
VLSI-based Implementation ofVLSI-based Implementation of
Digital Signal Processing

Systems

Wonyong SungWonyong Sung

School of Electrical Engineering
Seoul National University

Contents

1. Architectures for DSP Systems
2 Hi h d P ll l A hit t2. High-speed Parallel Architecture
3. Time-multiplexed (bit-parallel)

ArchitectureArchitecture
4. Bit-serial Architecture
5 Distributed Arithmetic based Architecture5. Distributed Arithmetic-based Architecture
6. CAD and Implementation Architecture

Wonyong Sung
Multimedia Systems Lab SNU

1. Architectures for DSP Systems

Requirements for DSP system
implementationimplementation

Correct operation (algorithm level)
Speed (throughput)Speed (throughput)
Low chip area and power consumption (cost)
Fast and low-cost design, design flexibility g , g y
(design upgrade, portability)

Custom VLSI (HW based) vs Programmable
DSP (SW based)DSP (SW based)

HW based for higher throughput
Large initial investment for VLSILarge initial investment for VLSI
Low power and low chip cost for large volume
VLSI

Wonyong Sung
Multimedia Systems Lab SNU

Custom VLSI vs Programmable DSP

Large initial investment, but small cost for each
chip – good for large volumep g g

Needs to be ~ 1M units or over in most cases
FPGA based designs are alternatives for small
quantitiesquantities

High-throughput architecture, highly optimized for
each application

Inflexible in most casesInflexible in most cases
Low-power consumption when compared to
program based architecture
CPU + peripheral + application specific HW -> SOC
(System On Chip), platform based design

Wonyong Sung
Multimedia Systems Lab SNU

Issues in VLSI based system design

BW matching between the difference of the
signal sampling clock frequency and the signal sampling clock frequency and the
system clock frequency

Reduce the number of hardware elements Reduce the number of hardware elements
when the signal sampling frequency is small.

Full array architecture: high hardware cost, high y g , g
throughput
Time multiplexed architecture
Bit serial architecture: low hardware cost low Bit serial architecture: low hardware cost, low
throughput

Wonyong Sung
Multimedia Systems Lab SNU

Characteristics of DSP algorithms

Arithmetic intensive
ex) FIR filter order of 60 10 MHzex) FIR filter order of 60, 10 MHz

multiplication, addition 600 Mop/sec.
In most cases f system >> f samplingIn most cases, f system >> f sampling

fsystem (system clock frequency): mostly
10MHz ~ 1GHz 10MHz 1GHz
fsampling (sampling clock frequency):

Speech and Audio: 8KHz ~ 100KHzp
Video: 10MHz ~ 100MHz

Wonyong Sung
Multimedia Systems Lab SNU

Algorithm v.s. System

Algorithm
Operating at a rate of
sampling clock freq

System (Hardware)
Clock for digital sampling clock freq.

Sample delay: z-1 (= 1/
fsignal)
Arithmetic: multiplication

Clock for digital
systems
Arithmetic: multipliers
or addersArithmetic: multiplication,

addition operations
Corresponds to the clock
freq to ADC or DAC

or adders
Delay: D-FF
(=1/fsystem)

fsignal = fsystem: full array architecture
fsignal > fsystem: hyper parallel architecture
fsignal < fsystem: time-multiplexed architecturefsignal < fsystem: time multiplexed architecture

Wonyong Sung
Multimedia Systems Lab SNU

Bandwidth matching

Compensates for the difference of system
and signal frequencies to better utilize the and signal frequencies to better utilize the
resources.

For example, 10 tap FIR filtering and 4th order IIR
filtering (2*5 multiply operations) with 10MHz sampling
clock frequency:

Needed multiplications: 10*10M + 2*5*10M = Needed multiplications: 10 10M + 2 5 10M =
200M/sec

Assuming that system clock frequency is 100MHz, only
t lti li d dtwo multipliers are needed.
20 multiply operations with 10MHz
–BW matching-> 2 multipliers with 100MHzg p

Note: Another important factor determining the architecture: algorithm complexity.
Wh th l ith i t l it ld b diffi lt t i l t

Wonyong Sung
Multimedia Systems Lab SNU

When the algorithm is too complex, it would be very difficult to implement
using a custom VLSI architecture.

Methods of BW matching

fsignal > fsystem
Algorithm transformation to increase the fsystem Algorithm transformation to increase the fsystem
(pipelining)
Parallel (or block) processing to obtain multiple output
samples per each system clocksamples per each system clock.

fsignal < fsystem
Use one HW unit for multiple operations
(time multiplexed architecture) (time-multiplexed architecture)
Use simple but slow arithmetic units
(bit serial architecture)

Wonyong Sung
Multimedia Systems Lab SNU

Implementation architectures

Fully serial: Use only one processor, program based
implementation (ultimate time-multiplexed
implementation)implementation)

Time multiplexed: Utilize one hardware unit
(multiplier adder) several times during one sampling (multiplier, adder) several times during one sampling
period. Hardware delay << sampling period

Bit serial architecture: Utilize one slow hardware unit
(bit serial arithmetic components) only one or a few
times during one sampling point.

Full array: fsignal = fsystem, use one arithmetic
elements for each arithmetic operation

Hyper-parallel: fsignal > fsystem
Needs to transform the algorithm, use multiple or

pipelined elements for each operation

Wonyong Sung
Multimedia Systems Lab SNU

Time-multiplexed operationTime-multiplexed operation

Bit-parallel arithmetic elements, operation Bit parallel arithmetic elements, operation
time-muxed

processes one word of signal at one clock, but
sequentially conducts different operationssequentially conducts different operations
needs parallel multipliers, adders, and memory
needs fairy complex control and address generation

Bit-serial simple arithmetic elements Bit-serial simple arithmetic elements,
operation dedicated

processes one bit of signal at one clock using a
dedicated one bit arithmetic or memory elementsdedicated one-bit arithmetic or memory elements
almost hardwired (simple) control
efficient implementation, limit in throughput

Wonyong Sung
Multimedia Systems Lab SNU

Applications and architectures

1G RF Signaling

Sampling Rate (Hz)

1M
10M

100M
Video

HDTVHyper parallel

1k
10k

100k

Speech Voiceband Modem

Hi - fi Audio Radio Modem
Time-multiplexed

Multiprocessor

1
10

100

Instrumenta

Control Seismic Exploration
Prog DSP

1/1000
1/100

1/10
1

Fi i l M d li
Weather

tion Supercomputer

Wonyong Sung
Multimedia Systems Lab SNU

1/1000 Financial Modeling
Algorithm Complexity

Algorithm complexity v.s. architectures

For simple but repeating blocks
Di it l filt FFTDigital filter, FFT
hardwired control
ffi i h d d VLSI i l iefficient hardware and VLSI implementation

For complex algorithms
Speech, audio, data modem
program controlled is advantageous
programmable DSP based implementation

Wonyong Sung
Multimedia Systems Lab SNU

2. High-speed Parallel Architecture

Full array implementation architecture
Sampling rate = system clock rateSampling rate system clock rate
Mostly high-bandwidth RF
Signal flow graph – (retiming) -> Hardware
schematicschematic

Addition or multiplication operations -> adder, multiplier
z-1 -> D-FF

S d li it ti i it d l f th t t f D FF (Speed limitation: circuit delay from the output of D-FF (or
input port) to input of the D-FF (the output). -> retiming
equalizes the delays and minimizes the maximum of them
No scheduling for HW resource minimization neededNo scheduling for HW resource minimization needed

Wonyong Sung
Multimedia Systems Lab SNU

Speed limitation?

Is it right?
F i i l fl h th th h t For a given signal flow graph, the throughput
can be increased without any limit as long as
enough HW resources are available enough HW resources are available.
If there is no loop (circle) inside, it is yes.
If notIf not,…

In terms of resource hazard this may be In terms of resource hazard, this may be
right.
But what is another kind of hazard? But, what is another kind of hazard?

Wonyong Sung
Multimedia Systems Lab SNU

Full array architecture and speed
limitationlimitation

1st order IIR digital filter
Path 1: Tadd (10 ns)
Path 2,3: Tadd + Tmul (30 ns) = 40 ns <- critical path
delay, this determines the maximum clock freq.

adder path2

+
Input OutputTadd

path1

path3

D-
TDTmul

Wonyong Sung
Multimedia Systems Lab SNU

FF
multiplier

Q D

Implementation 1:
critical path delay: 40ns

H[z] = 1/(1-az-1)

Implementation 2:Implementation 2:
critical path delay: 40ns

Q D

H[z] = 1/(1-az-1)

Wonyong Sung
Multimedia Systems Lab SNU

Q D Implementation 3: Q p
critical path delay: 40ns

H[] 1/(1 1)H[z] = z-1/(1-az-1)

Different transfer function but theDifferent transfer function but the
same frequency response. Zero
at the center does not affect the f.r.

Implementation 2:

20ns
Critical path delay: 20ns

Pipelining register

Q D H[z] = 1/(1-az-2) <- different filter!

Wonyong Sung
Multimedia Systems Lab SNU

Pipelining register

Max operating frequency of a signal flow
graph and equivalence transformgraph and equivalence transform

The number of delay in a loop (N), the total circuit
delay (Ta) => Theoretical min iteration period (after delay (Ta) > Theoretical min iteration period (after
retiming) (Iteration Period Bound): Ta/N
For multiple loops, the largest delay determines the
maximum clock frequency < critical loopmaximum clock frequency <- critical loop
Retiming : move the location of delays to reduce the
critical path delay (doing equivalence transform)

Wonyong Sung
Multimedia Systems Lab SNU

Longest path matrix algorithm

Find out the total circuit delays from an output of
a storage (D) to the input of another one. And
find out the max (circuit delay/#of delays) find out the max (circuit delay/#of_delays).
Start with constructing L(1) matrix

lm(i,j) is the longest computation time of all paths
from delay di to delay dj that path through m-1 from delay di to delay dj that path through m 1
delays.
From L(1) matrix, compute L(2) L(3) L(4)

L(m+1)i,j = max (-1, l(1)
i k + l(m)

k j)L(m+1)i,j max (1, l i,k, + l k,j)
T = max (for all i, m) {lm(i,i)/m}, (diagonal elements)

Wonyong Sung
Multimedia Systems Lab SNU

Equivalence transform
Move the location of delays while not changing the transfer
function and the finite wordlength effects of digital filters. ->
this changes the critical path delay in many casesthis changes the critical path delay in many cases
For a certain directed graph, make a closed loop so that it just
cut the branches (not any node), and add d0 delays to branches
that are going out and subtract d0 delays to branches that are
going in. In this case, the total number of delays for any loop is g g , y y p
not changing, and, as a result, the transfer function is not
altered.
If the above closed loop pass through a loop in a signal flow
graph, the number of delays added equals to the one that are

bt t d Th t t l b f d l f l i subtracted. -> The total number of delays for a loop is
unchanged. -> The transfer function is preserved.
For a feedforward path, the closed loop inserts delays, but the
number to each path to the output is the same, as a result, the
output just comes later as much as the number of delays added output just comes later as much as the number of delays added.

Wonyong Sung
Multimedia Systems Lab SNU

2nd order IIR filter1 2 Canonical form:

z-1

+ +

Critical path3 4 5
6

Minimum # of
storages

z-1

+ + Critical path
delay : Tmul +

3Tadd

3 4 5
6

z 3Tadd87

+ +

After retiming
1Delay added or subtracted

to a loop

z-1 Critical path
delay : T l +5 6

2

4

z-1

+ +z-1
delay : Tmul +

2Tadd

5 6
3

4

Wonyong Sung
Multimedia Systems Lab SNU

z-1
z 1

7 8 *More registers are
Used! Not canonical.

Pipelining

Increasing the speed by inserting delays inside
Throughput : the rate of applying periodic inputThroughput : the rate of applying periodic input
Latency : the delay from the input to the corresponding
output

i t outputinput output I0 I1 I2 I3

input output
O0 O1 O2

I0 I1 I2 I3

Wonyong Sung
Multimedia Systems Lab SNU

O0 O1 O2

Effects of pipelining
Throughput is more important than the
latency in real-time signal processing. y g p g
The throughput is increased by pipelining but not the
latency
F f db k b d t th i li i For feedback based system, the pipelining may
change the transfer functions.
Usually, pipelining in the feed-forward path is OK.y, p p g p
(add delays and retiming)

Diff t+

D

+

D
1 1

Different
filters!

Wonyong Sung
Multimedia Systems Lab SNU

D1
1-az-1

1
1-az-2

• Full array implementation example of an N-tap FIR filtery p p p

Max delay = Tmul + N Tadd Max delay = Tmul + Tadd

+ +

a de ay mul add a de ay mul add

z-1

+
D1 z-1

z-1

+

+

z-1

+

.....

. +

z

z-1

+

DN

....

Wonyong Sung
Multimedia Systems Lab SNU

Hyper parallel implementation(1)

Is it possible to increase the speed (sampling
clock freq) beyond the iteration period bound?clock freq.) beyond the iteration period bound?

Yes. By applying the look-ahead transformation.

H(z) = 1/ (1-az-1) = (1+az-1)/(1-a2z-2)

+
D

+

D
+

D

D
D +D

DD D
D

Th t t l b f lti li ti i i d
Wonyong Sung

Multimedia Systems Lab SNU

The total number of multiplication is increased.
Quantization effects are different.

Hyperparallel implementation(2)

Output (=1 or 0)
ADM

Q
Output (=1 or 0)

Ad
Determining the loop bound

Input
Adap
tation
logic

Prediction
filter

e e g e oop bou d

Q
Input

The next prediction is computed before
determining the current output by
assuming both “1” and “0”.

Adap
tation
logic

Prediction
filter

Input

“1”

assuming both 1 and 0 .
After the computation, the right one is
chosen.
The idea is similar to that of the carry g

Q
y

select adder.
This is only applicable when the
number of output is small.

Wonyong Sung
Multimedia Systems Lab SNU

Adap
tation
logic

Prediction
filter “0” If the Q is two bits, we need to implement

four different cases.

CSD (Canonic Signed Digit) coefficients based
FIR filterFIR filter

Reduces the complexity of constant multiplications
One multiplication is converted to a few (one to three, One multiplication is converted to a few (one to three,
usually) addition/subtractions.

Represent the coefficients with +1/-1/0 and try to
increase the number of zero’s. increase the number of zero s.

00111111 => 0100000(-1) : effective coefficients
word-length is 2

May increases the passband and stop band ripples May increases the passband and stop band ripples
when the number of ‘1’ is limited.
Only applicable to full-array (not for time-

lti l d) i l t ti multiplexed) implementations.

Wonyong Sung
Multimedia Systems Lab SNU

3. Time-multiplexed Architecture
(Folded Architecture)(Folded Architecture)

System frequency > Sampling frequency
Use a smaller number of arithmetic elements Use a smaller number of arithmetic elements
than that of the arithmetic operations
Ex:10MHz sampling frequency, 30 tap FIR
filterfilter

With the system clock of 50MHz, the minimum
number of HW would be 6.
With th t l k f 100MH th i i HW With the system clock of 100MHz, the minimum HW
would be 3.

More HW resources are needed in many
cases.

Dependency relation which forces some units
underutilized
Unequal job allocation
Internal signal delay (interconnection delays)

Wonyong Sung
Multimedia Systems Lab SNU

Design methods for time-muxed architecture

Scheduling based method
St t f d t fl h id th Start from a data flow graph, consider the
HW resource and time-bound.

Utilizing the iterative structureUtilizing the iterative structure
12th order IIR filter using 2nd order section
Use 6 times time multiplexing of one 2ndUse 6-times time-multiplexing of one 2nd

order section
Program based methodProgram based method

Flexible but needs program memory storage

Wonyong Sung
Multimedia Systems Lab SNU

Unconstrained minimum-latency scheduling

Scheduling algorithm
Unconstrained minimum-latency scheduling

ASAP (As Soon As Possible)
ALAP (As Late As Possible)

Resource-constrained minimum-latency (or Latency-
constrained minimum-resource) scheduling

List scheduling
Force-directed scheduling

Example (Euler’s method for solving differential equation)

y’’ + 3xy’ + 3y = 0y y y
initial value: x(0), y(0), y’(0)
y(a) = ?
stepsize = dxstepsize = dx
xi+1 = xi + dx
u = y’
u’ + 3xu + 3y = 0
ui+1 = ui + ui’dx = ui - 3xiuidx - 3yidx
yi+1 = yi +yi’dx = yi+uidxyi+1 yi +yi dx yi+uidx

Data flow graph for a differential equation

* * * *v1

3 x u dx y y u dx x dx

* * * *

* *

+

+ <

v1 v2 v6

v7

v8 v10

dx
y

a xl

* * +

-

<v3

v4

v7 v11v9

yl c

u

-

4

v5

xl = x +dx;xl = x +dx;
ul = uul = u -- (3*x*u*dx)(3*x*u*dx) -- (3*y*dx);(3*y*dx);

y c

ul u ul u (3 x u dx) (3 x u dx) (3 y dx);(3 y dx);
yl = y + (u*dx);yl = y + (u*dx);
c = xl < a;c = xl < a;ul

critical
path

ASAP (A S A P ibl) h d li ASAP (As Soon As Possible) scheduling –
unconstrained minimum latency

NOP

* * * * +

v0

v1 v v C t 1* * * *

* *

+

+ <

v1 v2 v6

v v7

v8 v10

v

C-step 1

C-step 2* * +

-

<v3

v

7 v11v9
p

C-step 3

-

v4

v5
C-step 4

NOP vn

4 t 5 it d d (C t 1 d 5 it)4 steps, 5 units needed (C-step1 needs 5 units)

ALAP (As Late As Possible) schedulingALAP (As Late As Possible) scheduling

NOP v0

* *v1 v2 C-step 1

C 2* * v6v3

v * +

C-step 2

C step 3*-

-

v4
v7 * v8 + v10

< v+v

C-step 3

C-step 4

NOP

- < v11+ v9
v5

vn

p

4 steps, 4 units (C-step3) needed4 steps, 4 units (C step3) needed

Mobility

The difference of timing step between the
ASAP and ALAP for an operationASAP and ALAP for an operation.
It is allowed to move the corresponding
operations within the mobility region -> operations within the mobility region. >
this allows a better resource utilization by
moving an operation from a busy step to a g p y p
free step.

Wonyong Sung
Multimedia Systems Lab SNU

NOP v0 Mobility μi= ti
L - ti

S

* *v1 v2

*

C-step 1

C step 2

+

*

*

* v6v3

v v7 * v + v

C-step 2

C-step 3*-

-

v4
v7 * v8 + v10

< v11+ vv5

C step 3

C-step 4

NOP

11v95

vn 4 steps, 3 units needed by moving
v10 to C step1 or C step2

Wonyong Sung
Multimedia Systems Lab SNU

v10 to C-step1 or C-step2.

List scheduling (resource-constrained g (
minimum-latency)

example 1
a = 2 multa1 = 2 mult
a2 = 2 ALU
{v1, v2} {v10}
{v v } {v }

Schedule the operations that are
urgent (which are in the critical path,

l t t t th{v3, v6} {v11}
{v7, v8} {v4}

{v5, v9}

or longest way to go to the
completion) first.

NOP v0
NOP

* * * * +

v0

v1 v2 v6 v v4 4
* *

*

v1 v2

* v6v3

v10

< v11

C-step 1

C-step 2

+* * * *

* *

+

+ <

1 v2 v6

v3
v7

v8 v10

v11v9

4

3
2

3 2

1

2

1

*-v4
v7 * v8 C-step 3

C t 4

-v4

v

2

1

1

NOP

- + v9v5

vn

C-step 4
NOP

-v5

vn

1

0

List scheduling (latency-constrained
minimum resource)minimum-resource)

example
a = [1, 1]T zero slacka [1, 1]
{v1, v2} ---> a = [2, 1]T {v10}
{v3, v6} {v11}
{ } { }

zero slack

{v7, v8} {v4}
{v5, v9} ---> a = [2, 2]T

vNOP

* *

v0

v1 v2 C-step 1+ v10

* * v6v3

C step 1

C-step 2

10

< v11

*-v4
v7 * v8 + v10

C-step 3

C t 4

NOP

- < v11+ v9
v5

vn

C-step 4

Resource sharing and binding
Scheduling before binding

resource dominated circuits: operation scheduling
Binding before scheduling

general circuit: mux and wire delay/area may not be
ignored

General circuit

scheduling affects binding
---> affects the use of mux wire and register > affects the use of mux, wire, and register
---> affects delay and area (non-linear function of binding
B)

> affects scheduling---> affects scheduling
use piecewise linear functions and solve scheduling and
binding simultaneously with an ILP solver
iterate scheduling and binding
simulated annealing
genetic algorithmg g

Scheduling and retiming

Retiming changes the signal flow graph
(starting and ending points)
E 2nd d IIR filt 4 lt 4 dd/ t tEx: 2nd order IIR filter : 4 mult, 4 add/output

Time multiplexing ratio (system clock freq. /
sampling freq.) = 4

CYCLE MULTIPLIER ADDER CYCLE MULTIPLIER ADDERCYCLE MULTIPLIER ADDER

1 4, 7
2 5, 8 3

CYCLE MULTIPLIER ADDER

1 5 1
2 4 6

3 1, 6
4 2

3 7 2
4 8 3

IIR filter scheduling before retiming
(2 mult, 2 adder needed)

IIR filter scheduling after retiming
(1 mult, 1 adder needed)

Wonyong Sung
Multimedia Systems Lab SNU

2nd order IIR filter1 2In Output

z-1

+ +

3 4 5
6

p

z-1

+ +3 4 5
6

Q1
+

z
87

In

Q2

Q1 Q2In Q1 Q2

4 5 D2

+ 7 83

++ 61

T l 3T dd

Tcritical

Wonyong Sung
Multimedia Systems Lab SNU

+ 2

Output

= Tmul+3Tadd
D1

After retiming
1In Output

+ +

z-1

2Q1

In p

+ +z-1

z
5 6

3
4

Q3

z-1
z-1

7 8
Q2

Q
Q4

Q2

In Q1 Q2 Q3 Q4

+1 7 8
5

+

+

+

4

3

D4 6

2

D2,D3

Wonyong Sung
Multimedia Systems Lab SNU

Output

++3

D1

2

Memory design

Why needed?
To store the state variables shown in the flow graph To store the state variables shown in the flow graph
(retimed version needs 4, while the original needs
only 2)
To store the early finished results for synchronization To store the early finished results for synchronization.
In the original flow graph, if it is scheduled in 4 clock
cycles, “In” signal needs to wait 2 cycles to be added.

Memory architectureMemory architecture
Addressable memory based: flexible but need more
area. Maybe a bottleneck for high throughput
(in this case multi ported or multiple memory (in this case, multi-ported, or multiple memory
blocks are needed).
Distributed register based: inflexible, but good for
high throughputhigh-throughput

Wonyong Sung
Multimedia Systems Lab SNU

In How many registers? 4

at every 4 clocks

Q1 Q2

4 7

+

+

+

5 8

6

3

1 +
+

61

2
D1D1

D2

t 4 l k
Binding 1

Wonyong Sung
Multimedia Systems Lab SNU

Output
at every 4 clocks

g

In How many registers? 4Binding

at every 4 clocks

g

Q1 Q2

44 7

+

+

+

5 8

6

3

1 +
+

61

2
D1D1

D2

t 4 l k

Adder binding simplifies the
mult-adder interconnection

Wonyong Sung
Multimedia Systems Lab SNU

Output
at every 4 clocks

In

(n) Time index, one of 0, 1, 2, 3 0
1

2

Whole circuit

In

(0)
(1)

2
3

(1) Reg(2)
(3)

Reg 2bit
counter

Reg
Mux control

Mux

Based on binding 1:
Complex interconnection

Wonyong Sung
Multimedia Systems Lab SNU

p

In

(n) Time index, one of 0, 1, 2, 3 0
1

2

Whole circuit

In

(0)
(1)

2
3

(1) Reg(2)
(3)

Reg 2bit
counter

Reg
Mux control

Mux

Based on binding 2.
Simpler interconnection

Wonyong Sung
Multimedia Systems Lab SNU

Simpler interconnection.

Interleaving and iterative structure based design

Interleaving
Processing multiple input channel Processing multiple input channel
alternatively. So, it is a kind of time-
multiplexing supporting the same function for u t p e g suppo t g t e sa e u ct o o
both channels.
z-1 corresponds to two (or interleaving factor)
clock delays, which leads to shorter loop
bound for a recursive loop.
Can increases the efficiency of the hardware Can increases the efficiency of the hardware,
but do not increase the throughput for a
certain channel.

Application: stereo processing with mono
hardware. Multi-stage system
i l i

Wonyong Sung
Multimedia Systems Lab SNU

implementation

Interleaving
Time multiplexing through interleaving

Insert two (or three, …) registers for one z-1, and
retiming for critical path minimization. And, apply two retiming for critical path minimization. And, apply two
(or three, …) channels of input. In this case, one
register delay corresponds to z-1/2 and the original
transfer function is not changedtransfer function is not changed.

+

D

+

D

+

D
D

If D 1 If D 1 If D 1/2

D

If D= z-1

H(z) =1/(1-az-1)

If D= z-1

H(z) =1/(1-az-2)

If D= z -1/2

H(z) =1/(1-az-1)

Wonyong Sung
Multimedia Systems Lab SNU

original High throughput
But different filter

Interleaving for multi-channel

Single

Single channel output

Dchannel
input

Multi channel output

Multi
channel
input

D D

Wonyong Sung
Multimedia Systems Lab SNU

p

Interleaving for cascade or parallel systems

Equiv. transf.

+ + + +
D D D D

+ D1/4

D3/4

+ D1/4

D3/4

+ D1/4

D3/4

+ D1/4

D3/4D3/4 D3/4 D D

(1 2 3) (0)
+ Extracts one output

at every 4 clock
cycles

(0)

(1,2,3) (0)

Wonyong Sung
Multimedia Systems Lab SNU

cycles.

Iterative structure based design of time-
multiplexed architecturep
(generalized interleaving)

Digital filter: consists of iterative operations (stage, tap, or so on)

z-1x[0,t]
z-1 z-1x[2,t]x[1,t]

+ + +
h0 h1 h2

s[0,t] s[1,t] s[2,t]

Iteration
Process

x[n,t],
s[n t]

x[n+1,t],
s[n+1,t]

x[n,t]
n:stage index

Processs[n,t] [,]

z-1x[n t] x[n+1 t]

Wonyong Sung
Multimedia Systems Lab SNU

n:stage index,
t:time index

z-1x[n,t] x[n+1,t]

IP IP
x[0,t] x[1,t] x[2,t]

x[0,t] x[1,t] x[2,t]
IP IP

Forward computation: x[0,t] -> x[1,t] -> x[2,t]

x[0,t]

buffer: needed for HW operation
IP 1 If the time-mux ratio is M,

z-1 corresponds to M clock delays.

Wonyong Sung
Multimedia Systems Lab SNU

FIR filter with time-mux ratio M

z-1
x[i,t]

h[i]
z-1 z-1

c

+

[]

s[i,t]
c

+

c

+
(0)(0)

Iteration process
D

DM

Iteration process

x[i,t] x[i+1,t] IP
x[t]

0 (0)
(0)

c

DM

h[i]
D

0 (0)

+s[i,t] s[i+1,t]
D

...
At every
Mth clock

Wonyong Sung
Multimedia Systems Lab SNU

...

h[M-1] h[0]

Program based method

Generate control signal using program ROM
Consists of datapath, program ROM, data memory, p p g y
and controller.
Can optimize the data-path structure (the
performance is better than the general purpose
DSP’s)DSP’s).
CAD software => Cathedral II (microcoded
multiprocessor architecture), Lisatek (application
specific instruction set and data-path design)specific instruction set and data-path design)

Wonyong Sung
Multimedia Systems Lab SNU

Mircro-program based implementation

W it C ffR d R d R dALU/IO

Microprogram ROM: total 4 words, but very wide.

Write
adrs
Mul

Coeff.
value for mul

Read
adrs1
ALU

Read
adrs2
ALU

Read
adrs1
Mul

Write
adrs
ALU

ALU/IO
Function
control

Data RAM

A0 ~ A3?

10 bitsData RAM
(3 read, 2 write)=4*5=20bits

ALU

Wonyong Sung
Multimedia Systems Lab SNU

In Q1 Q2 Q3 Q4
5

+

+

1

4

5

6

Output

+
+4

7

6
2

Output
+3

D1

8

D1
In Q1 Q2 Q3 Q4

+1
5

+

+

1

4 6 Determining
th t t l b

Output

+7

8

2 the total number
of registers

Wonyong Sung
Multimedia Systems Lab SNU

+3

D1

8

D2, D3

Overall design procedure for program
based architecturebased architecture

Data-path structure design by scheduling Data path structure design by scheduling
and binding
Memory system designy y g
Interconnection of the components or
develop microprogramp p g
Control signal generation

Wonyong Sung
Multimedia Systems Lab SNU

Cathedral (Mistral) II

A silicon compiler for complex decision
making applications in the KHz 1Mhz making applications in the KHz - 1Mhz
range

micorcoded architecturemicorcoded architecture
multiple parameterizable execution units
behavioral specification in Silagebehavioral specification in Silage

Wonyong Sung
Multimedia Systems Lab SNU

Microcoded processor architecture

Buses

EXU1 EXU1 EXU1EXU1

control

EXU1

control

EXU1

control

instruction register flagsjump address

microcode ROM
micro
program

Wonyong Sung
Multimedia Systems Lab SNU

counter

EXU overviewEXU overview

Arithmetic EXU:Arithmetic EXU:
ALU: 2’s comp ALU operations

ACU: unsigned arithmetic modulo comp.ACU: unsigned arithmetic modulo comp.
MULT

Memory EXUMemory EXU
ROM and RAM

I/O EXUI/O EXU
In, Out, Tri, IO(bidirectional)

Controller EXUController EXU

Wonyong Sung
Multimedia Systems Lab SNU

EXU architectureEXU architecture

i

ALU

MUX registers buffers

ALU
ACU
MULT
RAM
ROM

ASU

Wonyong Sung
Multimedia Systems Lab SNU

Multi processor architecture
IN1

IN2
BUS1

BUS2

EXU1 EXU2EXU1 EXU2

Wonyong Sung
Multimedia Systems Lab SNU

alu:1 mult:1alu:1, mult:1,
acu:1, ram:1
-> cycle count:335 cycle count:335

too slow too large
alu:1, acu:1, ram:1
> c cle co nt: 2398

alu:1, mult:1,
ac :2 ram:2 -> cycle count: 2398acu:2, ram:2
-> cycle count: 207

?

Wonyong Sung
Multimedia Systems Lab SNU

Architecture comparisonp
general purpose DSP

h fi d d t th (ll lti l have a fixed data-path (usually multiply
and accumulate)
program width 16 32 bitsprogram width 16 - 32 bits
flexible programming including C
languagelanguage
only code generation required

hardwired DSP (Mistral-I Mistral-III)hardwired DSP (Mistral-I, Mistral-III)
have a very flexible data-path
not good for decision making (if)not good for decision making (if ..)
mostly data-path generation

Wonyong Sung
Multimedia Systems Lab SNU

Architecture comparison - cont.p

Microcoded processor architectureMicrocoded processor architecture
flexible and multiple data-path structure
program width: 32 - 256 bitsprogram width: 32 256 bits
programmable, but code space
requirement is less efficientq
need both data-path and code
generations
good for algorithms requiring specific
data-path architectures with decision
making

e.g. speech pitch extractor, speech coder

Wonyong Sung
Multimedia Systems Lab SNU

4. Bit Serial Architecture

Bit-serial, operation dedicated
Use bit-serial multipliers (complexity of a parallel p (p y p
adder), bit-serial adders, and shift-registers
processes one bit of signal at one clock using a
dedicated one-bit arithmetic or memory elements ->
slowing down the effective fslowing down the effective fsystem
almost hardwired (simple) control
efficient implementation (good for digital filters), limit
in throughputin throughput
Limitation: hard to be applied to control intensive
algorithms.

Wonyong Sung
Multimedia Systems Lab SNU

Timing of bit-serial operation

LSB (least significant bit) first
supply the LSB of a signal first,
carry propagation is allowed
can employ ordinary number system
needs large delay(latency) for multiplication,
limit for high throughput application

Wonyong Sung
Multimedia Systems Lab SNU

Timing of bit-serial operation - cont.g
MSB(most significant bit) first

l th MSB f i l fi tsupply the MSB of a signal first,
carry propagation is not allowed

d d b i dredundant number system is used
Carry is propagated to only one stage

needs small latenc can be sed fo high needs small latency, can be used for high
throughput system
Complex and larger cell areaComplex and larger cell area

Wonyong Sung
Multimedia Systems Lab SNU

Bit serial components – for ‘w’ p
clock/sample

Delay
z-1 W-bit shift registersg

Adder a0, a1, . aw-1

a0, a1, .., aw-1 s0, s1, .., sw-1
b0 b1 bw-1F/F

b0, b1, .., bw-1 F/F reset at
LSB

Cin s0, s1 sw-1

l k l d!
Wonyong Sung

Multimedia Systems Lab SNU

LSB one clock latency occurred!

Bit serial components - cont.

scaler
1 bit delay: *2
1 bit advance with sign extension: *0.5
(implemented with relative delay)

multiplier

aw-1 . . . a1, a0 w bit of signal

bc-1 . . . b1 b0
c bit of coefficients

sc-1, sc-2 s0sc+w-2 sc+1sc w+c-1 bit -> w bit
1 bit

Wonyong Sung
Multimedia Systems Lab SNU

should delete the first c-1 bits -> total c bit latency
c+w-1 bit

Retiming and delay management

Maximum throughput of a digital filter is
determined by the number of delay determined by the number of delay
blocks(z-1) and the total latency of the
arithmetic blocksarithmetic blocks
When the latency is large, the data
wordlength for bit-serial implementation g p
should be increased even if it is not needed
for signal representation

Wonyong Sung
Multimedia Systems Lab SNU

Example - 1st order filter

signal wl: w bit signal wl: w bit

z-1 w-c-1 shift registerw bit delayb t de ay

coefficients c bit coefficients c bit

w (data wordlength) > c+1
1 bit
internal delay bit i t l d l

Wonyong Sung
Multimedia Systems Lab SNU

internal delay c bit internal delay

2nd order bit-serialAssume w=24, c=12

2nd d IIR filt
+ +

2nd order IIR filter1 2In Output

24
+ +3 4 5

6
Q1

24
87

Q2

+ +
1 2In Output

L1
D3

L1: D1+12+2=24

P3

D1
+ +3 4 5 6

Q112 12

L1

L2

L1: D1+12+2=24
L2: D1+D2+12+2=48
-> D1=10, D2=24P4

Wonyong Sung
Multimedia Systems Lab SNU

D2 87

Q212 12

L2
D3+2 = D1+12+3 – 24
=1 -> D3= -1

Example - adaptive LMS digital filter

data wl: w, coefficients wl: c,
number of taps: N (log N = M)number of taps: N (log2N = M),
step size wl: s, error wl: e
total delay in one sampling time = total delay in one sampling time =
c+M+s+e
-> w > c+M+s+e

So, we may need to increase w (just for
timing, not for better precision)

Wonyong Sung
Multimedia Systems Lab SNU

z-1 z-1 z-1 z-1 z-1 z-1

c

y[n]

d[] e[n]d[n] e[n]

x[i-n] s

hi[n+1]
e

Wonyong Sung
Multimedia Systems Lab SNU

hi[n]
hi[n+1]

MSB first serial processing

Redundant number system
A Radix B RNS is allowed to possess digits from the set { -p g {
(B-1),..,-1,0,1,...(B-1)}
Let X=xn-1x n-2...x 0 be a n-digit radix beta number, then
X=xn-1Bn-1 + xn-2Bn-2 + .. x0B0

n 1 n 2 0

So, the number of values a digit is allowed to possess by the
number system is (2B-1)

Low latency even for multiplication, thus good for
feedback based systems.

Not popular because the complexity of each arithmetic
element is high.

Wonyong Sung
Multimedia Systems Lab SNU

B=4
+3, +2, +1, 0, -1, -2, -3

Representation of 9, multiple (redundant) forms Representation of 9, multiple (redundant) forms
2,1 = 2*4+1 <- basic representation
3,-3 = 3*4 -3

The carry propagation is limited to just one stage, so we can do arithmetic from
the MSB

1,2,1 + 1,1,2 -> (0,2)x42+ (1, -1)x4 + (1, -1) = 0,3,0,-1
0,2

1, -1 <- 0,3 is represented as 1,-1 to have a room for carry pro.
1, -1

0,3,0,-1

Why not keep propagating
Because the number system has a room that prevents overflow even when there is a
carry propagated from the low digit.

Wonyong Sung
Multimedia Systems Lab SNU

Time-multiplexing and multi-rateTime-multiplexing and multi-rate

processes two or more different signals
with the same operations using one
h dhardware
fsample_max = fclock_max/WL/MF,
where MF is the multiplexing factor

Example: stereo circuit

Wonyong Sung
Multimedia Systems Lab SNU

Bit-serial summary
advantages

small chip area per throughputsmall chip area per throughput
Low complex control and
interconnectioninterconnection

<- high system clock rate, small
arithmetic elements, hardwired control,

disadvantages
limited throughput (but faster than g p (
program controlled architectures)
High power consumption at shift
registers
limited control capability

Wonyong Sung
Multimedia Systems Lab SNU

-> not good for integrating general
control functions

5. Distributed Arithmetic Architecture

A special kind of bit-serial architecture
ROM + accumulator based, instead of ROM + accumulator based, instead of
multiply + adder.
Many of digital filtering algorithms are Sum
of Product (multiply and accumulation) of Product (multiply and accumulation)
based - convolution, transformation, dot-
product
Distributed arithmetic computes the inner
product in a bit-serial manner, using ROM
and Accumulator based HW

Bit-serial operation reduces the needed ROM
size.
Still it is needed to decompose the algorithm Still, it is needed to decompose the algorithm
for high order digital filters
Not flexible, so not adequate for adaptive
f l

Wonyong Sung
Multimedia Systems Lab SNU

filters

Implementation of the sum of product

Y = A0*X0 + A1*X1 + A2*X2 + A3*X3
Xi = xi7 xi6 xi5 xi0 Xi = xi7 xi6 xi5 . . xi0

(xi7 xi6.. is 1 or 0, assume 8 bit)
= (-1)*xi7*27 + xi6*26 + xi5*25 + .. + (1) xi7 2 + xi6 2 + xi5 2 + .. +

xi0*1
Y = (-1)*27*(A0*x07 + A1*x17 + ..+A3*x37)() ()

+ 26*(A0*x06 + A1*x16 + ..+A3*x36)
. . .

+ (A0* 00 + A1* 10 + +A3* 30)+ (A0*x00 + A1*x10 + ..+A3*x30)

Wonyong Sung
Multimedia Systems Lab SNU

Why bit-serial?

A direct bit-parallel implementation with ROM

X0
8bit

ROM size
X1

X2

O s e

232 * w bit

X3

w bit

Y = A0*X0 + A1*X1
+ A2*X2 + A3*X3

w bit

Y

Wonyong Sung
Multimedia Systems Lab SNU

X01
1bit

X01
X11
X21

ROM size

24 * w bit

1bit X07
1bit

ROM i

X21

X31

2 w bit
Y = A0*X01 + A1*X11

+ A2*X21 + A3*X31

X00
X10
X20

b
ROM size

24 * bit

X07
X17
X27

ROM size

24 * w bit

w bit

X20

X30

24 * w bit
Y = A0*X00 + A1*X10

+ A2*X20 + A3*X30

X37

w bit

Y = A0*X07 + A1*X17
+ A2*X27 + A3*X371 bit

w bit
w bit

-1 7 bit

Y
Thi hit t d h

Wonyong Sung
Multimedia Systems Lab SNU

This architecture needs much
smaller ROM (8 *16word ROM) size although it requires
an 8 input adder

Distributed arithmetic

*Ts controls add/sub: sub for
MSBMSB
*ROM size-> 16 * word length
*2-1 is arithmetic right shift

Wonyong Sung
Multimedia Systems Lab SNU

Distributed arithmetic
(ROM Table)(O ab e)

Add
b3 b2 b1 b0 t tress b3 b2 b1 b0 contents

0 0 0 0 0 0
1 0 0 0 1 A0 (=0.25)
2 0 0 1 0 A1 (=-0.1)
3 0 0 1 1 A1+A0 (=0.25-0.1)

...
15 1 1 1 1 A3+A2+A1+A0

Wonyong Sung
Multimedia Systems Lab SNU

Distributed arithmetic
(Minimum ROM)(Minimum ROM)

Wonyong Sung
Multimedia Systems Lab SNU

Speeding-up the distributed arithmetic
based circuitsbased circuits

Apply 2-bit at a time for speed-upApply 2 bit at a time for speed up.
Needs two ROM-> 2 times speed

Wonyong Sung
Multimedia Systems Lab SNU

Application of distributed arithmetic

FIR filter
DCT IDCT t i t d tDCT, IDCT -- matrix vector product

-- no need of complex inter-
connections found in efficient structureconnections found in efficient structure
Distributed arithmetic is not good when
the filter coefficients need to be changed. the filter coefficients need to be changed.
This (all bit serial arithmetic based one) is
also not adequate for floating-point
arithmetic.

Wonyong Sung
Multimedia Systems Lab SNU

6. SoC based Architecture

HW based architecture is efficient in terms of
th h t f i ili d throughput for a given silicon area and power
consumption, but not flexible enough
Today’s multimedia and communication standards y
are very complex and need SW much.
Today’s consumers want something special for
them – needs differentiationthem – needs differentiation

-> Mix of CPU for programmability and HW blocks p g y
for high throughput

Wonyong Sung
Multimedia Systems Lab SNU

Example

TI developed C6x architecture for massive
communication (not mobile) marketscommunication (not mobile) markets
And, acquired the Amati Communications
that developed ADSL technologythat developed ADSL technology

But TI’s solution (C6x based ADSL) But, TI s solution (C6x based ADSL)
couldn’t win the market. TI’s solution was
too expensive. The winning solution was p g
based on CPU (such as ARM7) + HW
modem blocks (FFT and ..).

Wonyong Sung
Multimedia Systems Lab SNU

Multimedia I/O Architecture

Radio
Modem

Embedded
Processor

Sched ECC Pact Interface

Low Power Bus

Fifo Video
D

FB Fifo
Decomp

Pen
Data

SRAM

VideoAudioGraphics
Data
Flow

Wonyong Sung
Multimedia Systems Lab SNU

Concluding Remarks

Implementation of digital filtering algorithms requires
adequate architectural choice because the system clock
f i h diff t f th i l li frequency is much different from the signal sampling
clock frequency.

Fully parallel
Bit ll l ti lti l dBit parallel, time multiplexed

Distributed register based
Program ROM based

Bit serialBit serial
The flexibility of the architecture needs to be considered
too. -> SoC architecture

Wonyong Sung
Multimedia Systems Lab SNU

