
IEEE Robotics & Automation MagazineMARCH 2008 1070-9932/08/$25.00ª2008 IEEE 53

Experimental
Testbed for Large
Multirobot Teams
Verification and Validation

BY NATHAN MICHAEL, JONATHAN FINK,

AND VIJAY KUMAR

E
xperimental validation is particularly important in multi-
robot systems research. The differences between models
and real-world conditions that may not be apparent in
single robot experiments are amplified because of the
large number of robots, interactions between robots,

and the effects of asynchronous and distributed control, sensing,
and actuation. Over the last two years, we have developed an
experimental testbed to support research in multirobot systems
with the goal of making it easy for users to model, design, bench-
mark, and validate algorithms. In this article, we describe our
approach to the design of a large-scale multirobot system for the
experimental verification and validation of a variety of distrib-
uted robotic applications in an indoor environment.

Our research focusses on decentralized multirobot algorithms
that rely on an integrated approach to mobility, perception, and
communication, with such applications as environmental moni-
toring, surveillance and reconnaissance for security and defense,
and support for first responders in search and rescue operations
[1]. In all of these applications, robots must rely on local sensing,
computation, and control and exploit the availability of commu-
nication links with other robots whenever possible. To enable
scaling up to large numbers, computations must be decentral-
ized, and the system must be robust to changes in the numbers of
robots and to the dynamic addition and deletion of units. There
is also the need to provide some degree of centralization with an
interface to one or more human operators for programming,
tasking, and monitoring of the system.

These research applications serve as the motivation for our
experimental testbed. While there is a rich body of work to
build on, there is currently no inexpensive multirobot system
that allows users to move easily from conceptual ideas to algo-
rithms and then to experimentation. We begin by motivating
design considerations for the testbed in the context of our
research and existing multirobot control and experimental
architectures. We next arrive at a set of design requirements for

the system based on the driving applications as well as practical
considerations. Most importantly, we are driven by the
pragmatic considerations of ease of use, robustness, flexibility,
and scalability to enable the easy inclusion of more robots and
sensors with minimal changes to the existing infrastructure.
We also review some of the applicable hardware and software
options currently available. The experimental testbed is dis-
cussed in detail with overviews of the robots, software, and the
supporting infrastructure required for multirobot experi-
ments. Since simulation is of great relevance in the experimen-
tal process and the testbed design, we discuss its role and detail
the transition from simulation to reality. Finally, we present
several multirobot experiments for formation control and
cooperative manipulation, which demonstrate the capabilities
of the system for verification purposes and elucidate the
experiment design process with our testbed.Digital Object Identifier 10.1109/M-RA.2007.914924

Motivating Design Considerations
A number of multirobot control and experimental architectures
[2]–[4] have been developed over the years for use with teams of
robots on the ground [5], [6], in the air [7], or under water [8],
many of which were inspired by behavior-based control para-
digms [9]. Often, architectures rely on hierarchy to manage the
complexity of the task and the control software [10]. Addition-
ally, the need to have decentralized control to enable scalability
to large numbers is clear [3], [11]. However, to command large
groups of robots, it is also essential to include an element of cen-
tralization to allow humans to interact and task the team.

The design of the experimental testbed was motivated by our
interest in multirobot control for the deployment of potentially
large numbers of cooperating robots with applications to tasks
such as persistent surveillance, object manipulation, and
transportation. We have proposed several methodologies in the
context of these applications such as formation control [12]–
[14], cooperative manipulation [15], and pattern generation
[16] with the requirement that the algorithm adheres to three
attributes: decentralization, anonymity, and uniform modular-
ity. Decentralization means that the algorithm does not require
access to the full global state and all control computations are
done locally. Anonymity implies that the algorithm does not
require robots to identify each other. Uniform modularity in
algorithm implementation extends the idea of anonymity to
further promote the notion that each robot executes an instance
of the same uniform algorithm module. Modularity permits a
higher level of interoperability between different control
algorithms and often reduces the complexity of the control algo-
rithm, thus simplifying the implementation. These attributes
also improve the efficiency and interoperability of algorithms by
permitting computations to execute in parallel across the robot
network. Additionally, all robots are considered to be similar if
not identical. The algorithm is made robust by ensuring that no
single robot plays a role of vital importance or is unique in any
way, and each robot is easily replaceable in the case of failure.

In light of these attributes, we advocate an asymmetric
broadcast control (ABC) paradigm [17] in which all robots have
identical software and receive identical instructions but have
the intelligence in the software to differentiate, adopt roles, and
perform the required tasks. One or more supervisory nodes
serve to provide a degree of centralization by estimating partial
global state information about the multirobot system. Such a
paradigm is beneficial as we scale up to large numbers of robots,
for example, numbers that are characteristic of sensor networks
[18]. It becomes necessary to consider approaches to program,
command, control, and monitor the robot teams without
requiring knowledge of the specifics of the robots and the num-
ber of robots in the team. The asymmetry refers to the large
volume of information that can be broadcast to the multirobot
system relative to the partial state information sensed by or
communicated back to the supervisory node.

System Requirements
The motivating design considerations and attributes discussed pre-
viously and the need to build a system that is adaptable to a range
of multirobot applications lead to the following requirements:

u robust and reliable
u scalable and allows for the easy addition or deletion of

agents
u capable of measuring and logging state information

(including ground truth) for analysis
u extensible to a variety of applications
u inexpensive
u easy to use and maintain.
Robustness and reliability are of great concern when design-

ing an experimental testbed. Since an assumption is made on
the performance of the testbed when evaluating an algorithm,
uncharacterized failure modes prevent accurate verification.
Scalability is the focus of much of our research and cannot be
limited by the system implementation. Measurements, state
information, and algorithm status provide insight into the
performance of the algorithms being tested and are invaluable
during debugging. The ability to access or log such information
at run time or for postprocessing is vital to the analysis of any
experiment. Extensibility ensures that the testbed can be used
to test a wide range of algorithms. By requiring that the system
supports applications that demand significant computation,
communication, and environmental sensing, we also enable the
system to support algorithms that are less demanding but still
require verification. With this requirement, we are also able to
ensure that we support the many desirable properties previously
discussed. The system must be designed to be inexpensive to
allow researchers to incrementally increase the size of the sys-
tem. Ease of use and maintenance is of great concern when the
testbed consists of multiple independent units and supports col-
laborative research with many individuals accessing the system.

Resources for Multirobot Experimentation
Many resources currently exist for multirobot experimenta-
tion. We reviewed several hardware and software systems in
the context of the system requirements discussed previously
for suitability while designing the experimental testbed.

Hardware for Multirobot Experimentation
Robot selection is of crucial relevance when designing an
experimental testbed. Since many robots may be used during
an experiment, the capabilities, cost, and ease of maintenance
are important considerations. The range of applicable algo-
rithms is limited by the capabilities of the robot, particularly in
distributed, decentralized, or sensor-rich algorithms, where
the robots are expected to perform local computations and
manage communication. The cost and ease of maintenance of
the robots are relevant when the number of agents is increased
or the hardware fails.

We considered many off-the-shelf platforms for indoor
experimentation. The solutions we considered were often
expensive, commercially unavailable, or did not lend them-
selves to multirobot experimentation. The three most promis-
ing designs were the SwarmBots from iRobot [19], the
Khepera III from K-Team [20], and the ER1 from Evolution
Robotics [21]. Unfortunately, the SwarmBot is not commer-
cially available. The Khepera III was investigated but was
found to have limited computational capabilities. Additionally,

IEEE Robotics & Automation Magazine54 MARCH 2008

the Khepera III requires familiarity with embedded Linux and
software that support the necessary cross-compilation require-
ments. The ER1 was extensively tested but is no longer avail-
able as an individual unit. Indeed there were no commercially
available mobile robots for less than US$5,000 with the com-
putational capabilities of average laptops, sensors, and network-
ing cards. Recently, iRobot has introduced the economical
Create robot [22] which comes with actuation and a limited
sensor suite. It is the most viable commercially available off-
the-shelf solution at present. However, it lacks onboard
processing and networking. For this reason, we chose to design
and manufacture our custom robot.

Another important element of a multiagent testbed is a
localization and ground-truth system. The system must be
capable of estimating the pose of tens of robots simultane-
ously during an experiment. Applicable commercial systems
are available including the Vicon MX System [23] from
Vicon and Northstar [24] from Evolution Robotics.
Although both of these systems were investigated, they were
found to be either too expensive or impractical for our
needs. Therefore, we developed a custom localization and
tracking solution.

Support Software for Robotics
Software for even a single robot is a complex undertaking
involving everything from low-level drivers for sensors and
actuation up to higher-level computation and reasoning. For
systems that integrate large numbers of agents, code modu-
larity becomes even more important as one must also con-
sider communications and networking between many
agents. By writing drivers, controllers, and algorithms in a
modular fashion, complex systems can be built that reside on
a single agent or require the interaction of many modules on
many agents.

Given adherence to writing and using modular, reusable
code, it is inevitable that some pieces of even a highly custom-
ized multirobot system will already exist. This could range
from a modern operating system to libraries that provide com-
monly used algorithms. An attribute by which most available
software can be distinguished is licensing; i.e., distributed soft-
ware is either open or closed source. When considering large
teams of agents, the cost of licensing a proprietary operating
system and other software can be significant.

Several open- and closed-source software libraries are avail-
able that support robotics and generally provide some or all of
the following:

u an architecture with commonly defined interfaces so
that software modules can be written that encourage
good design practices and reuse

u a middleware library that allows both local and net-
worked communication efficiently between modules

u a set of low-level drivers for robotic hardware
u a simulation environment to substitute when hardware

is not necessary or available.
As such a system is extremely complex, most choose to not

build a home-grown solution. Additionally, selecting an exist-
ing system with a large user-base and active development can

lead to beneficial collaboration. There are a number of such
systems that are currently available.

u Microsoft Robotics Studio [25]: Developed recently by
Microsoft, this package provides a services-oriented archi-
tecture with both a visual programming environment and
a physics-based simulator. It relies on proprietary modules
to control and connect user-defined software modules in
any language supported by Microsoft Visual Studio. This
software dictates the use of a closed-source Windows
operating system.

u ORCA [26]: This project leverages the separately
developed Internet Communication Engine [27] mid-
dleware, which provides a host of features from a well-
supported open-source project including easy interface
definitions and tools to manage services, deployment,
and event messaging. ORCA is released under the
LGPL and GPL licenses and can be compiled on both
Linux and Windows operating systems.

u Open Robot Control Software [28]: The OROCOS
project has focused its development on real-time con-
straints that are often necessary in industrial robotics
applications. OROCOS provides a component system
using CORBA as a middleware as well as libraries for
kinematics/dynamics and Bayesian filtering.

u Player/Stage/Gazebo [29]: Probably the most widely
used robotics software package, the Player/Stage/
Gazebo (PSG) project consists of libraries that provide
access to communication and interface functionality.
The robot server Player provides an architecture where
many modules (known as drivers) can be independ-
ently written and connected through a custom mid-
dleware relying on transmission control protocol
(TCP) communication. Users are also able to write
simpler client applications that can connect to and
command modules running on a Player server. Addi-
tionally, this project provides a two-dimensional
simulator Stage and close collaboration with the
three-dimensional physics-based simulation environ-
ment Gazebo. These simulators provide the powerful
ability to transition transparently from code running
on simulated hardware to real hardware. The project
is developed for Unix-variant operating systems (e.g.,
Linux and Mac OS X).

u Webots [30]: A simulation environment for mobile
robots relying on the open dynamics engine (ODE) [31]
for physically accurate models, Webots has the capability
of exporting control programs to a few select embedded
robotic platforms. It is commercially available for multi-
ple platforms (Windows, Linux, and Mac OS X) in a
professional and less-enabled educational version.

We decided to pursue the open-source route, relying on the
significant robotics user-base and the potential for growth in
this area. Based on this decision, we chose to leverage the exist-
ing open-source software developed by the PSG project due to
the availability of the three-dimensional physics-based simula-
tion tools and the ability to write and test control software in
simulation while moving seamlessly to experimentation with

IEEE Robotics & Automation MagazineMARCH 2008 55

hardware. We also find that this allows us to pursue collabora-
tions with researchers who may not have access to our robots
but are able to develop and test software in simulation with
models of our robots.

Experimental Testbed Components
The experimental testbed consists of many components that
are interfaced together to create the total system. In the discus-
sion that follows, we present the robots, software, and infra-
structure of the testbed.

Robots
As stated previously, we chose to design a robot for use in the
testbed. The Scarab, a small differential drive robot, serves as
the standard platform for multirobot experimentation. Addi-
tionally, we designed a cable robot platform, Khepri, which
enables interaction with the team of robots as a global observer
or aerial vehicle. The design and capabilities of each of these
robots are detailed in the following sections.

Scarab Robot

As previously mentioned, we require a robot for indoor exper-
imentation for algorithms that require local sensing, commu-
nication, and computation. Additionally, we wish to perform
indoor experiments with large teams of robots with a limited

experimental space. The robot must also be easily maintained,
robust to failures, and economical.

To achieve the above requirements, we developed the
differential drive nonholonomic Scarab mobile robot shown
in Figure 1(a). The design was completed using computer-aided
design tools to be modular, easy to manufacture and assemble,
and built from off-the-shelf components (see Figure 2).

Each Scarab is equipped with an onboard computer, power
management system, wireless communication, and is actuated
by stepper motors. The sensors, actuators, and controllers are
modular and connected through the robotics bus [32] (which is
derived from the controller area network protocol) or standard
interfaces such as the universal serial bus or IEEE 1394. The
result is a plug and play system where sensors and actuators can
be added or removed from the hardware configuration.

The Scarab robot in Figure 1(a) depicts a typical platform
configuration with a Hokuyo URG laser range finder and a
Point Grey Firefly IEEE 1394 camera. This image also depicts
the robot’s foam bumper that protects the robot and allows it
to interact with its environment. The physical dimensions of
the robot in this configuration (less the bumper) are 20 3 13.5 3

22.2 cm3 with a mass of 8 kg.
By designing the robot to be manufactured from readily avail-

able components and materials, the final cost of the robot shown
in Figure 1(a) (without the camera or laser) is less than US$1,500.
The end result is modular, easily maintained, and ready for appli-
cation to a broad range of distributed robotics algorithms.

Khepri Robot

The experimental testbed also includes the Khepri, the aerial
robot shown in Figure 1(c). Khepri is a six degree of freedom
cable-controlled robot with the same onboard computing
module as a Scarab. It is equipped with three Hokuyo URG
laser range finders, a three axis inertial measurement unit, and a
color Point Grey Dragonfly IEEE 1394 camera. The Khepri’s
kinematics and actuation system allow it to move in all six
directions (positions and orientations), but the workspace is
constrained since the cable tensions must be nonnegative [33].

By introducing the Khepri into the testbed, we are able to
study interactions between the team of Scarabs and the Khepri

(a) (b)

(c)

Figure 1. (a) The 20 3 13.5 3 22.2 cm3 Scarab platform.
(b) An LED target is tracked for localization and ground truth
on each of the robots. (c) The Khepri robot is controlled by six
dc motors via pulleys and cables and has a full suite of sensing
and computational abilities, making it well suited for emulation
of an unmanned aerial vehicle in indoor environments.

(a) (b)

Bumper

Motor
Unit

Computer
Unit URG

Laser

LED
Target

Figure 2. Computer-aided design drawings showing the basic
components of the Scarab and an exploded view of the robot
design with relevant labels.

IEEE Robotics & Automation Magazine56 MARCH 2008

and consider heterogeneous multirobot applications requiring
a supervisor (as in the ABC paradigm). The distributed forma-
tion control discussed in the ‘‘Experimental Validation’’ section
exemplifies an application requiring a supervisory agent with
onboard sensing and computation capabilities.

Software
As discussed previously, we decided to use the open-source soft-
ware developed by the PSG project. The choice of middleware
is crucial in any multirobot testbed. It is the enabling factor that
defines the networking and programming frameworks to which
all algorithms must adhere or adapt. We have found that the
capabilities provided by PSG are sufficiently flexible and
transparent that most algorithms are easily accommodated to the
framework design. As PSG is open source, modifications to the
middleware are straightforward if new features are required.

Two methods exist for interfacing with the robots and sen-
sors within the testbed via PSG (drivers and clients) using a
variety of programming languages including C, C++, MAT-
LAB, and Python. A driver is a code module that runs locally
on the robot or computers in the testbed and is able to send
and receive data to other drivers running locally or across the
network. Such a design pattern permits the construction of
code modules that run in their own thread and are able to
manage both algorithm updates and communications with
other robots and other local code modules. By ensuring that
algorithms are properly programmed as drivers with strong
interfacing, we are able to create identical reusable code mod-
ules for use on an individual robot, computer, or a large team
of robots. The PSG client is an application that communicates
with a driver but does not publish data accessible to other driv-
ers. Generally in our system, clients serve as a simple way to
interact with the robots.

Each experiment is defined by configuration files that are
loaded by the Player server at runtime. These configuration files
determine which code modules each robot or computer runs as
well as the communication links required between the agents.

Since the system is distributed across many robots and com-
puters, all information is generated and computed locally.
However, a paradigm that requires global information can be
implemented by writing a code that uses shared memory
(often as a client). As our research interests pertain to distrib-
uted and decentralized algorithms, we generally write modules
that operate asynchronously across the system without shared
memory and with access only to information acquired locally
or from network communications.

Infrastructure

Instrumentation for Localization and Ground Truth

We have developed a ground truth verification system consist-
ing of a target with LED markers shown in Figure 1(b) and a
network of overhead IEEE 1394 Point Grey Color Dragonfly
cameras. Each marker contains three LEDs that flash an 8 B
identification pattern that is detected and tracked by the
overhead cameras to provide pose information. Measurements
from multiple cameras are fused with an extended Kalman

filter (EKF) to provide pose and uncertainty estimates for each
robot in a global reference frame. For further refinement, an
EKF runs on each of the robots, incorporating local odometry
motion and the overhead tracking estimates.

The overhead tracking system allows control algorithms to
assume pose is known in a global reference frame, thus elimi-
nating the localization problem. Conversely, the tracking sys-
tem allows the verification of localization algorithms as ground
truth. It is also possible to use the tracking system in lieu of sen-
sors that may be unavailable, such as neighbor sensors or colli-
sion avoidance sensors.

By the definition of the blinking pattern, the tracking sys-
tem is theoretically capable of detecting 64 markers simultane-
ously. While the system has never been tested at its theoretical
limit, it has been successfully used to track tens of robots simul-
taneously with a position error of approximately 2 cm and an
orientation error of 5� at 29 Hz in a 9 3 6 3 6 m3 room. These
values are based on raw data without any filtering either at the
source or at the robot. While commercial tracking systems
exist with higher accuracy [23], it should be noted that the cost
difference between our system and commercial systems is
significant. The tracking system consists of IEEE 1394 cam-
eras, computers for image processing, and tracking targets that
have a unit cost less than US$50.

Network

Since we need a low-latency network to communicate between
agents and controllers with reasonable data rates, we use a dedi-
cated 802.11a wireless network in a frequency range not used by
adjacent wireless networks to ensure that we have complete
control over the bandwidth available to the robots. We have suc-
cessfully experimented with tens of computers, robots, and sen-
sors performing data intensive experiments without a noticeable
impact on the performance or latency of the network.

Data Logging

A requisite component of an experimental system is logging
functionality. The system design permits local or networked data
logging, depending on the demands of the experiment. Logging
to local storage or mounted network drives on each robot is pos-
sible, depending on the space and the logging frequency required.
Additionally, since we use PSG, a common logging interface
exists that permits networked logging. As each robot communi-
cates with other robots in the system, the same messages are sent
to a computer that stores the data for postprocessing. With such a
design, we are able to log relevant system information without
requiring significant computational overhead from the robots.

Additional Considerations

The robots and the supporting computer infrastructure are
networked with a dedicated local area network managed by a
server with networked storage and a centralized user database.
A user remotely accesses the robots in the same way they
would access a desktop computer, and all working repositories
and code are mounted via network drives. Since the robots
and workstations all use the same x86 computer architecture,
the same compiled binaries work on all platforms for easy

IEEE Robotics & Automation MagazineMARCH 2008 57

development. Deployment is simple since the same storage is
available on both robots and workstations. By viewing the
team of robots as a system of networked computers and using
off-the-shelf technology, we are able to effortlessly distribute
changes in the code base to all of the robots. Additionally, the
dedicated server hosts web server capabilities, a repository for
software and documentation, and other data to facilitate
research and collaboration.

Simulation and Integration
As mentioned in the section on software, we use the software
developed by the PSG project, which defines interfaces for our
distributed system and provides communication between the
robots. Additionally, Player provides a layer of hardware
abstraction that permits algorithms to be tested in simulated
three-dimensional Gazebo environments. Indeed all algorithm
implementations and experiment designs (for example, those
discussed in the ‘‘Formation Control’’ and ‘‘Cooperative
Manipulation’’ sections) are identical for simulation and exper-
imentation on hardware.

Gazebo incorporates dynamic interactions between models
via ODE. Models of the environment of the local laboratory
and hardware (discussed in the section on robots) have been
reproduced in a simulated world (see Figures 3 and 4). The
robot models accurately reflect the geometric, kinematic, and
dynamic descriptions of the local robots used in the hardware
implementation. Frictional coefficients and contact models
(for environment interaction) have been estimated and incor-
porated into the simulations.

The robotics middleware (discussed previously) is the key
to achieving seamless integration between components. The
middleware offers clearly defined interfaces that carry out the
following functions:

u permit software to be reused for multiple experiments
u allow new hardware or sensors to be rapidly intro-

duced to the system
u enable tight integration between simulation and the

real-world
u facilitate collaboration.
The third and fourth points emphasize the benefit of com-

mon middleware and interfaces. By defining a common inter-
face structure, simulation environments (such as Stage and
Gazebo) may be enabled to support the interfaces. This allows
the code written for a simulation environment to be gracefully
transitioned to the hardware. The same code that runs on a
local computer in simulation will function in the same way on
the robots. Additionally, software written using common
robotics middleware allows for collaborations by requiring
common interfaces between software.

By integrating the simulation environment into the testbed
design and ensuring compatibility between the two, we are
able to test both the algorithms and the experiment design.
Since the same middleware and code base are used during sim-
ulation and experimentation, we are able to test the soundness
of the experiment design and isolate possible points of failure
or weakness that relate to issues not commonly addressed dur-
ing algorithm verification, such as communication or memory
constraints.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3. Results from representative simulation and experimentation runs of formation control: (a)–(e) A representative trial run
simulated in Gazebo. (a) The starting formation of twenty-five robots. (b) and (c) The motion of the group given a sinusoidal
trajectory on the abstract manifold. (c) and (d) A snapshot of the robots and the corresponding view from the aerial robot’s
camera. (e) The final formation of the system. (f)–(j) Snapshots that are similar to (a)–(e) but with four Scarab robots. (f) The start
configuration. (g) The convergence of the ground robots to ades ¼ f1, 1, 0:5, 1, 0:5g (where ades ¼ flx, ly , h, s1, s2g). (h) and
(i) The motion of the system to ades ¼ f1, � 1, � 0:5, 0:5, 1g. (j) An image from the camera on the aerial robot. The Khepri
controls to x ¼ lx, y ¼ ly , and z ¼ 3:0 m or z ¼ 1:5 m in simulation and experimentation, respectively.

IEEE Robotics & Automation Magazine58 MARCH 2008

There are occasions when simulation does not completely
capture the behavior of the robots due to differences between
reality and the simulated environment. These differences con-
sist of model inaccuracies, simulation approximations, and
local rather than distributed communication links. The differ-
ence between simulation and experimentation can be particu-
larly significant in experiments involving physical contact
between objects where models of frictional contact and the
numerical methods for integration need to be more sophisti-
cated than ODE for accurate prediction.

Experimental Validation
In the following discussion, we review recent results in distrib-
uted formation control and cooperative manipulation for a
team of robots. The discussion emphasizes the implementation
of these control algorithms using the experimental testbed.

Formation Control

Formation Control Algorithm

We are interested in controlling the shape, position, and orien-
tation of a formation of a large team of nonholonomic ground
robots in a decentralized manner using algorithms that are
invariant to the number of ground robots. We briefly present
experimental results using the Khepri aerial robot and a team
of Scarab robots based on our previous work in [12]–[14]. The
central idea is the development of an abstract description of
the team of ground robots, which allows the aerial platform to
control the team without any knowledge of the specifics of
individual vehicles. The abstract description takes the form of
a concentration or spanning ellipse defined by its pose
(l 2 R2, h 2 R) and shape (s1, s2 2 R) along the major and
minor axes. Thus, the pose and shape of the team of ground

robots is a point on an abstract manifold. A controller on the
abstract manifold yields changes in the abstract state necessary
to drive the pose and shape of the formation to its desired
value. Consistent with the ABC paradigm, the measured
abstract state and the desired changes in the abstract state are
broadcast to all of the Scarabs. Individual robot controllers
with information about the abstract state (pose and shape) and
their own local information ensure that the changes in the
abstract state are achieved. Interagent collisions are resolved by
constructing local control strategies that do not change the
overall abstract state description [14].

Experimental Results and Ramifications

We experimentally validated the control law using the Khe-
pri as a supervisory agent, which estimated the abstract state
based on local observations from an onboard camera and per-
formed the necessary computations required to control the
abstract state. As seen in Figure 3(j), the Khepri is able to con-
trol the gross position and orientation of the formation as
well as the shape by simply broadcasting the current observed
abstract state, a ¼ (lx, ly, h, s1, s2), and the desired abstract
state, ades, to the ground robots. The Scarabs receive a broad-
cast abstract control command from the Khepri derived from
its abstract state controller. Each Scarab locally computes its

We advocate an asymmetric

broadcast control paradigm in which

all robots have identical software

and receive identical instructions.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4. Results from representative simulation and experimentation runs of cooperative manipulation. (a)–(e) The L-shaped
cooperative manipulation in Gazebo. The robots all start using the approach controller [(a) and (b)], switch to the surround
controller (c), and then to the transport controller [(d) and (e)], thus manipulating the object. (f)–(j) Similar snapshots: approach
in (f) and (g), surround in (h), and transport in (i) and (j).

IEEE Robotics & Automation MagazineMARCH 2008 59

own control inputs, which are velocities in the horizontal
plane, based on this broadcast command as well as its current
state and local neighbor measurements (for collision avoid-
ance). A feedback-linearization scheme converts the linear
velocities to forward and turning velocities for the nonholo-
nomic Scarab.

These experiments highlight the importance of integrating
simulation and experimentation during the implementation
process. In simulation, we examined scenarios that required
greater local computations and complexity by considering
many more agents. We isolated points of fragility in the control
algorithm and presented practical solutions to overcome these
issues before working with the hardware [14].

Cooperative Manipulation

Cooperative Manipulation Algorithm

In a series of articles and papers, we described our approach to
cooperative manipulation, which involves caging the manipu-
lated object and moving while maintaining a condition of
object closure [15], [34]. As in the previous subsection and
consistent with the ABC paradigm, a geometric description of
the manipulated object and the desired reference trajectory for
manipulation is obtained by a supervisory agent and is broad-
cast to the team of Scarabs. Each robot chooses from a suite of
controllers (vector fields) each of which is carefully con-
structed to guarantee properties of interest. For example, an
approach controller guarantees that a robot will approach the
object to be manipulated, while a surround controller ensures
that a robot will go around the object and orbit it [16], [35],
[36]. A transport controller allows each robot to move along
the reference trajectory while ensuring that the condition of
object closure (or caging) is maintained. All controllers
guarantee that there will be no collisions. The complexity of
the control problem is reduced to the problem of sequentially
composing these controllers or vector fields [15]. Since these
controllers or vector fields depend only on the object’s position
and geometric shape and the desired trajectory for the object,
the resulting control computations are independent of the
number of agents and only require the assumption that the
number of agents is sufficiently large to surround the object for
caging purposes. The control law is anonymous in that the
identification of individual agents is unnecessary and the num-
ber of robots can change dynamically.

Experimental Results and Ramifications

While in theory the discrete protocols and continuous con-
trollers are all guaranteed to work, the interaction between
the discrete and continuous components and the fact that

each robot operates asynchronously necessitates validation
through simulation and experimentation. We demonstrated
using Gazebo and the testbed that the sequential composition
of the three behaviors, approach, surround and transport,
which involves switches between these behaviors, is robust to
both the type of object being manipulated and the number of
robots available for manipulation. On real hardware, we have
conducted tens of trials with four to eight robots manipulat-
ing an object along linear and sinusoidal trajectories as shown
in Figure 4, as well as along trajectories obtained from a navi-
gation function.

Through simulation and experimental trials, we demon-
strated that the environment models in Gazebo mirrored real-
ity to a sufficient degree that we returned to simulation and
assessed large sets of initial conditions and parameters for test-
ing and analysis. Such hardware and software integration lead
to a significant speedup in the experimental process.

Conclusions
In this article, we presented our experimental testbed for a
large team of robots and sensors, describing the hardware, soft-
ware, and infrastructure for experimentation as well as the
rationale for the design choices. In addition, we discussed our
framework for developing software and some experimental
results from recent studies. Our testbed enables us to validate
distributed robotics algorithms for large numbers of robots
engaged in a variety of tasks including formation control,
search and pursuit of targets, and cooperative manipulation.
This work also highlights a major benefit of selecting Player
and Gazebo as an enabling mechanism to evaluate distributed
robotics algorithms in simulation and on real robots. While
our main focus in this article was on control algorithms, we
intend to develop algorithms and software for distributed esti-
mation and mapping from onboard sensors and look forward
to reporting these advances in the future.

The application of multirobot theory to real-world scenar-
ios requires the consideration of many challenging details that
increase the complexity of implementation. It is clear that
relaxing the assumptions of point models, Euclidean dynamics,
and synchrony for multiagent systems is nontrivial. Further,
multiagent systems require significant hardware, software, net-
working, and infrastructure support. To surmount these issues
as multiagent systems scale in complexity and size, we advocate
a close integration of high-fidelity simulation and experimen-
tation and a carefully designed testbed that is constructed of
robust, modular, and inexpensive components.

Acknowledgments
This research was supported by NSF grants CCR02-05336,
NSF IIS-0413138; and IIS-0427313; ARO Grants W911NF-
04-1-0148 and W911NF-05-1-0219; and ONR Grant
N00014-07-1-0829.

Keywords

Multirobot systems, experimental robotics, decentralized con-
trol, formation control, cooperative manipulation.

The Scarab serves as the standard

platform for multirobot

experimentation.

IEEE Robotics & Automation Magazine60 MARCH 2008

References
[1] V. Kumar, D. Rus, and S. Singh, ‘‘Robot and sensor networks for first

responders,’’ IEEE Pervasive Comput., vol. 3, no. 4, pp. 24–33, Oct.
2004.

[2] R. W. Beard, J. Lawton, and F. Y. Hadaegh, ‘‘A coordination architec-
ture for spacecraft formation control,’’ IEEE Trans. Control Syst. Technol.,
vol. 9, no. 6, pp. 777–790, Nov. 2001.

[3] L. E. Parker, ‘‘Alliance: An architecture for fault tolerant multi-robot
cooperation,’’ IEEE Trans. Robot. Automat., vol. 14, no. 2, pp. 220–240,
Apr. 1998.

[4] A. Makarenko, A. Brooks, S. Williams, H. Durrant-Whyte, and B. Gro-
cholsky, ‘‘A decentralized architecture for active sensor networks,’’ in
Proc. IEEE Int. Conf. Robotics and Automation, vol. 2, New Orleans, LA,
Apr. 2004, pp. 1097–1102.

[5] R. Fierro, A. Das, J. Spletzer, J. Esposito, V. Kumar, J. P. Ostrowski, G.
Pappas, C. J. Taylor, Y. Hur, R. Alur, I. Lee, G. Grudic, and B. South-
all, ‘‘A framework and architecture for multi-robot coordination,’’ Int. J.
Robot. Res., vol. 21, nos. 10–11, pp. 977–995, Oct. 2002.

[6] D. Cruz, J. Mcclintock, B. Perteet, O. A. A. Orqueda, Y. Cao, and R.
Fierro, ‘‘Decentralized cooperative control—A multivehicle platform for
research in network embedded systems,’’ IEEE Control Syst. Mag.,
vol. 27, no. 3, pp. 58–78, Jun. 2007.

[7] M. Valenti, B. Bethke, G. Fiore, and J. How, ‘‘Indoor multi-vehicle
flight testbed for fault detection, isolation, and recovery,’’ presented at
the AIAA Guidance, Navigation, and Control Conf. and Exhibit, Keystone,
CO, Aug. 2006.

[8] R. Bachmayer, N. E. Leonard, J. Graver, E. Fiorelli, P. Bhatta, and D.
Paley, ‘‘Underwater gliders: Recent developments and future applica-
tions,’’ in Proc. Int. Symp. Underwater Technology, Taipei, Taiwan, Apr.
2004, pp. 195–200.

[9] R. C. Arkin, Behavior Based Robotics. Cambridge, MA: MIT Press, 1998.
[10] R. G. Simmons, S. Singh, D. Hershberger, J. Ramos, and T. Smith,

First Results in the Coordination of Heterogeneous Robots for Large-Scale
Assembly (Lecture Notes Series in Control and Information Sciences).
New York: Springer-Verlag, 2000, vol. 271, pp. 323–332.

[11] J. T. Feddema and D. Schoenwald, ‘‘Decentralized control of coopera-
tive robotic vehicles,’’ Proc. SPIE, vol. 4364, pp. 136–146, Sept. 2001.

[12] C. Belta and V. Kumar, ‘‘Abstraction and control for groups of robots,’’
IEEE Trans. Robot, vol. 20, no. 5, pp. 865–875, Oct. 2004.

[13] N. Michael, C. Belta, and V. Kumar, ‘‘Controlling three-dimensional
swarms of robots,’’ in IEEE Int. Conf. Robotics and Automation, Orlando,
FL, May 2006, pp. 964–969.

[14] N. Michael, J. Fink, and V. Kumar, ‘‘Controlling a team of ground
robots via an aerial robot,’’ in Proc. IEEE/RSJ Int. Conf. Intelligent Robots
and Systems, San Diego, CA, Oct. 2007, pp. 965–970.

[15] J. Fink, N. Michael, and V. Kumar, ‘‘Composition of vector fields for
multirobot manipulation via caging,’’ presented at Robotics: Science and
Systems, Atlanta, GA, Jun. 2007.

[16] M. A. Hsieh and V. Kumar, ‘‘Pattern generation with multiple robots,’’
in Proc. IEEE Int. Conf. Robotics and Automation, Orlando, FL, May
2006, pp. 2442–2447.

[17] N. Michael, J. Fink, S. G. Loizou, and V. Kumar, ‘‘Architecture,
abstractions, and algorithms for controlling large teams of robots: Exper-
imental testbed and results,’’ presented at Int. Symp. Robotics Research,
Hiroshima, Japan, Nov. 2007.

[18] K. Whitehouse, ‘‘The design of calamari: An ad hoc localization sys-
tem for sensor networks,’’ M.S. thesis, Dept. Elect. Eng. Comp. Sci.,
Univ. California, Berkeley, 2002.

[19] J. McLurkin, ‘‘Stupid robot tricks: A behavior-based distributed algorithm
library for programming swarms of robots,’’ M.S. thesis, Dept. Elect. Eng.
Comp. Sci., MIT, Cambridge, MA, 2004.

[20] K-Team. [Online]. Available: http://www.k-team.com
[21] ER1 Personal Robot System. [Online]. Available: http://www.evolution.

com/er1
[22] iRobot Create Programmable Robot. [Online]. Available: http://www.

irobot.com/create
[23] Vicon MX Systems. [Online]. Available: http://www.vicon.com/

products/viconmx.html

[24] NorthStar. [Online]. Available: http://www.evolution.com/products/
northstar

[25] Microsoft Robotics Studio SDK. [Online]. Available: http://msdn.
microsoft.com/robotics

[26] A. Brooks, T. Kaupp, A. Makarenko, S. B. Williams, and A. Oreback, Soft-
ware Engineering for Experimental Robotics (Springer Tracts Series in Advanced
Robotics). Berlin, Germany: Springer-Verlag, 2007, vol. 30, pp. 231–251.

[27] Internet Communications Engine. [Online]. Available: http://www.
zeroc.com/ice.html

[28] H. Bruyninckx, ‘‘Open robot control software: The OROCOS
project,’’ in Proc. IEEE Int. Conf. Robotics and Automation, Seoul, Korea,
May 2001, vol. 3, pp. 2523–2528.

[29] B. P. Gerkey, R. T. Vaughan, and A. Howard, ‘‘The player/stage
project: Tools for multi-robot and distributed sensor systems,’’ in
Proc. Int. Conf. Advanced Robotics, Coimbra, Portugal, Jun. 2003,
pp. 317–323.

[30] Webots, Fast prototyping and simulation of mobile robots. [Online]. Avail-
able: http://www.cyberbotics.com/products/webots

[31] Open Dynamics Engine. [Online]. Available: http://www.ode.org
[32] D. Gomez-Ibanez, E. Stump, B. Grocholsky, V. Kumar, and C. J. Tay-

lor, ‘‘The Robotics Bus: A local communcations bus for robots,’’ Proc.
SPIE, Ser. XVII, vol. 5609, pp. 155–163, Dec. 2004.

[33] E. Stump and V. Kumar, ‘‘Workspaces of cable-actuated parallel manipu-
lators,’’ ASME J. Mech. Des, vol. 128, no. 1, pp. 159–167, Jan. 2006.

[34] G. A. S. Pereira, M. F. M. Campos, and V. Kumar, ‘‘Decentralized
algorithms for multi-robot manipulation via caging,’’ Int. J. Robot. Res.,
vol. 23, nos. 7–8, pp. 783–795, July 2004.

[35] L. Chaimowicz, N. Michael, and V. Kumar, ‘‘Controlling swarms
of robots using interpolated implicit functions,’’ in Proc. IEEE Int.
Conf. Robotics and Automation, Barcelona, Spain, Apr. 2005,
pp. 2487–2492.

[36] M. A. Hsieh, S. G. Loizou, and V. Kumar, ‘‘Stabilization of multiple
robots on stable orbits via local sensing,’’ in Proc. IEEE Int. Conf. Robotics
and Automation, Rome, Italy, Apr. 2007, pp. 2312–2317.

Nathan Michael is currently pursuing a Ph.D. degree in
mechanical engineering at the University of Pennsylvania,
Philadelphia. His research interests include control and esti-
mation for multirobot systems and experimental robotics.

Jonathan Fink received a dual B.S. degree in electrical and
computer systems engineering at Rennselaer Polytechnic
Institute, New York, in May 2004. He is currently pursuing
a Ph.D. degree in electrical and systems engineering at the
University of Pennsylvania, Philadelphia. He is a member of
the GRASP Lab of the University of Pennsylvania. His
research interests include algorithms for multirobot systems
with sensor network and manipulation applications.

Vijay Kumar received his M.Sc. and Ph.D. degrees in
mechanical engineering from The Ohio State University,
Columbus, in 1985 and 1987, respectively. He has been on
the faculty in the Department of Mechanical Engineering
and Applied Mechanics with a secondary appointment in
the Department of Computer and Information Science at
the University of Pennsylvania, Philadelphia, since 1987. He
is currently the UPS Foundation professor and the chairman
of mechanical engineering and applied mechanics.

Address for Correspondence: Nathan Michael, University of
Pennsylvania, Philadelphia, PA 19104-6228, USA. E-mail:
nmichael@grasp.upenn.edu.

IEEE Robotics & Automation MagazineMARCH 2008 61

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

