use a proxy
–Directs all requests through the proxy
–Problem: requires user action

• Transparent proxy (or “interception proxy”)
–Proxy lies in path from the client to the servers
–Proxy intercepts packets en route to the server
–… and interposes itself in the data transfer
–Benefit: does not require user action

36

Challenges of Transparent Proxies
• Must ensure all packets pass by the proxy

– By placing it at the only access point to the Internet
– E.g., at the border router of a campus or company

• Overhead of reconstructing the requests
– Must intercept the packets as they fly by
– … and reconstruct into the ordered by stream

• May be viewed as a violation of user privacy
– The user does not know the proxy lies in the path
– Proxy may be keeping logs of the user’s requests

37

Other Functions of Web Proxies
• Anonymization

– Server sees requests coming from the proxy address
– … rather than the individual user IP addresses

• Transcoding
– Converting data from one form to another
– E.g., reducing the size of images for cell-phone browsers

• Prefetching
– Requesting content before the user asks for it

• Filtering
– Blocking access to sites, based on URL or content

38

Conclusions
• Middleboxes address important problems

– Using fewer IP addresses
– Blocking unwanted traffic
– Making fair use of network resources
– Improving Web performance

• Middleboxes cause problems of their own
– No longer globally unique IP addresses
– No longer can assume network simply delivers packets

8: Network Security 8-1

Chapter 8
Network Security

A note on the use of these ppt slides:
We’re making these slides freely available to all (faculty, students, readers).
They’re in PowerPoint form so you can add, modify, and delete slides
(including this one) and slide content to suit your needs. They obviously
represent a lot of work on our part. In return for use, we only ask the
following:

If you use these slides (e.g., in a class) in substantially unaltered form,
that you mention their source (after all, we’d like people to use our book!)

If you post any slides in substantially unaltered form on a www site, that
you note that they are adapted from (or perhaps identical to) our slides, and
note our copyright of this material.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2004
J.F Kurose and K.W. Ross, All Rights Reserved

Computer Networking:
A Top Down Approach
Featuring the Internet,
3rd edition.
Jim Kurose, Keith Ross
Addison-Wesley, July
2004.

8: Network Security 8-2

Chapter 8: Network Security
Chapter goals:

understand principles of network security:
cryptography and its many uses beyond
“confidentiality”
authentication
message integrity
key distribution

security in practice:
security in application, transport, network, link
layers

8: Network Security 8-3

Chapter 8 roadmap

8.1 What is network security?
8.2 Principles of cryptography
8.3 Authentication
8.4 Integrity
8.5 Key Distribution and certification
8.6 Access control: firewalls
8.7 Attacks and counter measures
8.8 Security in many layers

8: Network Security 8-4

What is network security?

Confidentiality: only sender, intended receiver
should “understand” message contents

sender encrypts message
receiver decrypts message

Authentication: sender, receiver want to confirm
identity of each other

Message Integrity: sender, receiver want to ensure
message not altered (in transit, or afterwards)
without detection

Access and Availability: services must be accessible
and available to users

8: Network Security 8-5

Friends and enemies: Alice, Bob, Trudy
well-known in network security world
Bob, Alice (lovers!) want to communicate “securely”
Trudy (intruder) may intercept, delete, add messages

secure
sender

secure
receiver

channel data, control
messages

data data

Alice Bob

Trudy

8: Network Security 8-6

Who might Bob, Alice be?

… well, real-life Bobs and Alices!
Web browser/server for electronic
transactions (e.g., on-line purchases)
on-line banking client/server
DNS servers
routers exchanging routing table updates
other examples?

8: Network Security 8-7

There are bad guys (and girls) out there!
Q: What can a “bad guy” do?
A: a lot!

eavesdrop: intercept messages
actively insert messages into connection
impersonation: can fake (spoof) source address
in packet (or any field in packet)
hijacking: “take over” ongoing connection by
removing sender or receiver, inserting himself
in place
denial of service: prevent service from being
used by others (e.g., by overloading resources)

more on this later ……

8: Network Security 8-8

Chapter 8 roadmap

8.1 What is network security?
8.2 Principles of cryptography
8.3 Authentication
8.4 Integrity
8.5 Key Distribution and certification
8.6 Access control: firewalls
8.7 Attacks and counter measures
8.8 Security in many layers

8: Network Security 8-9

The language of cryptography

symmetric key crypto: sender, receiver keys identical
public-key crypto: encryption key public, decryption key

secret (private)

plaintext plaintextciphertext

KA

encryption
algorithm

decryption
algorithm

Alice’s
encryption
key

Bob’s
decryption
key

KB

8: Network Security 8-10

Symmetric key cryptography
substitution cipher: substituting one thing for another

monoalphabetic cipher: substitute one letter for another

plaintext: abcdefghijklmnopqrstuvwxyz

ciphertext: mnbvcxzasdfghjklpoiuytrewq

Plaintext: bob. i love you. alice
ciphertext: nkn. s gktc wky. mgsbc

E.g.:

Q: How hard to break this simple cipher?:
brute force (how hard?)
other?

8: Network Security 8-11

Symmetric key cryptography

symmetric key crypto: Bob and Alice share know same
(symmetric) key: K
e.g., key is knowing substitution pattern in mono
alphabetic substitution cipher
Q: how do Bob and Alice agree on key value?

plaintextciphertext

KA-B

encryption
algorithm

decryption
algorithm

A-B

KA-B

plaintext
message, m

K (m)
A-B

K (m)
A-Bm = K ()A-B

8: Network Security 8-12

Symmetric key crypto: DES

DES: Data Encryption Standard
US encryption standard [NIST 1993]
56-bit symmetric key, 64-bit plaintext input
How secure is DES?

DES Challenge: 56-bit-key-encrypted phrase
(“Strong cryptography makes the world a safer
place”) decrypted (brute force) in 4 months
no known “backdoor” decryption approach

making DES more secure:
use three keys sequentially (3-DES) on each datum
use cipher-block chaining

8: Network Security 8-13

Symmetric key
crypto: DES

initial permutation
16 identical “rounds” of

function application,
each using different
48 bits of key

final permutation

DES operation

8: Network Security 8-14

AES: Advanced Encryption Standard

new (Nov. 2001) symmetric-key NIST
standard, replacing DES
processes data in 128 bit blocks
128, 192, or 256 bit keys
brute force decryption (try each key)
taking 1 sec on DES, takes 149 trillion
years for AES

8: Network Security 8-15

Public Key Cryptography

symmetric key crypto
requires sender,
receiver know shared
secret key
Q: how to agree on key
in first place
(particularly if never
“met”)?

public key cryptography
radically different
approach [Diffie-
Hellman76, RSA78]
sender, receiver do
not share secret key
public encryption key
known to all
private decryption
key known only to
receiver

8: Network Security 8-16

Public key cryptography

plaintext
message, m

ciphertextencryption
algorithm

decryption
algorithm

Bob’s public
key

plaintext
messageK (m)

B
+

K B
+

Bob’s private
key

K
B
-

m = K (K (m))B
+

B
-

8: Network Security 8-17

Public key encryption algorithms

need K () and K () such thatB B
. .

given public key K , it should be
impossible to compute
private key K B

B

Requirements:

1

2

+ -

K (K (m)) = m
BB

- +

+

-

RSA: Rivest, Shamir, Adelson algorithm

8: Network Security 8-18

RSA: Choosing keys
1. Choose two large prime numbers p, q.

(e.g., 1024 bits each)

2. Compute n = pq, z = (p-1)(q-1)

3. Choose e (with e<n) that has no common factors
with z. (e, z are “relatively prime”).

4. Choose d such that ed-1 is exactly divisible by z.
(in other words: ed mod z = 1).

5. Public key is (n,e). Private key is (n,d).

KB
+ KB

-

8: Network Security 8-19

RSA: Encryption, decryption
0. Given (n,e) and (n,d) as computed above

1. To encrypt bit pattern, m, compute
c = m mod ne (i.e., remainder when m is divided by n)e

2. To decrypt received bit pattern, c, compute
m = c mod nd (i.e., remainder when c is divided by d n)

m = (m mod n)e mod ndMagic
happens!

c

8: Network Security 8-20

RSA example:
Bob chooses p=5, q=7. Then n=35, z=24.

e=5 (so e, z relatively prime).
d=29 (so ed-1 exactly divisible by z.

letter m me c = m mod ne

l 12 1524832 17

c m = c mod nd
1217 481968572106750915091411825223071697

cd letter
l

encrypt:

decrypt:

8: Network Security 8-21

RSA: Why is that m = (m mod n)e mod nd

(m mod n)e mod n = m mod nd ed

= m mod ned mod (p-1)(q-1)

= m mod n1

= m

(using number theory result above)

(since we chose ed to be divisible by
(p-1)(q-1) with remainder 1)

Useful number theory result: If p,q prime and
n = pq, then:

x mod n = x mod ny y mod (p-1)(q-1)

8: Network Security 8-22

RSA: another important property

The following property will be very useful later:

K (K (m)) = m
BB

- +
K (K (m))BB

+ -
=

use public key
first, followed
by private key

use private key
first, followed
by public key

Result is the same!

8: Network Security 8-23

Chapter 8 roadmap

8.1 What is network security?
8.2 Principles of cryptography
8.3 Authentication
8.4 Integrity
8.5 Key Distribution and certification
8.6 Access control: firewalls
8.7 Attacks and counter measures
8.8 Security in many layers

8: Network Security 8-24

Authentication

Goal: Bob wants Alice to “prove” her identity
to him

Protocol ap1.0: Alice says “I am Alice”

Failure scenario??
“I am Alice”

8: Network Security 8-25

Authentication

Goal: Bob wants Alice to “prove” her identity
to him

Protocol ap1.0: Alice says “I am Alice”

in a network,
Bob can not “see”

Alice, so Trudy simply
declares

herself to be Alice
“I am Alice”

8: Network Security 8-26

Authentication: another try

Protocol ap2.0: Alice says “I am Alice” in an IP packet
containing her source IP address

Failure scenario??

“I am Alice”Alice’s
IP address

8: Network Security 8-27

Authentication: another try

Protocol ap2.0: Alice says “I am Alice” in an IP packet
containing her source IP address

Trudy can create
a packet

“spoofing”
Alice’s address“I am Alice”Alice’s

IP address

8: Network Security 8-28

Authentication: another try

Protocol ap3.0: Alice says “I am Alice” and sends her
secret password to “prove” it.

Failure scenario??

“I’m Alice”Alice’s
IP addr

Alice’s
password

OKAlice’s
IP addr

8: Network Security 8-29

Authentication: another try

Protocol ap3.0: Alice says “I am Alice” and sends her
secret password to “prove” it.

playback attack: Trudy
records Alice’s packet

and later
plays it back to Bob

“I’m Alice”Alice’s
IP addr

Alice’s
password

OKAlice’s
IP addr

“I’m Alice”Alice’s
IP addr

Alice’s
password

8: Network Security 8-30

Authentication: yet another try

Protocol ap3.1: Alice says “I am Alice” and sends her
encrypted secret password to “prove” it.

Failure scenario??

“I’m Alice”Alice’s
IP addr

encrypted
password

OKAlice’s
IP addr

8: Network Security 8-31

Authentication: another try

Protocol ap3.1: Alice says “I am Alice” and sends her
encrypted secret password to “prove” it.

record
and

playback
still works!

“I’m Alice”Alice’s
IP addr

encrypted
password

OKAlice’s
IP addr

“I’m Alice”Alice’s
IP addr

encrypted
password

8: Network Security 8-32

Authentication: yet another try
Goal: avoid playback attack

Failures, drawbacks?

Nonce: number (R) used only once –in-a-lifetime
ap4.0: to prove Alice “live”, Bob sends Alice nonce, R. Alice

must return R, encrypted with shared secret key

“I am Alice”

R

K (R)A-B
Alice is live, and
only Alice knows
key to encrypt

nonce, so it must
be Alice!

8: Network Security 8-33

Authentication: ap5.0

ap4.0 requires shared symmetric key
can we authenticate using public key techniques?

ap5.0: use nonce, public key cryptography

“I am Alice”
R

Bob computes

K (R)A
-

“send me your public key”

K A
+

(K (R)) = RA
-K A

+

and knows only Alice
could have the private
key, that encrypted R

such that
(K (R)) = RA

-
K A

+

8: Network Security 8-34

ap5.0: security hole
Man (woman) in the middle attack: Trudy poses as

Alice (to Bob) and as Bob (to Alice)

I am Alice I am Alice
R

T
K (R)-

Send me your public key

TK
+

A
K (R)-

Send me your public key

AK
+

TK (m)
+

T
m = K (K (m))+

T
-

Trudy gets

sends m to Alice
encrypted with

Alice’s public key

AK (m)
+

A
m = K (K (m))+

A
-

R

8: Network Security 8-35

ap5.0: security hole
Man (woman) in the middle attack: Trudy poses as

Alice (to Bob) and as Bob (to Alice)

Difficult to detect:
Bob receives everything that Alice sends, and vice

versa. (e.g., so Bob, Alice can meet one week later and
recall conversation)

problem is that Trudy receives all messages as well!

8: Network Security 8-36

Chapter 8 roadmap

8.1 What is network security?
8.2 Principles of cryptography
8.3 Authentication
8.4 Message integrity
8.5 Key Distribution and certification
8.6 Access control: firewalls
8.7 Attacks and counter measures
8.8 Security in many layers

8: Network Security 8-37

Digital Signatures

Cryptographic technique analogous to hand-
written signatures.
sender (Bob) digitally signs document,
establishing he is document owner/creator.
verifiable, nonforgeable: recipient (Alice) can
prove to someone that Bob, and no one else
(including Alice), must have signed document

8: Network Security 8-38

Digital Signatures

Simple digital signature for message m:
Bob signs m by encrypting with his private key
KB, creating “signed” message, KB(m)--

Dear Alice
Oh, how I have
missed you. I think of
you all the time!
…(blah blah blah)

Bob

Bob’s message, m

Public key
encryption
algorithm

Bob’s private
key

K B
-

Bob’s message,
m, signed

(encrypted) with
his private key

K B
-(m)

8: Network Security 8-39

Digital Signatures (more)
Suppose Alice receives msg m, digital signature KB(m)
Alice verifies m signed by Bob by applying Bob’s
public key KB to KB(m) then checks KB(KB(m)) = m.
If KB(KB(m)) = m, whoever signed m must have used
Bob’s private key.

+ +

-

-

- -

+

Alice thus verifies that:
Bob signed m.
No one else signed m.
Bob signed m and not m’.

Non-repudiation:
Alice can take m, and signature KB(m) to
court and prove that Bob signed m.

-

8: Network Security 8-40

Message Digests

Computationally expensive
to public-key-encrypt
long messages

Goal: fixed-length, easy-
to-compute digital
“fingerprint”
apply hash function H
to m, get fixed size
message digest, H(m).

Hash function properties:
many-to-1
produces fixed-size msg
digest (fingerprint)
given message digest x,
computationally
infeasible to find m such
that x = H(m)

large
message

m

H: Hash
Function

H(m)

8: Network Security 8-41

Internet checksum: poor crypto hash
function

Internet checksum has some properties of hash function:
produces fixed length digest (16-bit sum) of message
is many-to-one

But given message with given hash value, it is easy to find
another message with same hash value:

I O U 1
0 0 . 9
9 B O B

49 4F 55 31
30 30 2E 39
39 42 D2 42

message ASCII format

B2 C1 D2 AC

I O U 9
0 0 . 1
9 B O B

49 4F 55 39
30 30 2E 31
39 42 D2 42

message ASCII format

B2 C1 D2 ACdifferent messages
but identical checksums!

8: Network Security 8-42

large
message

m
H: Hash
function H(m)

digital
signature
(encrypt)

Bob’s
private

key K B
-

+

Bob sends digitally signed
message:

Alice verifies signature and
integrity of digitally signed
message:

KB(H(m))-

encrypted
msg digest

KB(H(m))-

encrypted
msg digest

large
message

m

H: Hash
function

H(m)

digital
signature
(decrypt)

H(m)

Bob’s
public

key K B
+

equal
?

Digital signature = signed message digest

8: Network Security 8-43

Hash Function Algorithms
MD5 hash function widely used (RFC 1321)

computes 128-bit message digest in 4-step
process.
arbitrary 128-bit string x, appears difficult to
construct msg m whose MD5 hash is equal to x.

SHA-1 is also used.
US standard [NIST, FIPS PUB 180-1]
160-bit message digest

8: Network Security 8-44

Chapter 8 roadmap

8.1 What is network security?
8.2 Principles of cryptography
8.3 Authentication
8.4 Integrity
8.5 Key distribution and certification
8.6 Access control: firewalls
8.7 Attacks and counter measures
8.8 Security in many layers

8: Network Security 8-45

Trusted Intermediaries

Symmetric key problem:
How do two entities
establish shared secret
key over network?

Solution:
trusted key distribution
center (KDC) acting as
intermediary between
entities

Public key problem:
When Alice obtains
Bob’s public key (from
web site, e-mail,
diskette), how does she
know it is Bob’s public
key, not Trudy’s?

Solution:
trusted certification
authority (CA)

8: Network Security 8-46

Key Distribution Center (KDC)
Alice, Bob need shared symmetric key.
KDC: server shares different secret key with each
registered user (many users)
Alice, Bob know own symmetric keys, KA-KDC KB-KDC , for
communicating with KDC.

KB-KDC

KX-KDC

KY-KDC

KZ-KDC

KP-KDC

KB-KDC

KA-KDC

KA-KDC

KP-KDC

KDC

8: Network Security 8-47

Key Distribution Center (KDC)

Alice
knows

R1

Bob knows to
use R1 to

communicate
with Alice

Alice and Bob communicate: using R1 as
session key for shared symmetric encryption

Q: How does KDC allow Bob, Alice to determine shared
symmetric secret key to communicate with each other?

KDC
generates

R1

KB-KDC(A,R1)

KA-

KDC(A,B)
KA-KDC(R1, KB-KDC(A,R1))

8: Network Security 8-48

Certification Authorities
Certification authority (CA): binds public key to
particular entity, E.
E (person, router) registers its public key with CA.

E provides “proof of identity” to CA.
CA creates certificate binding E to its public key.
certificate containing E’s public key digitally signed by CA
– CA says “this is E’s public key”

Bob’s
public

key K B
+

Bob’s
identifying

information

digital
signature
(encrypt)

CA
private

key K CA
-

K B
+

certificate for
Bob’s public key,

signed by CA

8: Network Security 8-49

Certification Authorities
When Alice wants Bob’s public key:

gets Bob’s certificate (Bob or elsewhere).
apply CA’s public key to Bob’s certificate, get
Bob’s public key

Bob’s
public

key K B
+

digital
signature
(decrypt)

CA
public

key
K CA
+

K B
+

8: Network Security 8-50

Information security future

World War II: Enigma

Modern information war
Cryptographic issues
Non-cryptographic issues

History
Getting Enigma

8: Network Security

Customers need an innovative systems approach to
preventing and containing infections

8-51

Nimda

Patch: MS00-078
Oct.17, 2000 Sept. 18, 2001

336 Days

Patch: MS02-039
Jul. 24, 2002

Slammer

Jan. 25, 2003

185 Days

MSBlaster.A

Aug. 11, 2003
Patch: MS03-026

Jul. 16, 2003

26 Days

Sasser.A

Apr. 30, 2004
Patch: MS04-011
Apr. 13th, 2004

17 Days

Window of Time from Patch Availability
to Outbreak Getting Shorter

8: Network Security 8-52

Chapter 8 roadmap

8.1 What is network security?
8.2 Principles of cryptography
8.3 Authentication
8.4 Integrity
8.5 Key Distribution and certification
8.6 Access control: firewalls
8.7 Attacks and counter measures
8.8 Security in many layers

8: Network Security 8-53

Chapter 8 roadmap

8.1 What is network security?
8.2 Principles of cryptography
8.3 Authentication
8.4 Integrity
8.5 Key Distribution and certification
8.6 Access control: firewalls
8.7 Attacks and counter measures
8.8 Security in many layers

8: Network Security 8-54

Internet security threats
Mapping:

before attacking: “case the joint” – find out
what services are implemented on network
Use ping to determine what hosts have
addresses on network
Port-scanning: try to establish TCP connection
to each port in sequence (see what happens)
nmap (http://www.insecure.org/nmap/) mapper:
“network exploration and security auditing”

Countermeasures?

8: Network Security 8-55

Internet security threats
Mapping: countermeasures

record traffic entering network
look for suspicious activity (IP addresses, pots
being scanned sequentially)

8: Network Security 8-56

Internet security threats
Packet sniffing:

broadcast media
promiscuous NIC reads all packets passing by
can read all unencrypted data (e.g. passwords)
e.g.: C sniffs B’s packets

A

B

C

src:B dest:A payload

Countermeasures?

8: Network Security 8-57

Internet security threats
Packet sniffing: countermeasures

all hosts in organization run software that
checks periodically if host interface in
promiscuous mode.
one host per segment of broadcast media
(switched Ethernet at hub)

A

B

C

src:B dest:A payload

8: Network Security 8-58

Internet security threats
IP Spoofing:

can generate “raw” IP packets directly from
application, putting any value into IP source
address field
receiver can’t tell if source is spoofed
e.g.: C pretends to be B

A

B

C

src:B dest:A payload

Countermeasures?

8: Network Security 8-59

Internet security threats
IP Spoofing: ingress filtering

routers should not forward outgoing packets
with invalid source addresses (e.g., datagram
source address not in router’s network)
great, but ingress filtering can not be mandated
for all networks

A

B

C

src:B dest:A payload

8: Network Security 8-60

Internet security threats
Denial of service (DOS):

flood of maliciously generated packets “swamp”
receiver
Distributed DOS (DDOS): multiple coordinated
sources swamp receiver
e.g., C and remote host SYN-attack A

A

B

C

SYN

SYNSYNSYN

SYN
SYN

SYN

Countermeasures?

8: Network Security 8-61

Internet security threats
Denial of service (DOS): countermeasures

filter out flooded packets (e.g., SYN) before
reaching host: throw out good with bad
traceback to source of floods (most likely an
innocent, compromised machine)

A

B

C

SYN

SYNSYNSYN

SYN
SYN

SYN

8: Network Security 8-62

Chapter 8 roadmap
8.1 What is network security?
8.2 Principles of cryptography
8.3 Authentication
8.4 Integrity
8.5 Key Distribution and certification
8.6 Access control: firewalls
8.7 Attacks and counter measures
8.8 Security in many layers

8.8.1. Secure email
8.8.2. Secure sockets
8.8.3. IPsec
8.8.4. Security in 802.11

8: Network Security 8-63

Pretty good privacy (PGP)

Internet e-mail encryption
scheme, de-facto standard.
uses symmetric key
cryptography, public key
cryptography, hash
function, and digital
signature as described.
provides secrecy, sender
authentication, integrity.
inventor, Phil Zimmerman,
was target of 3-year
federal investigation.

---BEGIN PGP SIGNED MESSAGE---
Hash: SHA1

Bob:My husband is out of town
tonight.Passionately yours,
Alice

---BEGIN PGP SIGNATURE---
Version: PGP 5.0
Charset: noconv
yhHJRHhGJGhgg/12EpJ+lo8gE4vB3mqJ

hFEvZP9t6n7G6m5Gw2
---END PGP SIGNATURE---

A PGP signed message:

8: Network Security 8-64

Secure sockets layer (SSL)

transport layer
security to any TCP-
based app using SSL
services.
used between Web
browsers, servers for
e-commerce (shttp).
security services:

server authentication
data encryption
client authentication
(optional)

server authentication:
SSL-enabled browser
includes public keys for
trusted CAs.
Browser requests
server certificate,
issued by trusted CA.
Browser uses CA’s
public key to extract
server’s public key from
certificate.

check your browser’s
security menu to see
its trusted CAs.

8: Network Security 8-65

SSL (continued)
Encrypted SSL session:

Browser generates
symmetric session key,
encrypts it with server’s
public key, sends
encrypted key to server.
Using private key, server
decrypts session key.
Browser, server know
session key

All data sent into TCP
socket (by client or server)
encrypted with session key.

SSL: basis of IETF
Transport Layer
Security (TLS).
SSL can be used for
non-Web applications,
e.g., IMAP.
Client authentication
can be done with client
certificates.

8: Network Security 8-66

IPsec: Network Layer Security
Network-layer secrecy:

sending host encrypts the
data in IP datagram
TCP and UDP segments;
ICMP and SNMP
messages.

Network-layer authentication
destination host can
authenticate source IP
address

Two principle protocols:
authentication header
(AH) protocol
encapsulation security
payload (ESP) protocol

For both AH and ESP, source,
destination handshake:

create network-layer
logical channel called a
security association (SA)

Each SA unidirectional.
Uniquely determined by:

security protocol (AH or
ESP)
source IP address
32-bit connection ID

8: Network Security 8-67

Authentication Header (AH) Protocol

provides source
authentication, data
integrity, no
confidentiality
AH header inserted
between IP header,
data field.
protocol field: 51
intermediate routers
process datagrams as
usual

AH header includes:
connection identifier
authentication data:
source- signed message
digest calculated over
original IP datagram.
next header field:
specifies type of data
(e.g., TCP, UDP, ICMP)

IP header data (e.g., TCP, UDP segment)AH header

8: Network Security 8-68

ESP Protocol

provides secrecy, host
authentication, data
integrity.
data, ESP trailer
encrypted.
next header field is in ESP
trailer.

ESP authentication
field is similar to AH
authentication field.
Protocol = 50.

IP header TCP/UDP segmentESP
header

ESP
trailer

ESP
authent.

encrypted
authenticated

8: Network Security 8-69

IEEE 802.11 security

War-driving: drive around Bay area, see what 802.11
networks available?

More than 9000 accessible from public roadways
85% use no encryption/authentication
packet-sniffing and various attacks easy!

Securing 802.11
encryption, authentication
first attempt at 802.11 security: Wired Equivalent
Privacy (WEP): a failure
current attempt: 802.11i

8: Network Security 8-70

Wired Equivalent Privacy (WEP):

authentication as in protocol ap4.0
host requests authentication from access point
access point sends 128 bit nonce
host encrypts nonce using shared symmetric key
access point decrypts nonce, authenticates host

no key distribution mechanism
authentication: knowing the shared key is enough

8: Network Security 8-71

WEP data encryption

Host/AP share 40 bit symmetric key (semi-
permanent)
Host appends 24-bit initialization vector (IV) to
create 64-bit key
64 bit key used to generate stream of keys, ki

IV

ki
IV used to encrypt ith byte, di, in frame:

ci = di XOR ki
IV

IV and encrypted bytes, ci sent in frame

8: Network Security 8-72

802.11 WEP encryption

IV
(per frame)

KS: 40-bit
secret

symmetric
k1

IV k2
IV k3

IV … kN
IV kN+1

IV… kN+1
IV

d1
 d2 d3 … dN

 CRC1 … CRC4

c1
 c2 c3 … cN

 cN+1 … cN+4

plaintext
 frame data

plus CRC

key sequence generator
(for given KS, IV)

802.11
header IV

WEP-encrypted data
plus CRC

Figure 7.8-new1: 802.11 WEP protocol Sender-side WEP encryption

8: Network Security 8-73

Breaking 802.11 WEP encryption

Security hole:
24-bit IV, one IV per frame, -> IV’s eventually reused
IV transmitted in plaintext -> IV reuse detected
Attack:

Trudy causes Alice to encrypt known plaintext d1 d2
d3 d4 …
Trudy sees: ci = di XOR ki

IV

Trudy knows ci di, so can compute ki
IV

Trudy knows encrypting key sequence k1
IV k2

IV k3
IV …

Next time IV is used, Trudy can decrypt!

8: Network Security 8-74

802.11i: improved security

numerous (stronger) forms of encryption
possible
provides key distribution
uses authentication server separate from
access point

8: Network Security 8-75

AP: access point
wired

network

AS:
Authentication

server

STA:
client station

1 Discovery of
security capabilities

3

STA and AS mutually authenticate, together
generate Master Key (MK). AP servers as “pass through”

2

3 STA derives
Pairwise Master

Key (PMK)

AS derives
same PMK,
sends to AP

4 STA, AP use PMK to derive
Temporal Key (TK) used for message

encryption, integrity

802.11i: four phases of operation

8: Network Security 8-76

wired
network

EAP TLS
EAP

EAP over LAN (EAPoL)
IEEE 802.11

RADIUS
UDP/IP

EAP: extensible authentication protocol

EAP: end-end client (mobile) to authentication
server protocol
EAP sent over separate “links”

mobile-to-AP (EAP over LAN)
AP to authentication server (RADIUS over UDP)

8: Network Security 8-77

Network Security (summary)
Basic techniques…...

cryptography (symmetric and public)
authentication
message integrity
key distribution

…. used in many different security scenarios
secure email
secure transport (SSL)
IP sec
802.11

	01Overview - Week1.ppt
	Overview��Introduction to Data Networks��2008. 3��Prof. Seung-Woo Seo
	Goals for Today’s Class
	What You Learn in This Course
	Structure of the Course (1st Half)
	Structure of the Course (2nd Half)
	Policies: Write Your Own Code
	Key Concepts in Networking
	Protocols: Calendar Service
	Okay, So This is Getting Tedious
	Well, Not Quite Enough
	Specifying the Details
	Example: HyperText Transfer Protocol
	Example: IP Packet
	IP: Best-Effort Packet Delivery
	Example: Transmission Control Protocol
	Protocol Standardization
	Layering: A Modular Approach
	IP Suite: End Hosts vs. Routers
	The Internet Protocol Suite
	Layer Encapsulation
	What if the Data Doesn’t Fit?
	Protocol Demultiplexing
	Demultiplexing: Port Numbers
	Is Layering Harmful?
	Resource Allocation: Queues
	What if the Data gets Dropped?
	What if the Data is Out of Order?
	Resource Allocation: Congestion Control
	Transmission Control Protocol
	Naming: Domain Name System (DNS)
	Domain Name System
	DNS Resolver and Local DNS Server
	Conclusions

	02Sockets - Week2.ppt
	Networked Applications: Sockets
	Goals of Today’s Lecture
	End System: Computer on the ‘Net
	Clients and Servers
	Clients Are Not Necessarily Human
	Client-Server Communication
	Peer-to-Peer Communication
	Client and Server Processes
	Socket: End Point of Communication
	Identifying the Receiving Process
	Using Ports to Identify Services
	Knowing What Port Number To Use
	Delivering the Data: Division of Labor
	UNIX Socket API
	Typical Client Program
	Creating a Socket: socket()
	Connecting the Socket to the Server
	Sending and Receiving Data
	Servers Differ From Clients
	Typical Server Program
	Server Preparing its Socket
	Accepting a New Client Connection
	Putting it All Together
	Serving One Request at a Time?
	Wanna See Real Clients and Servers?
	Socket programming
	Socket-programming using TCP
	Socket programming with TCP
	Stream jargon
	Socket programming with TCP
	Client/server socket interaction: TCP
	Example: Java client (TCP)
	Example: Java client (TCP), cont.
	Example: Java server (TCP)
	Example: Java server (TCP), cont
	Building a simple Web server

	03Data_Links - week2.ppt
	Data Links
	Goals of Today’s Lecture
	Message, Segment, Packet, and Frame
	Link Layer Protocol for Each Hop
	Adaptors Communicating
	Link-Layer Services
	Encoding
	Problem With Simple Approach
	Framing
	Framing (Continued)
	Error Detection
	Error Detection
	Error Detection Techniques
	Parity Checking
	Internet checksum
	Cyclic Redundancy Check
	CRC Example
	Point-to-Point vs. Broadcast Media
	Multiple Access Protocol
	Channel Partitioning: TDMA
	Channel Partitioning: FDMA
	“Taking Turns” MAC protocols
	Random Access Protocols
	Key Ideas of Random Access
	Slotted ALOHA
	Slotted ALOHA
	Slotted Aloha efficiency
	Pure (unslotted) ALOHA
	Pure Aloha efficiency
	CSMA (Carrier Sense Multiple Access)
	CSMA Collisions
	CSMA/CD (Collision Detection)
	CSMA/CD Collision Detection
	Three Ways to Share the Media
	Ethernet
	Ethernet Uses CSMA/CD
	Limitations on Ethernet Length
	Limitations on Ethernet Length
	Ethernet Frame Structure
	Ethernet Frame Structure (Continued)
	Unreliable, Connectionless Service
	Hubs: Physical-Layer Repeaters
	Interconnecting with Hubs
	Switch
	Switch: Traffic Isolation
	Benefits of Ethernet
	Conclusions

	04Circuit vs Packet - Week3.ppt
	Circuit vs. Packet Switching
	Goals of Today’s Lecture
	Simple Network: Nodes and a Link
	Network Components
	Links: Delay and Bandwidth
	Connecting More Than Two Hosts
	Beyond Directly-Connected Networks
	Circuit Switching (e.g., Phone Network)
	Circuit Switching With Human Operator
	Circuit Switching: Multiplexing a Link
	Timing in Circuit Switching
	Advantages of Circuit Switching
	Disadvantages of Circuit Switching
	Packet Switching (e.g., Internet)
	Packet Switching: Statistical Multiplexing
	IP Service: Best-Effort Packet Delivery
	IP Service Model: Why Packets?
	IP Service Model: Why Best-Effort?
	IP Service: Best-Effort is Enough
	Layering in the IP Protocols
	History: Why IP Packets?
	Other Main Driving Goals (In Order)
	Other Driving Goals, Somewhat Met
	IP Packet Structure
	IP Packet Header Fields
	IP Packet Header Fields (Continued)
	Time-to-Live (TTL) Field
	Application of TTL in Traceroute
	Example Traceroute: Berkeley to CNN
	Try Running Traceroute Yourself
	IP Packet Header Fields (Continued)
	IP Packet Header Fields (Continued)
	IP Packet Header (Continued)
	What if the Source Lies?
	Summary: Packet Switching Review

	05Switches - Week4.ppt
	Switches�Reading: Section 3.2
	Switches
	Goals of Today’s Lecture
	Shuttling Data at Different Layers
	Physical Layer: Repeaters
	Physical Layer: Hubs
	Limitations of Repeaters and Hubs
	Link Layer: Bridges
	Link Layer: Switches
	Dedicated Access and Full Duplex
	Bridges/Switches: Traffic Isolation
	Advantages Over Hubs/Repeaters
	Disadvantages Over Hubs/Repeaters
	Motivation For Cut-Through Switching
	Cut-Through Switching
	Motivation For Self Learning
	Self Learning: Building the Table
	Self Learning: Handling Misses
	Switch Filtering/Forwarding
	Flooding Can Lead to Loops
	Solution: Spanning Trees
	Constructing a Spanning Tree
	Steps in Spanning Tree Algorithm
	Example From Switch #4’s Viewpoint
	Example From Switch #4’s Viewpoint
	Robust Spanning Tree Algorithm
	Evolution Toward Virtual LANs
	Why Group by Organizational Structure?
	People Move, and Roles Change
	Example: Two Virtual LANs
	Example: Two Virtual LANs
	Making VLANs Work
	Moving From Switches to Routers
	Comparing Hubs, Switches, & Routers
	Conclusion

	06AddressForward - Week5.ppt
	IP Addressing and Forwarding
	Goals of Today’s Lecture
	IP Address (IPv4)
	Grouping Related Hosts
	Scalability Challenge
	Hierarchical Addressing in U.S. Mail
	Hierarchical Addressing: IP Prefixes
	IP Address and a 24-bit Subnet Mask
	Scalability Improved
	Easy to Add New Hosts
	Address Allocation
	Classful Addressing
	Classless Inter-Domain Routing (CIDR)
	CIDR: Hierarchal Address Allocation
	Scalability: Address Aggregation
	But, Aggregation Not Always Possible
	Summary : Scalability Through Hierarchy
	Obtaining a Block of Addresses
	Figuring Out Who Owns an Address
	Example Output for 128.112.136.35
	Are 32-bit Addresses Enough?
	Packet Forwarding
	Hop-by-Hop Packet Forwarding
	Separate Table Entries Per Address
	Separate Entry Per 24-bit Prefix
	Separate Entry Classful Address
	CIDR Makes Packet Forwarding Harder
	Longest Prefix Match Forwarding
	Simplest Algorithm is Too Slow
	Patricia Tree
	Even Faster Lookups
	Where do Forwarding Tables Come From?
	What End Hosts Sending to Others?
	What About Reaching the End Hosts?
	Conclusions

	07Control - Week6.ppt
	Internet Control Protocols
	Goals of Today’s Lecture
	Thus Far in the Class…
	At Each Layer …
	How To Bootstrap an End Host?
	Avoiding Manual Configuration
	Key Ideas in Both Protocols
	Need Yet Another Kind of Identity
	MAC Address vs. IP Address
	MAC Addresses on a LAN
	Bootstrapping Problem
	Broadcasting
	Response from the DHCP Server
	Dynamic Host Configuration Protocol
	Deciding What IP Address to Offer
	Soft State: Refresh or Forget
	So, Now the Host Knows Things
	Sending Packets Over a Link
	Address Resolution Protocol Table
	Example: A Sending a Packet to B
	Host A Decides to Send Through R
	Host A Sends Packet Through R
	R Decides how to Forward Packet
	R Sends Packet to B
	IP Routers
	Inside a High-End Router
	Router Physical Layout
	Line Cards (Interface Cards, Adaptors)
	Switching Fabric
	Packet Switching
	Router Processor
	Error Reporting
	Internet Control Message Protocol
	ICMP: Internet Control Message Protocol
	Example: Time Exceeded
	Traceroute and ICMP
	Traceroute: Exploiting “Time Exceeded”
	Ping: Echo and Reply
	Conclusion

	08Routing - Week6.ppt
	Shortest-Path Routing
	Goals of Today’s Lecture
	What is Routing?
	Forwarding vs. Routing
	Why Does Routing Matter?
	Shortest-Path Routing
	Shortest-Path Problem
	Routing Algorithm classification
	Dijkstra’s Shortest-Path Algorithm
	Dijsktra’s Algorithm
	Dijkstra’s Algorithm Example
	Dijkstra’s Algorithm Example
	Shortest-Path Tree
	Dijkstra’s algorithm: Another example
	Dijkstra’s algorithm: Another example
	Link-State Routing
	Detecting Topology Changes
	Broadcasting the Link State
	Broadcasting the Link State
	When to Initiate Flooding
	Convergence
	Transient Disruptions
	Transient Disruptions
	Convergence Delay
	Reducing Convergence Delay
	Scaling Link-State Routing
	Bellman-Ford Algorithm
	Distance Vector Algorithm
	Distance Vector Algorithm
	Distance Vector Example: Step 0
	Distance Vector Example: Step 2
	Distance Vector Example: Step 3
	Distance Vector: Link Cost Changes
	Distance Vector: Link Cost Changes
	Distance Vector: Poison Reverse
	Routing Information Protocol (RIP)
	Comparison of LS and DV algorithms
	Conclusions

	09BGP - Week6.ppt
	Policy-Based Path-Vector Routing
	Goals of Today’s Lecture
	Interdomain Routing
	Challenges for Interdomain Routing
	Shortest-Path Routing is Restrictive
	Link-State Routing is Problematic
	Distance Vector is on the Right Track
	Path-Vector Routing
	Faster Loop Detection
	Flexible Policies
	Border Gateway Protocol
	BGP Operations
	Incremental Protocol
	BGP Route
	ASPATH Attribute
	BGP Path Selection
	BGP Policy: Applying Policy to Routes
	AS is Not a Single Node
	An AS is Not a Single Node
	An AS is Not a Single Node
	Joining BGP and IGP Information
	Joining BGP with IGP Information
	Causes of BGP Routing Changes
	BGP Session Failure
	Routing Change: Before and After
	Routing Change: Path Exploration
	Routing Change: Path Exploration
	BGP Converges Slowly, if at All
	Conclusions

	09Transport_-_Week8.ppt
	Transport Protocols� �Sections 2.5, 5.1, and 5.2
	Goals for Today’s Lecture
	Role of Transport Layer
	Transport Protocols
	Internet Transport Protocols
	Multiplexing and Demultiplexing
	Unreliable Message Delivery Service
	Connectionless demultiplexing
	Connectionless demux (cont)
	Why Would Anyone Use UDP?
	Popular Applications That Use UDP
	Transmission Control Protocol (TCP)
	Connection-oriented demux
	Connection-oriented demux (cont)
	An Analogy: Talking on a Cell Phone
	Some Take-Aways from the Example
	Challenges of Reliable Data Transfer
	TCP Support for Reliable Delivery
	TCP Segments
	TCP “Stream of Bytes” Service
	…Emulated Using TCP “Segments”
	TCP Segment
	Sequence Numbers
	Initial Sequence Number (ISN)
	TCP Three-Way Handshake
	Establishing a TCP Connection
	TCP Header
	Step 1: A’s Initial SYN Packet
	Step 2: B’s SYN-ACK Packet
	Step 3: A’s ACK of the SYN-ACK
	What if the SYN Packet Gets Lost?
	SYN Loss and Web Downloads
	TCP Retransmissions
	Automatic Repeat reQuest (ARQ)
	Reasons for Retransmission
	How Long Should Sender Wait?
	Example RTT Estimation
	A Flaw in This Approach
	Yet Another Limitation…
	TCP Sliding Window
	Motivation for Sliding Window
	Performance of Stop & Wait
	Pipelined protocols
	Pipelining: increased utilization
	Sliding Window
	Receiver Buffering
	TCP Header for Receiver Buffering
	Selective Repeat
	Selective repeat: sender, receiver windows
	Selective repeat in action
	Selective repeat:� dilemma
	TCP: retransmission scenarios
	TCP retransmission scenarios (more)
	TCP ACK generation [RFC 1122, RFC 2581]
	Fast Retransmission
	Timeout is Inefficient
	Fast Retransmission
	Effectiveness of Fast Retransmit
	Tearing Down the Connection
	Tearing Down the Connection
	Sending/Receiving the FIN Packet
	Conclusions

	10Congestion_-_Week9.ppt
	Congestion Control� �Sections 6.1-6.4
	Goals of Today’s Lecture
	Resource Allocation vs. Congestion Control
	Flow Control vs. Congestion Control
	Three Key Features of Internet
	Congestion is Unavoidable
	Congestion Collapse
	What Do We Want, Really?
	Load, Delay, and Power
	Fairness
	Simple Resource Allocation
	Simple Congestion Detection
	Idea of TCP Congestion Control
	Additive Increase, Multiplicative Decrease
	Leads to the TCP “Sawtooth”
	Practical Details
	Getting Started
	“Slow Start” Phase
	Slow Start in Action
	Slow Start and the TCP Sawtooth
	Two Kinds of Loss in TCP
	Repeating Slow Start After Timeout
	Repeating Slow Start After Idle Period
	TCP sender congestion control
	Other TCP Mechanisms
	Motivation for Nagle’s Algorithm
	Nagle’s Algorithm
	Motivation for Delayed ACK
	TCP Header Allows Piggybacking
	Example of Piggybacking
	Increasing Likelihood of Piggybacking
	Delayed ACK
	Queuing Mechanisms
	Bursty Loss From Drop-Tail Queuing
	Slow Feedback from Drop Tail
	Random Early Detection (RED)
	Properties of RED
	Problems With RED
	Explicit Congestion Notification
	Conclusions

	11Virtual_Circuits_-_Week10.ppt
	Virtual Circuit Switching and QoS�Reading: 3.1.2, 3.3, 4.5, and 6.5
	Goals of Today’s Lecture
	Circuit Switching (e.g., Phone Network)
	Advantages of Circuit Switching
	Disadvantages of Circuit Switching
	Virtual Circuit (VC)
	Establishing the Circuit
	Virtual Circuit Identifier (VC ID)
	Swapping the Label at Each Hop
	Virtual Circuits Similar to IP Datagrams
	Virtual Circuits Differ from IP Datagrams
	Quality of Service
	Admission Control
	Admission Control: Flowspec
	Specifying Bursty Traffic
	Leaky Bucket Traffic Model
	Service Requested From the Network
	Ensuring the Source Behaves
	Enforcing Behavior
	Link Scheduling: FIFO
	Link Scheduling: Strict Priority
	Link Scheduling: Weighted Fairness
	Link Schedulers: Trade-Offs
	Routing in Virtual Circuit Networks
	Quality-of-Service Routing
	Source-Directed QoS Routing
	QoS Routing: Link-State Advertisements
	QoS Routing: Example Path Selection
	Asynchronous Transfer Mode (ATM)
	Picking the ATM Cell Size
	Interfacing to End Hosts
	Inferring the Need for a Virtual Circuit
	Grouping IP Packets Into Flows
	Challenges for IP Over ATM
	ATM Today
	Differentiated Services in IP
	Example Packet Classifier
	Real Guarantees?
	Example Uses of QoS Today
	Conclusions

	12Multimedia_-_Week12.ppt
	Multimedia Networking
	Goals of Today’s Lecture
	Digital Audio
	Audio Examples
	Audio Compression
	Digital Video
	Video Compression: Within an Image
	Video Compression: Across Images
	Transferring Audio and Video Data
	Streaming Stored Audio and Video
	Playout Buffer
	Influence of Playout Delay
	Requirements for Data Transport
	Streaming From Web Servers
	Initiating Streams from Web Servers
	Using a Streaming Server
	TCP is Not a Good Fit
	Better Ways of Transporting Data
	Recovering From Packet Loss
	Forward Error Correction (FEC)
	Interactive Audio and Video
	Voice Over IP (VoIP)
	Traditional Telecom Infrastructure
	VoIP Gateways
	VoIP With an Analog Phone
	Skype
	Skype Network Architecture
	Skype Data Transfer
	VoIP Quality
	Principles for QoS Guarantees
	Principles for QoS Guarantees
	Principles for QoS Guarantees
	Principles for QoS Guarantees
	Quality of Service
	Conclusions

	13Middlebox_-_Week12.ppt
	Middleboxes
	Network-Layer Principles
	Internet Reality
	Middleboxes
	Two Views of Middleboxes
	Network Address Translation
	History of NATs
	Active Component in the Data Path
	IP Header Translators
	Using a Single Source Address
	What if Both Hosts Contact Same Site?
	Port-Translating NAT
	Network Address Translation Example
	Maintaining the Mapping Table
	Objections Against NAT
	Objections Against NAT
	Where is NAT Implemented?
	Firewalls
	Firewalls
	Internet Attacks: Denial of Service
	Internet Attacks: Break-Ins
	Packet Filtering
	Packet Filtering Examples
	Firewall Configuration
	Firewall Configuration Example
	A Variation: Traffic Management
	Firewall Implementation Challenges
	Clever Users Subvert Firewalls
	Application Gateways
	Telnet Gateway Example
	Motivation for Gateways
	Web Proxies
	Web Clients and Servers
	Proxy Caching
	Getting Requests to the Proxy
	Challenges of Transparent Proxies
	Other Functions of Web Proxies
	Conclusions

	14Security_Kurose_Chapter8.ppt
	Chapter 8: Network Security
	Chapter 8 roadmap
	What is network security?
	Friends and enemies: Alice, Bob, Trudy
	Who might Bob, Alice be?
	There are bad guys (and girls) out there!
	Chapter 8 roadmap
	The language of cryptography
	Symmetric key cryptography
	Symmetric key cryptography
	Symmetric key crypto: DES
	Symmetric key �crypto: DES
	AES: Advanced Encryption Standard
	Public Key Cryptography
	Public key cryptography
	Public key encryption algorithms
	RSA: Choosing keys
	RSA: Encryption, decryption
	RSA example:
	RSA: Why is that
	RSA: another important property
	Chapter 8 roadmap
	Authentication
	Authentication
	Authentication: another try
	Authentication: another try
	Authentication: another try
	Authentication: another try
	Authentication: yet another try
	Authentication: another try
	Authentication: yet another try
	Authentication: ap5.0
	ap5.0: security hole
	ap5.0: security hole
	Chapter 8 roadmap
	Digital Signatures
	Digital Signatures
	Digital Signatures (more)
	Message Digests
	Internet checksum: poor crypto hash function
	Hash Function Algorithms
	Chapter 8 roadmap
	Trusted Intermediaries
	Key Distribution Center (KDC)
	Key Distribution Center (KDC)
	Certification Authorities
	Certification Authorities
	Information security future
	Window of Time from Patch Availability to Outbreak Getting Shorter
	Chapter 8 roadmap
	Chapter 8 roadmap
	Internet security threats
	Internet security threats
	Internet security threats
	Internet security threats
	Internet security threats
	Internet security threats
	Internet security threats
	Internet security threats
	Chapter 8 roadmap
	Pretty good privacy (PGP)
	Secure sockets layer (SSL)
	SSL (continued)
	IPsec: Network Layer Security
	Authentication Header (AH) Protocol
	ESP Protocol
	IEEE 802.11 security
	Wired Equivalent Privacy (WEP):
	WEP data encryption
	802.11 WEP encryption
	Breaking 802.11 WEP encryption
	 802.11i: improved security
	 802.11i: four phases of operation
	EAP: extensible authentication protocol
	Network Security (summary)

