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1. Architectures for DSP Systems

Requirements for DSP system 
implementationimplementation

Correct operation (algorithm level)
Speed (throughput)Speed (throughput)
Low chip area and power consumption (cost)
Fast and low-cost design, design flexibility g , g y
(design upgrade, portability)

Custom VLSI (HW based) vs Programmable 
DSP (SW based)DSP (SW based)

HW based for higher throughput
Large initial investment for VLSILarge initial investment for VLSI
Low power and low chip cost for large volume 
VLSI 
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Custom VLSI vs Programmable DSP

Large initial investment, but small cost for each 
chip – good for large volumep g g

Needs to be ~ 1M units or over in most cases
FPGA based designs are alternatives for small 
quantitiesquantities

High-throughput architecture, highly optimized for 
each application

Inflexible in most casesInflexible in most cases
Low-power consumption when compared to 
program based architecture
CPU + peripheral + application specific HW -> SOC 
(System On Chip), platform based design
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Issues in VLSI based system design

BW matching between the difference of the 
signal sampling clock frequency and the signal sampling clock frequency and the 
system clock frequency

Reduce the number of hardware elements Reduce the number of hardware elements 
when the signal sampling frequency is small.

Full array architecture: high hardware cost, high y g , g
throughput
Time multiplexed architecture
Bit serial architecture: low hardware cost  low Bit serial architecture: low hardware cost, low 
throughput
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Characteristics of DSP algorithms

Arithmetic intensive
ex) FIR filter order of 60  10 MHzex) FIR filter order of 60, 10 MHz

multiplication, addition 600 Mop/sec.
In most cases  f system >> f samplingIn most cases, f system >> f sampling

fsystem  (system clock frequency): mostly 
10MHz ~ 1GHz  10MHz  1GHz  
fsampling (sampling clock frequency):

Speech and Audio: 8KHz ~ 100KHzp
Video: 10MHz ~ 100MHz
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Algorithm  v.s. System

Algorithm
Operating at a rate of 
sampling clock freq

System (Hardware)
Clock for digital sampling clock freq.

Sample delay: z-1 (= 1/ 
fsignal)
Arithmetic: multiplication  

Clock for digital 
systems
Arithmetic: multipliers 
or addersArithmetic: multiplication, 

addition operations
Corresponds to the clock 
freq to ADC or DAC

or adders
Delay: D-FF 
(=1/fsystem)

fsignal = fsystem: full array architecture
fsignal > fsystem: hyper parallel architecture
fsignal < fsystem: time-multiplexed architecturefsignal < fsystem: time multiplexed architecture
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Bandwidth matching

Compensates for the difference of system 
and signal frequencies to better utilize the and signal frequencies to better utilize the 
resources. 

For example, 10 tap FIR filtering and 4th order IIR 
filtering (2*5 multiply operations) with 10MHz sampling 
clock frequency:

Needed multiplications: 10*10M + 2*5*10M = Needed multiplications: 10 10M + 2 5 10M = 
200M/sec

Assuming that system clock frequency is 100MHz, only 
t  lti li   d dtwo multipliers are needed.
20 multiply operations with 10MHz 
–BW matching-> 2 multipliers with 100MHzg p

Note: Another important factor determining the architecture: algorithm complexity.  
Wh th l ith i t l it ld b diffi lt t i l t
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Methods of BW matching

fsignal > fsystem
Algorithm transformation to increase the fsystem Algorithm transformation to increase the fsystem 
(pipelining) 
Parallel (or block) processing to obtain multiple output 
samples per each system clocksamples per each system clock.

fsignal < fsystem
Use one HW unit for multiple operations
(time multiplexed architecture) (time-multiplexed architecture) 
Use simple but slow arithmetic units
(bit serial architecture) 
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Implementation architectures

Fully serial: Use only one processor, program based 
implementation (ultimate time-multiplexed 
implementation)implementation)

Time multiplexed: Utilize one hardware unit 
(multiplier  adder) several times during one sampling (multiplier, adder) several times during one sampling 
period.  Hardware delay << sampling period

Bit serial architecture: Utilize one slow hardware unit 
(bit serial arithmetic components) only one or a few 
times during one sampling point. 

Full array: fsignal = fsystem, use one arithmetic 
elements for each arithmetic operation 

Hyper-parallel: fsignal > fsystem
Needs to transform the algorithm, use multiple or 

pipelined elements for each operation
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Time-multiplexed operationTime-multiplexed operation

Bit-parallel arithmetic elements, operation Bit parallel arithmetic elements, operation 
time-muxed

processes one word of signal at one clock, but 
sequentially conducts different operationssequentially conducts different operations
needs parallel multipliers, adders, and memory
needs fairy complex control and address generation

Bit-serial simple arithmetic elements  Bit-serial simple arithmetic elements, 
operation dedicated

processes one bit of signal at one clock using a 
dedicated one bit arithmetic or memory elementsdedicated one-bit arithmetic or memory elements
almost hardwired (simple) control
efficient implementation, limit in throughput
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Applications and architectures

1G RF Signaling

Sampling Rate (Hz)

1M
10M

100M
Video

HDTVHyper parallel

1k
10k

100k

Speech Voiceband Modem

Hi - fi Audio Radio Modem
Time-multiplexed

Multiprocessor

1
10

100

Instrumenta

Control Seismic Exploration
Prog DSP

1/1000
1/100

1/10
1

Fi i l M d li
Weather

tion Supercomputer
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Algorithm complexity v.s. architectures

For simple but repeating blocks
Di it l filt  FFTDigital filter, FFT
hardwired control
ffi i  h d  d VLSI i l iefficient hardware and VLSI implementation

For complex algorithms
Speech, audio, data modem 
program controlled is advantageous
programmable DSP based implementation
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2. High-speed Parallel Architecture

Full array implementation architecture
Sampling rate = system clock rateSampling rate  system clock rate
Mostly high-bandwidth RF
Signal flow graph – (retiming)  -> Hardware 
schematicschematic

Addition or multiplication operations -> adder, multiplier
z-1 -> D-FF

S d li it ti  i it d l  f  th  t t f D FF (  Speed limitation: circuit delay from the output of D-FF (or 
input port) to input of the D-FF (the output).  -> retiming 
equalizes the delays and minimizes the maximum of them
No scheduling for HW resource minimization neededNo scheduling for HW resource minimization needed
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Speed limitation?

Is it right?
F   i  i l fl  h  th  th h t For a given signal flow graph, the throughput 
can be increased without any limit as long as 
enough HW resources are available   enough HW resources are available.  
If there is no loop (circle) inside, it is yes. 
If notIf not,…

In terms of resource hazard  this may be In terms of resource hazard, this may be 
right. 
But  what is another kind of hazard?  But, what is another kind of hazard?  
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Full array architecture and speed 
limitationlimitation

1st order IIR digital filter
Path 1:  Tadd  (10 ns)
Path 2,3:  Tadd + Tmul (30 ns) = 40 ns <- critical path 
delay, this determines the maximum clock freq.

adder path2

+
Input OutputTadd

path1

path3

D-
TDTmul

Wonyong Sung
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Q D

Implementation 1: 
critical path delay: 40ns

H[z] = 1/(1-az-1)

Implementation 2:Implementation 2: 
critical path delay: 40ns

Q D

H[z] = 1/(1-az-1)

Wonyong Sung
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Q D Implementation 3: Q p
critical path delay: 40ns

H[ ] 1/(1 1)H[z] = z-1/(1-az-1)

Different transfer function but theDifferent transfer function but the 
same frequency response.  Zero
at the center does not affect the f.r.

Implementation 2:

20ns
Critical path delay: 20ns

Pipelining register

Q                   D H[z] = 1/(1-az-2)  <- different filter!

Wonyong Sung
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Max operating frequency of a signal flow 
graph and equivalence transformgraph and equivalence transform

The number of delay in a loop (N), the total circuit 
delay (Ta)  => Theoretical min iteration period (after delay (Ta)  > Theoretical min iteration period (after 
retiming) (Iteration Period Bound): Ta/N
For multiple loops, the largest delay determines the 
maximum clock frequency < critical loopmaximum clock frequency <- critical loop
Retiming : move the location of delays to reduce the 
critical path delay (doing equivalence transform)

Wonyong Sung
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Longest path matrix algorithm

Find out the total circuit delays from an output of 
a storage (D) to the input of another one.   And 
find out the max (circuit delay/#of delays)  find out the max (circuit delay/#of_delays). 
Start with constructing L(1) matrix

lm(i,j) is the longest computation time of all paths 
from delay di to delay dj that path through m-1 from delay di to delay dj that path through m 1 
delays. 
From L(1) matrix, compute L(2) L(3) L(4)

L(m+1)i,j = max (-1, l(1) 
i k + l(m) 

k j)L(m+1)i,j  max ( 1, l i,k, + l k,j)
T = max (for all i, m) {lm(i,i)/m}, (diagonal elements)

Wonyong Sung
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Equivalence transform
Move the location of delays while not changing the transfer 
function and the finite wordlength effects of digital filters. -> 
this changes the critical path delay in many casesthis changes the critical path delay in many cases
For a certain directed graph, make a closed loop so that it just 
cut the branches (not any node), and add d0 delays to branches 
that are going out and subtract d0 delays to branches that are 
going in. In this case, the total number of delays for any loop is g g , y y p
not changing, and, as a result, the transfer function is not 
altered. 
If the above closed loop pass through a loop in a signal flow 
graph, the number of delays added equals to the one that are 

bt t d    Th  t t l b  f d l  f   l  i  subtracted.  -> The total number of delays for a loop is 
unchanged.  -> The transfer function is preserved.
For a feedforward path, the closed loop inserts delays, but the 
number to each path to the output is the same, as a result, the 
output just comes later as much as the number of delays added    output just comes later as much as the number of delays added.   

Wonyong Sung
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2nd order IIR filter1 2 Canonical form:

z-1

+ +

Critical path3 4 5
6

Minimum # of 
storages

z-1

+ + Critical path 
delay : Tmul + 

3Tadd

3 4 5
6

z 3Tadd87

+ +

After retiming
1Delay added or subtracted

to a loop

z-1 Critical path 
delay : T l +5 6

2

4

z-1

+ +z-1
delay : Tmul + 

2Tadd

5 6
3

4

Wonyong Sung
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Pipelining

Increasing the speed by inserting delays inside
Throughput : the rate of applying periodic inputThroughput : the rate of applying periodic input
Latency : the delay from the input to the corresponding 
output

i t outputinput output I0      I1     I2      I3

input output
O0    O1    O2

I0 I1 I2 I3

Wonyong Sung
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Effects of pipelining
Throughput is more important than the 
latency in real-time signal processing. y g p g
The throughput is increased by pipelining but not the 
latency
F  f db k b d t  th  i li i   For feedback based system, the pipelining may 
change the transfer functions.  
Usually, pipelining in the feed-forward path is OK.y, p p g p
(add delays and retiming)

Diff t+

D

+

D
1 1

Different
filters!

Wonyong Sung
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• Full array implementation example of an N-tap FIR filtery p p p

Max delay = Tmul + N Tadd Max delay = Tmul + Tadd

+ +

a de ay mul add a de ay mul add

z-1

+
D1 z-1

z-1

+

+

z-1

+

.....

. +

z

z-1

+

DN

....
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Hyper parallel implementation(1)

Is it possible to increase the speed (sampling 
clock freq ) beyond the iteration period bound?clock freq.) beyond the iteration period bound?

Yes.  By applying the look-ahead transformation. 

H(z) = 1/ (1-az-1) =  (1+az-1)/(1-a2z-2)

+
D

+

D
+

D

D
D +D

DD D
D

Th t t l b f lti li ti i i d
Wonyong Sung
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The total number of multiplication is increased.
Quantization effects are different. 



Hyperparallel implementation(2)

Output (=1 or 0)
ADM

Q
Output (=1 or 0)

Ad
Determining the loop bound

Input
Adap
tation
logic

Prediction
filter

e e g e oop bou d

Q
Input

The next prediction is computed before 
determining the current output by 
assuming both “1” and “0”.

Adap
tation
logic

Prediction
filter

Input

“1”

assuming both 1  and 0 .  
After the computation, the right one is 
chosen.   
The idea is similar to that of the carry g

Q
y

select adder.    
This is only applicable when the
number of output is small.  

Wonyong Sung
Multimedia Systems Lab SNU

Adap
tation
logic

Prediction
filter “0” If the Q is two bits, we need to implement 

four different cases.



CSD (Canonic Signed Digit) coefficients based 
FIR filterFIR filter

Reduces the complexity of constant multiplications
One multiplication is converted to a few (one to three, One multiplication is converted to a few (one to three, 
usually) addition/subtractions.

Represent the coefficients with +1/-1/0 and try to 
increase the number of zero’s. increase the number of zero s. 

00111111 => 0100000(-1) : effective coefficients 
word-length is 2

May increases the passband and stop band ripples May increases the passband and stop band ripples 
when the number of ‘1’ is limited.
Only applicable to full-array (not for time-

lti l d) i l t ti  multiplexed) implementations. 

Wonyong Sung
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3. Time-multiplexed Architecture 
(Folded Architecture)(Folded Architecture)

System frequency > Sampling frequency
Use a smaller number of arithmetic elements Use a smaller number of arithmetic elements 
than that of the arithmetic operations
Ex:10MHz sampling frequency, 30 tap FIR 
filterfilter

With the system clock of 50MHz, the minimum 
number of HW would be 6. 
With th  t  l k f 100MH  th  i i  HW With the system clock of 100MHz, the minimum HW 
would be 3. 

More HW resources are needed in many 
cases.

Dependency relation which forces some units 
underutilized
Unequal job allocation
Internal signal delay (interconnection delays)

Wonyong Sung
Multimedia Systems Lab SNU



Design methods for time-muxed architecture

Scheduling based method
St t f   d t  fl  h  id  th  Start from a data flow graph, consider the 
HW resource and time-bound.

Utilizing the iterative structureUtilizing the iterative structure
12th order IIR filter using 2nd order section
Use 6 times time multiplexing of one 2ndUse 6-times time-multiplexing of one 2nd

order section
Program based methodProgram based method

Flexible but needs program memory storage

Wonyong Sung
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Unconstrained minimum-latency scheduling

Scheduling algorithm 
Unconstrained minimum-latency scheduling

ASAP (As Soon As Possible) 
ALAP (As Late As Possible)

Resource-constrained minimum-latency (or Latency-
constrained minimum-resource) scheduling

List scheduling
Force-directed scheduling

Example (Euler’s method for solving differential equation)

y’’ + 3xy’ + 3y = 0y y y
initial value: x(0), y(0), y’(0)
y(a) = ?
stepsize = dxstepsize = dx
xi+1 = xi + dx
u = y’
u’ + 3xu + 3y = 0
ui+1 = ui + ui’dx = ui - 3xiuidx - 3yidx
yi+1 = yi +yi’dx = yi+uidxyi+1  yi +yi dx  yi+uidx



Data flow graph for a differential equation

* * * *v1

3 x u dx y y u dx x dx

* * * *

* *

+

+ <

v1 v2 v6

v7

v8 v10

dx
y

a xl

* * +

-

<v3

v4

v7 v11v9

yl c

u

-

4

v5

xl = x +dx;xl = x +dx;
ul = uul = u -- (3*x*u*dx)(3*x*u*dx) -- (3*y*dx);(3*y*dx);

y c

ul  u ul  u (3 x u dx) (3 x u dx) (3 y dx);(3 y dx);
yl = y + (u*dx);yl = y + (u*dx);
c  = xl < a;c  = xl < a;ul

critical
path



ASAP (A  S  A  P ibl ) h d li  ASAP (As Soon As Possible) scheduling –
unconstrained minimum latency

NOP

* * * * +

v0

v1 v v C t 1* * * *

* *

+

+ <

v1 v2 v6

v v7

v8 v10

v

C-step 1

C-step 2* * +

-

<v3

v

7 v11v9
p

C-step 3

-

v4

v5
C-step 4

NOP vn

4 t 5 it d d (C t 1 d 5 it )4 steps, 5 units needed (C-step1 needs 5 units)



ALAP (As Late As Possible) schedulingALAP (As Late As Possible) scheduling

NOP v0

* *v1 v2 C-step 1

C 2* * v6v3

v * +

C-step 2

C step 3*-

-

v4
v7 * v8 + v10

< v+v

C-step 3

C-step 4

NOP

- < v11+ v9
v5

vn

p

4 steps, 4 units (C-step3) needed4 steps, 4 units (C step3) needed



Mobility

The difference of timing step between the 
ASAP and ALAP for an operationASAP and ALAP for an operation.
It is allowed to move the corresponding 
operations within the mobility region  -> operations within the mobility region. > 
this allows a better resource utilization by 
moving an operation from a busy step to a g p y p
free step. 

Wonyong Sung
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NOP v0 Mobility μi= ti
L - ti

S

* *v1 v2

*

C-step 1

C step 2

+

*

*

* v6v3

v v7 * v + v

C-step 2

C-step 3*-

-

v4
v7 * v8 + v10

< v11+ vv5

C step 3

C-step 4

NOP

11v95

vn 4 steps, 3 units needed by moving
v10 to C step1 or C step2
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List scheduling (resource-constrained g (
minimum-latency)

example 1
a = 2 multa1 = 2 mult
a2 = 2 ALU
{v1, v2}    {v10}
{v  v }    {v }

Schedule the operations that are
urgent (which are in the critical path, 

l t t t th{v3, v6}    {v11}
{v7, v8}    {v4}

{v5, v9}

or longest way to go to the 
completion) first.

NOP v0
NOP

* * * * +

v0

v1 v2 v6 v v4 4
* *

*

v1 v2

* v6v3

v10

< v11

C-step 1

C-step 2

+* * * *

* *

+

+ <

1 v2 v6

v3
v7

v8 v10

v11v9

4

3
2

3 2

1

2

1

*-v4
v7 * v8 C-step 3

C t 4

-v4

v

2

1

1

NOP

- + v9v5

vn

C-step 4
NOP

-v5

vn

1

0



List scheduling (latency-constrained 
minimum resource)minimum-resource)

example
a = [1, 1]T zero slacka  [1, 1]
{v1, v2}  ---> a = [2, 1]T {v10}
{v3, v6} {v11}
{  } { }

zero slack

{v7, v8} {v4}
{v5, v9} ---> a = [2, 2]T

vNOP

* *

v0

v1 v2 C-step 1+ v10

* * v6v3

C step 1

C-step 2

10

< v11

*-v4
v7 * v8 + v10

C-step 3

C t 4

NOP

- < v11+ v9
v5

vn

C-step 4



Resource sharing and binding
Scheduling before binding

resource dominated circuits: operation scheduling
Binding before scheduling

general circuit: mux and wire delay/area may not be 
ignored

General circuit

scheduling affects binding
---> affects the use of mux  wire  and register > affects the use of mux, wire, and register 
---> affects delay and area (non-linear function of binding 
B)

> affects scheduling---> affects scheduling
use piecewise linear functions and solve scheduling and 
binding simultaneously with an ILP solver
iterate scheduling and binding
simulated annealing
genetic algorithmg g



Scheduling and retiming

Retiming changes the signal flow graph 
(starting and ending points)
E  2nd d  IIR filt   4 lt  4 dd/ t tEx: 2nd order IIR filter : 4 mult, 4 add/output

Time multiplexing ratio (system clock freq. / 
sampling freq.) = 4

CYCLE MULTIPLIER ADDER CYCLE MULTIPLIER ADDERCYCLE MULTIPLIER ADDER

1 4, 7
2 5, 8 3

CYCLE MULTIPLIER ADDER

1 5 1
2 4 6

3 1, 6
4 2

3 7 2
4 8 3

IIR filter scheduling before retiming
(2 mult, 2 adder needed)

IIR filter scheduling after retiming
(1 mult, 1 adder needed)

Wonyong Sung
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2nd order IIR filter1 2In Output

z-1

+ +

3 4 5
6

p

z-1

+ +3 4 5
6

Q1
+

z
87

In

Q2

Q1 Q2In Q1 Q2

4 5 D2

+ 7 83

++ 61

T l 3T dd

Tcritical
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Output

= Tmul+3Tadd
D1



After retiming
1In Output

+ +

z-1

2Q1

In p

+ +z-1

z
5 6

3
4

Q3

z-1
z-1

7 8
Q2

Q
Q4

Q2

In Q1 Q2 Q3 Q4

+1 7 8
5

+

+

+

4

3

D4 6

2

D2,D3
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++3
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Memory design

Why needed?
To store the state variables shown in the flow graph To store the state variables shown in the flow graph 
(retimed version needs 4, while the original needs 
only 2)
To store the early finished results for synchronization  To store the early finished results for synchronization. 
In the original flow graph, if it is scheduled in 4 clock 
cycles, “In” signal needs to wait 2 cycles to be added. 

Memory architectureMemory architecture
Addressable memory based: flexible but need more 
area.  Maybe a bottleneck for high throughput
(in this case  multi ported  or multiple memory (in this case, multi-ported, or multiple memory 
blocks are needed).
Distributed register based: inflexible, but good for 
high throughputhigh-throughput

Wonyong Sung
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In How many registers?  4

at every 4 clocks

Q1 Q2

4 7

+

+

+

5 8

6

3

1 +
+

61

2
D1D1

D2

t 4 l k
Binding 1

Wonyong Sung
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In How many registers?  4Binding

at every 4 clocks

g

Q1 Q2

44 7

+

+

+

5 8

6

3

1 +
+

61

2
D1D1

D2

t 4 l k

Adder binding simplifies the 
mult-adder interconnection

Wonyong Sung
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In

(n) Time index, one of 0, 1, 2, 3 0
1

2

Whole circuit

In

(0)
(1)

2
3

(1) Reg(2)
(3)

Reg 2bit
counter

Reg
Mux control

Mux

Based on binding 1:
Complex interconnection

Wonyong Sung
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In

(n) Time index, one of 0, 1, 2, 3 0
1

2

Whole circuit

In

(0)
(1)

2
3

(1) Reg(2)
(3)

Reg 2bit
counter

Reg
Mux control

Mux

Based on binding 2.
Simpler interconnection

Wonyong Sung
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Interleaving and iterative structure based design

Interleaving
Processing multiple input channel Processing multiple input channel 
alternatively.  So, it is a kind of time-
multiplexing supporting the same function for u t p e g suppo t g t e sa e u ct o o
both channels.
z-1 corresponds to two (or interleaving factor) 
clock delays, which leads to shorter loop 
bound for a recursive loop.
Can increases the efficiency of the hardware  Can increases the efficiency of the hardware, 
but do not increase the throughput for a 
certain channel.  

Application: stereo processing with mono 
hardware.  Multi-stage system 
i l i

Wonyong Sung
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Interleaving
Time multiplexing through interleaving

Insert two (or three, …) registers for one z-1, and 
retiming for critical path minimization.  And, apply two retiming for critical path minimization.  And, apply two 
(or three, …) channels of input. In this case, one 
register delay corresponds to z-1/2 and the original 
transfer function is not changedtransfer function is not changed.

+

D

+

D

+

D
D

If D 1 If D 1 If D 1/2

D

If D= z-1

H(z) =1/(1-az-1)

If D= z-1

H(z) =1/(1-az-2)

If D= z -1/2

H(z) =1/(1-az-1)

Wonyong Sung
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original High throughput
But different filter



Interleaving for multi-channel

Single

Single channel output

Dchannel
input

Multi channel output

Multi
channel
input

D D

Wonyong Sung
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Interleaving for cascade or parallel systems

Equiv. transf.

+ + + +
D D D D

+ D1/4

D3/4

+ D1/4

D3/4

+ D1/4

D3/4

+ D1/4

D3/4D3/4 D3/4 D D

(1 2 3) (0)
+ Extracts one output 

at every 4 clock 
cycles

(0)

(1,2,3) (0)

Wonyong Sung
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Iterative structure based design of time-
multiplexed architecturep
(generalized interleaving)

Digital filter: consists of iterative operations (stage, tap, or so on)

z-1x[0,t]
z-1 z-1x[2,t]x[1,t]

+ + +
h0 h1 h2

s[0,t] s[1,t] s[2,t]

Iteration
Process

x[n,t],
s[n t]

x[n+1,t],
s[n+1,t]

x[n,t]  
n:stage index

Processs[n,t] [ , ]

z-1x[n t] x[n+1 t]

Wonyong Sung
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n:stage index,   
t:time index

z-1x[n,t] x[n+1,t]



IP IP
x[0,t] x[1,t] x[2,t]

x[0,t] x[1,t] x[2,t]
IP IP

Forward computation: x[0,t] -> x[1,t] -> x[2,t]

x[0,t]

buffer: needed for HW operation
IP 1 If the time-mux ratio is M,

z-1 corresponds to M clock delays.

Wonyong Sung
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FIR filter with time-mux ratio M

z-1
x[i,t]

h[i]
z-1 z-1

c

+

[ ]

s[i,t]
c

+

c

+
(0)(0)

Iteration process
D

DM

Iteration process

x[i,t] x[i+1,t] IP
x[t]

0 (0)
(0)

c

DM

h[i]
D

0 (0)

+s[i,t] s[i+1,t]
D

...
At every
Mth clock

Wonyong Sung
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...

h[M-1] h[0]



Program based method

Generate control signal using program ROM
Consists of datapath, program ROM, data memory, p p g y
and controller.  
Can optimize the data-path structure (the 
performance is better than the general purpose 
DSP’s)DSP’s).
CAD software => Cathedral II (microcoded 
multiprocessor architecture), Lisatek (application 
specific instruction set and data-path design)specific instruction set and data-path design)

Wonyong Sung
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Mircro-program based implementation

W it C ffR d R d R dALU/IO

Microprogram ROM: total 4 words, but very wide.

Write
adrs
Mul

Coeff.
value for mul

Read
adrs1
ALU

Read
adrs2
ALU

Read
adrs1
Mul

Write
adrs
ALU

ALU/IO
Function
control

Data RAM

A0 ~ A3?

10 bitsData RAM
(3 read, 2 write)=4*5=20bits

ALU

Wonyong Sung
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In Q1 Q2 Q3 Q4
5

+

+

1

4

5

6

Output

+
+4

7

6
2

Output
+3

D1

8

D1
In Q1 Q2 Q3 Q4

+1
5

+

+

1

4 6 Determining
th t t l b

Output

+7

8

2 the total number
of registers

Wonyong Sung
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+3

D1

8

D2, D3



Overall design procedure for program 
based architecturebased architecture

Data-path structure design by scheduling Data path structure design by scheduling 
and binding
Memory system designy y g
Interconnection of the components or 
develop microprogramp p g
Control signal generation

Wonyong Sung
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Cathedral (Mistral) II

A silicon compiler for complex decision 
making applications in the KHz 1Mhz making applications in the KHz - 1Mhz 
range

micorcoded architecturemicorcoded architecture
multiple parameterizable execution units
behavioral specification in Silagebehavioral specification in Silage

Wonyong Sung
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Microcoded processor architecture

Buses

EXU1 EXU1 EXU1EXU1

control

EXU1

control

EXU1

control

instruction register flagsjump address

microcode ROM
micro
program

Wonyong Sung
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counter



EXU overviewEXU overview

Arithmetic EXU:Arithmetic EXU:
ALU: 2’s comp ALU operations

ACU: unsigned arithmetic modulo comp.ACU: unsigned arithmetic modulo comp.
MULT

Memory EXUMemory EXU
ROM and RAM

I/O EXUI/O EXU
In, Out, Tri, IO(bidirectional)

Controller EXUController EXU

Wonyong Sung
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EXU architectureEXU architecture

i

ALU

MUX registers buffers

ALU
ACU
MULT
RAM
ROM

ASU

Wonyong Sung
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Multi processor architecture
IN1

IN2
BUS1

BUS2

EXU1 EXU2EXU1 EXU2

Wonyong Sung
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alu:1 mult:1alu:1, mult:1,
acu:1, ram:1
-> cycle count:335 cycle count:335

too slow too large
alu:1, acu:1, ram:1
> c cle co nt: 2398

alu:1, mult:1, 
ac :2 ram:2 -> cycle count: 2398acu:2, ram:2
-> cycle count: 207

?

Wonyong Sung
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Architecture comparisonp
general purpose DSP

h   fi d d t th ( ll  lti l  have a fixed data-path (usually multiply 
and accumulate)
program width 16 32 bitsprogram width 16 - 32 bits
flexible programming including C 
languagelanguage
only code generation required

hardwired DSP (Mistral-I  Mistral-III)hardwired DSP (Mistral-I, Mistral-III)
have a very flexible data-path
not good for decision making (if )not good for decision making (if ..)
mostly data-path generation

Wonyong Sung
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Architecture comparison - cont.p

Microcoded processor architectureMicrocoded processor architecture
flexible and multiple data-path structure
program width: 32 - 256 bitsprogram width: 32 256 bits
programmable, but code space 
requirement is less efficientq
need both data-path and code 
generations
good for algorithms requiring specific 
data-path architectures with decision 
making

e.g. speech pitch extractor, speech coder

Wonyong Sung
Multimedia Systems Lab SNU



4. Bit Serial Architecture

Bit-serial, operation dedicated
Use bit-serial multipliers (complexity of a parallel p ( p y p
adder), bit-serial adders, and shift-registers
processes one bit of signal at one clock using a 
dedicated one-bit arithmetic or memory elements -> 
slowing down the effective fslowing down the effective fsystem
almost hardwired (simple) control
efficient implementation (good for digital filters), limit 
in throughputin throughput
Limitation: hard to be applied to control intensive 
algorithms.

Wonyong Sung
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Timing of bit-serial operation

LSB (least significant bit) first
supply the LSB of a signal first,
carry propagation is allowed
can employ ordinary number system
needs large delay(latency) for multiplication, 
limit for high throughput application

Wonyong Sung
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Timing of bit-serial operation - cont.g
MSB(most significant bit) first

l  th  MSB f  i l fi tsupply the MSB of a signal first,
carry propagation is not allowed

d d  b   i  dredundant number system is used
Carry is propagated to only one stage

needs small latenc  can be sed fo  high needs small latency, can be used for high 
throughput system
Complex and larger cell areaComplex and larger cell area

Wonyong Sung
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Bit serial components – for ‘w’ p
clock/sample

Delay
z-1 W-bit shift registersg

Adder a0, a1, .         aw-1

a0, a1, .., aw-1 s0, s1, .., sw-1
b0 b1 bw-1F/F

b0, b1, .., bw-1 F/F reset at
LSB

Cin s0,  s1 sw-1

l k l d!
Wonyong Sung

Multimedia Systems Lab SNU

LSB one clock latency occurred!



Bit serial components - cont.

scaler  
1 bit delay: *2
1 bit advance with sign extension: *0.5     
(implemented with relative delay)

multiplier

aw-1 . .  .  a1, a0 w bit of signal

bc-1 .  .  . b1 b0
c bit of coefficients

sc-1,  sc-2 s0sc+w-2 sc+1sc w+c-1 bit -> w bit
1 bit

Wonyong Sung
Multimedia Systems Lab SNU

should delete the first c-1 bits  -> total c bit latency
c+w-1 bit



Retiming and delay management

Maximum throughput of a digital filter is 
determined by the number of delay determined by the number of delay 
blocks(z-1) and the total latency of the 
arithmetic blocksarithmetic blocks
When the latency is large, the data 
wordlength for bit-serial implementation g p
should be increased even if it is not needed 
for signal representation

Wonyong Sung
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Example - 1st order filter

signal wl: w bit signal wl: w bit

z-1 w-c-1 shift registerw bit delayb t de ay

coefficients c bit coefficients c bit

w (data wordlength) > c+1
1 bit
internal delay bit i t l d l

Wonyong Sung
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internal delay c bit internal delay



2nd order bit-serialAssume w=24, c=12

2nd d IIR filt
+ +

2nd order IIR filter1 2In Output

24
+ +3 4 5

6
Q1

24
87

Q2

+ +
1 2In Output

L1
D3

L1: D1+12+2=24

P3

D1
+ +3 4 5 6

Q112 12

L1

L2

L1: D1+12+2=24
L2: D1+D2+12+2=48
-> D1=10, D2=24P4

Wonyong Sung
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D2 87

Q212 12

L2
D3+2 = D1+12+3 – 24
=1 -> D3= -1



Example - adaptive LMS digital filter

data wl: w, coefficients wl: c, 
number of taps: N (log N = M)number of taps: N (log2N = M),
step size wl: s, error wl: e
total delay in one sampling time = total delay in one sampling time = 
c+M+s+e
-> w > c+M+s+e

So, we may need to increase w (just for 
timing, not for better precision)

Wonyong Sung
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z-1 z-1 z-1 z-1 z-1 z-1

c

y[n]

d[ ] e[n]d[n] e[n]

x[i-n] s

hi[n+1]
e

Wonyong Sung
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hi[n]
hi[n+1]



MSB first serial processing

Redundant number system
A Radix B RNS is allowed to possess digits from the set { -p g {
(B-1),..,-1,0,1,...(B-1)}
Let X=xn-1x n-2...x 0 be a n-digit radix beta number, then
X=xn-1Bn-1 + xn-2Bn-2 + .. x0B0

n 1 n 2 0

So, the number of values a digit is allowed to possess by the 
number system is (2B-1)

Low latency even for multiplication, thus good for 
feedback based systems.

Not popular because the complexity of each arithmetic 
element is high.

Wonyong Sung
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B=4
+3, +2, +1, 0, -1, -2, -3

Representation of 9, multiple (redundant) forms Representation of 9, multiple (redundant) forms 
2,1 = 2*4+1   <- basic representation
3,-3 = 3*4 -3 

The carry propagation is limited to just one stage, so we can do arithmetic from 
the MSB

1,2,1 + 1,1,2 -> (0,2)x42+ (1, -1)x4 + (1, -1) = 0,3,0,-1 
0,2

1, -1            <- 0,3 is represented as 1,-1 to have a room for carry pro.
1, -1

--------------------------------------
0,3,0,-1

Why not keep propagating
Because the number system has a room that prevents overflow even when there is a 
carry propagated from the low digit. 

Wonyong Sung
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Time-multiplexing and multi-rateTime-multiplexing and multi-rate

processes two or more different signals 
with the same operations using one 
h dhardware
fsample_max = fclock_max/WL/MF,
where MF is the multiplexing factor

Example: stereo circuit

Wonyong Sung
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Bit-serial summary
advantages

small chip area per throughputsmall chip area per throughput
Low complex control and 
interconnectioninterconnection

<- high system clock rate, small 
arithmetic elements, hardwired control,

disadvantages
limited throughput (but faster than g p (
program controlled architectures)
High power consumption at shift 
registers
limited control capability

Wonyong Sung
Multimedia Systems Lab SNU

-> not good for integrating general 
control functions



5. Distributed Arithmetic Architecture

A special kind of bit-serial architecture
ROM + accumulator based, instead of ROM + accumulator based, instead of 
multiply + adder.  
Many of digital filtering algorithms are Sum 
of Product (multiply and accumulation) of Product (multiply and accumulation) 
based - convolution, transformation, dot-
product
Distributed arithmetic computes the inner 
product in a bit-serial manner, using ROM 
and Accumulator based HW

Bit-serial operation reduces the needed ROM 
size.
Still  it is needed to decompose the algorithm Still, it is needed to decompose the algorithm 
for high order digital filters
Not flexible, so not adequate for adaptive 
f l

Wonyong Sung
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filters



Implementation of the sum of product

Y = A0*X0 + A1*X1 + A2*X2 + A3*X3
Xi = xi7 xi6 xi5   xi0 Xi = xi7 xi6 xi5 . . xi0 

(xi7 xi6.. is 1 or 0, assume 8 bit)
= (-1)*xi7*27 + xi6*26 + xi5*25 + .. +  ( 1) xi7 2 + xi6 2 + xi5 2 + .. + 

xi0*1
Y = (-1)*27*(A0*x07 + A1*x17 + ..+A3*x37)( ) ( )

+ 26*(A0*x06 + A1*x16 + ..+A3*x36)
. . .

+ (A0* 00 + A1* 10 + +A3* 30)+ (A0*x00 + A1*x10 + ..+A3*x30)

Wonyong Sung
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Why bit-serial?

A direct bit-parallel implementation with ROM

X0
8bit

ROM size
X1

X2

O s e

232 * w bit

X3

w bit

Y = A0*X0 + A1*X1 
+ A2*X2 + A3*X3

w  bit

Y

Wonyong Sung
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X01
1bit

X01
X11
X21

ROM size

24 * w bit

1bit X07
1bit

ROM i

X21

X31

2  w bit
Y = A0*X01 + A1*X11 

+ A2*X21 + A3*X31

X00
X10
X20

b
ROM size

24 * bit

X07
X17
X27

ROM size

24 * w bit

w  bit

X20

X30

24 * w bit
Y = A0*X00 + A1*X10 

+ A2*X20 + A3*X30

X37

w bit

Y = A0*X07 + A1*X17 
+ A2*X27 + A3*X371 bit

w  bit
w  bit

-1 7 bit

Y
Thi hit t d h

Wonyong Sung
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This architecture needs much
smaller ROM (8 *16word ROM) size although it requires 
an 8 input adder



Distributed arithmetic 

*Ts controls add/sub: sub for
MSBMSB
*ROM size-> 16 * word length
*2-1 is arithmetic right shift

Wonyong Sung
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Distributed arithmetic 
(ROM Table)( O ab e)

Add
b3 b2 b1 b0 t tress    b3 b2 b1 b0      contents

0     0   0   0   0           0
1     0   0   0   1           A0 (=0.25)
2     0   0   1   0           A1 (=-0.1)
3     0   0   1   1        A1+A0 (=0.25-0.1)

...
15   1   1   1   1     A3+A2+A1+A0

Wonyong Sung
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Distributed arithmetic 
(Minimum ROM)(Minimum ROM)

Wonyong Sung
Multimedia Systems Lab SNU



Speeding-up the distributed arithmetic 
based circuitsbased circuits

Apply 2-bit at a time for speed-upApply 2 bit at a time for speed up. 
Needs two ROM-> 2 times speed 

Wonyong Sung
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Application of distributed arithmetic

FIR filter
DCT  IDCT  t i  t  d tDCT, IDCT  -- matrix vector product

-- no need of complex inter-
connections found in efficient structureconnections found in efficient structure
Distributed arithmetic is not good when 
the filter coefficients need to be changed.  the filter coefficients need to be changed.  
This (all bit serial arithmetic based one) is 
also not adequate for floating-point 
arithmetic.  

Wonyong Sung
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6. SoC based Architecture

HW based architecture is efficient in terms of 
th h t f   i  ili   d  throughput for a given silicon area and power 
consumption, but not flexible enough
Today’s multimedia and communication standards y
are very complex and need SW much. 
Today’s consumers want something special for 
them – needs differentiationthem – needs differentiation

-> Mix of CPU for programmability and HW blocks p g y
for high throughput

Wonyong Sung
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Example

TI developed C6x architecture for massive 
communication (not mobile) marketscommunication (not mobile) markets
And, acquired the Amati Communications 
that developed ADSL technologythat developed ADSL technology

But  TI’s solution (C6x based ADSL) But, TI s solution (C6x based ADSL) 
couldn’t win the market.  TI’s solution was 
too expensive.  The winning solution was p g
based on CPU (such as ARM7) + HW 
modem blocks (FFT and ..).  

Wonyong Sung
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Multimedia I/O Architecture

Radio
Modem

Embedded 
Processor

Sched ECC Pact Interface

Low Power Bus

Fifo Video
D

FB Fifo
Decomp

Pen
Data

SRAM

VideoAudioGraphics
Data
Flow

Wonyong Sung
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Concluding Remarks

Implementation of digital filtering algorithms requires 
adequate architectural choice because the system clock 
f  i  h diff t f  th  i l li  frequency is much different from the signal sampling 
clock frequency.

Fully parallel
Bit ll l  ti  lti l dBit parallel, time multiplexed

Distributed register based
Program ROM based

Bit serialBit serial
The flexibility of the architecture needs to be considered 
too. -> SoC architecture

Wonyong Sung
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