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U
ndersea operations using autonomous underwater
vehicles (AUVs) provide a different and in some
ways a more challenging problem than tasks for
unmanned aerial vehicles and unmanned ground
vehicles. In particular, in undersea operations,

communication windows are restricted, and bandwidth is
limited. Consequently, coordination among agents is corre-
spondingly more difficult. In traditional approaches, a central
planner initially assigns subtasks to a set of AUVs to achieve the
team goal. However, those initial task assignments may become
inefficient during real-time execution because of the real-world
issues such as failures. Therefore, initial task allocations are
usually subject to change if efficiency is a high concern. Reallo-
cations are needed and should be performed in a distributed
manner. To provide such flexibility, we propose a distributed
auction-based cooperation framework, distributed and efficient
multirobot-cooperation framework (DEMiR-CF) [1], which is
an online dynamic task allocation (reallocation) system that aims
to achieve a team goal while using resources effectively.
DEMiR-CF, with integrated task scheduling and execution
capabilities, can also respond to and recover from real-time con-
tingencies such as communication failures, delays, range limita-
tions, and robot failures. It has been implemented and tested
extensively in the multirobot multitarget exploration domain
[2] and in complex missions of interrelated and resource con-
strained tasks [3]. In this article, we report the performance of
the framework against real-world difficulties encountered in
multi-AUV coordination for the naval mine countermeasure
(MCM) mission obtained through several experiments on the
U.S. Navy’s Autonomous Littoral Warfare Systems Evaluator-
Monte Carlo (ALWSE-MC) simulator [4]. DEMiR-CF sup-
ports a distributed strategy for real-time task execution and is
designed to use the advantages of auction-based approaches.
Additional precaution routines are integrated into the

framework to enhance solution quality. Other works in auc-
tion-based coordination research include Mþ [5], MUR-
DOCH [6], TraderBots [7], and the allocation scheme by
Lemaire [8]. According to the review given in [9], existing auc-
tion-based systems are not fully capable of replanning task dis-
tributions, redecomposing tasks, rescheduling commitments,
and replanning coordination during execution. Our approach
aims at filling these gaps. We propose an integrated cooperation
framework for multirobot task execution and analyze the per-
formance of the precaution routines and solution quality
maintenance schemes for single-item auctions in a multi-AUV
coordination context [10]. Experiments are performed in a
realistic simulation environment with real-time constraints and
events such as AUV failures and limitations, and delays in com-
munication range. Precaution routines embedded into the
framework not only recover from failures but also serve toDigital Object Identifier 10.1109/M-RA.2007.914920



maintain a high solution quality. Our experiments show that
communication delays significantly influence the solution qual-
ity and should be analyzed in multirobot systems, especially
working in harsh environments. As the experiments and sce-
narios demonstrate, online task handling performance of
DEMiR-CF is considerably promising.

Naval MCM Missions
Naval MCMs are actions taken to counter the effectiveness of
underwater mines. MCM operations include finding and seiz-
ing mine stockpiles before they are deployed, sweeping desired
operational areas, identifying mined areas to be avoided, and
locating and neutralizing individual mines [11]. Our research
is focused on the subset of MCM operations that involve locat-
ing and mapping all individual mines in an operational area. In
general, recognizing proud mines on the seafloor is not overly
difficult; the difficulty arises with the abundance of nonmine
objects on the seafloor that possess mine-like characteristics
(e.g., geologic outcroppings, coral, manmade debris) [12].
This ample supply of false alarms has necessitated the following
strategy typically employed by the navy: detect and classify
mine-like objects (MLOs) with high-coverage rate sensors
(e.g., sidelooking sonar), employ advanced signal processing
techniques for maximal false alarm reduction, and then revisit
the remaining MLOs with identification-quality assets (e.g.,
electrooptic sensors) to confirm them as mines or dismiss them
as false alarms. A sample image in which an MLO remains is
illustrated in Figure 1.

The reference mission in this research is to detect, classify,
and identify underwater mines in a given operational area
simulated in ALWSE-MC [4], an analysis package designed to

simulate multiple autonomous vehicles performing missions in
the littoral regions, including mine reconnaissance, mapping,
surveillance, and clearance. This mission employs two types of
vehicles: unmanned underwater vehicles (UUV), which are
free-swimming AUVs and possess large-footprint sensors (e.g.,
side-scan sonar) for detection and classification (D/C) of
mines, and seafloor crawlers equipped with short-range, iden-
tification-quality sensors (e.g., camera). The crawlers have the
ability to stop at an object and take a picture with a camera.

The MCM domain has important similarities to some of
the well-known domains where the use of a multirobot team is
usually beneficial. The search and rescue domain where differ-
ent types of robots are required is one example. Searching for
victims in the disaster area is similar in nature to the detection
of mines. Rescue operations in which first aid is provided to
victims are also similar to the classification tasks. Another
interesting domain, the space exploration mission, has a high
resemblance in form also. The mission can be divided into two
submissions: searching for important points to reconsider and
revisiting the sample points determined in the first phase to
further investigate specific locations and collect scientific data
with more specialized robots. Therefore, we believe that the
solutions offered to carry out the MCM mission can be suc-
cessfully applied to these domains also.

DEMiR-CF
The MCM mission is performed undersea and in real time.
Managing the overall robot team by a central authority is not
usually possible because of the limitations of the real-world
environment. Therefore, each individual robot should find a
way to solve the global problem from its local perspective while
assuming a global approach is possible in a distributed setting.

To meet the real-world limitations, we propose a dynamic
and distributed task allocation scheme, DEMiR-CF, to coordi-
nate robots that cooperate to fulfill different parts of a mission.
DEMiR-CF is designed for complex missions including inter-
related tasks that require diverse (heterogeneous) capabilities
and simultaneous execution [1], [13]. Dynamism is achieved
through incremental selection and allocation of the targets. By
means of the distributed characteristic of the proposed alloca-
tion scheme, each robot is allowed to select a candidate task for
itself and, next, the robots proceed to cooperate in the process
of selecting the most suitable robots for the tasks. A time-
extended view is considered while selecting tasks after form-
ing rough schedules. The framework combines the dynamic
priority-based task selection scheme, distributed task allocation
procedures and coalition formation schemes as cooperation
components, and Plan B precaution routines, some of which
are implemented by the coalition maintenance or dynamic task
selection scheme. These components are integrated into a
single framework to provide an overall system that finds
near-optimal solutions for real-time task execution. The mod-
ules that embody the framework and information flow among
them are given in Figure 2. Each robot keeps a model, which
includes information on current status, of the other robots and
the mission tasks. The model update module, the (system)
consistency checking module, and the dynamic task selector

Figure 1. Sidelooking sonar sensors may fail in correctly
classifying mines because of their similarities to some nonmine
objects in undersea habitat [12].

Additional precaution routines are

integrated into the framework to

enhance solution quality.
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module perform Plan B pre-
caution routines by either
updating the model main-
tained by the robot or
activating the warning mech-
anisms. Model updates are
initiated by either incoming
information from the other
robots or information per-
ceived by the robot itself. If a
system inconsistency arises,
the consistency checking
module is responsible for ini-
tiating warning mechanisms
and informing the corre-
sponding robots. The dy-
namic task selector module
selects the most suitable task
by considering the model of
the robot. The distributed
allocation scheme ensures the
distributed task allocation by
executing the required nego-
tiation procedures for the
selected task. The execution
or coalition scheme imple-
ments synchronized task
execution and coalition main-
tenance procedures. Task models are updated according to the
selected task and the task currently in execution. A sample flow
of the operations in the framework (as depicted in Figure 2) is
summarized as follows:

u Initially, robots are delivered the mission task definitions.
u Each robot selects the most suitable candidate task to

execute through global cost consideration (dynamic
task selection or switching).

u Robots offer auctions for the tasks they have selected.
During auction steps, inconsistencies are cleared and
conflicts are resolved.

u Task assignments are made for the announced tasks, mak-
ing sure that each robot takes part in the most suitable
execution when the global solution quality is considered.

u Dynamic task selection or switching proceeds simultane-
ously with task execution. This allows the robot to switch
between tasks when executing the candidate task becomes
more profitable than continuing with the current task and
handling real-time contingencies at the same time. Hence,
corresponding auction and selection procedures (second
through fourth items) are applied continually.

DEMiR-CF is designed with the capability to deal with
real-time situations. The framework can efficiently respond to
these events and maintain the solution quality simultaneously
with real-time task execution.

Plan B Precautions
Plan B precautions are taken in DEMiR-CF by the model
update module, which updates the system model of the robot,

and the system consistency checking module. The model
update module uses incoming information from the other
robots and its own perception data to update the world model.
The system consistency checking module provides warning
that initiate actions to keep the system consistent.

Recovery operations may include warning other robots
about the problem or changing the model accordingly. Inconsis-
tencies usually arise when robots are not informed about tasks
that are achieved, under execution, or under auction in real-
world operations. To keep system consistency, robots use explicit
communication and broadcast the information as follows:

u Tasks known to be achieved in predefined time periods
to prevent redundant executions. (This feature provides
a bucket-brigade type of information sharing that ena-
bles information transition from one robot to another
where point-to-point access is not possible, and conse-
quently communication range limitations are resolved.)

u Newly discovered online tasks that are not yet achieved.
u Task execution messages in predefined time periods.

(These messages contain the updated cost value and the
estimated task achievement deadline information. There-
fore, they serve as clues, meaning that the executer robot
is still alive and the task is under execution.)

u Task achievement message when the task is achieved.
u Cancellation message if the task execution is canceled.
u Task invalidation message when an invalidity is detected.
Incoming messages from other robots are taken as clues for

being marked as running properly. Some misleading beliefs
such as setting the state of a robot as failed although it is running
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Figure 2. DEMiR-CF modules.
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properly may cause parallel executions. This is a desired feature
from the point of view of the completion of mission. Designed
precautions resolve these kinds of inconsistencies if communi-
cation resources permit in later steps. In designing the precau-
tions, it is assumed that robots are trusted and benevolent.

Task Representation for the MCM Mission
Our general task representation is capable of describing complex
tasks with interdependencies [1]. However, in this particular case
study, tasks do not have interdependencies. Two types of tasks are
defined for vehicles: visit waypoint (w) and identify MLO (t).
The task representation includes the capabilities required for each
type of task: reqcapw contains side-scan sonar and reqcapt con-
tains cameras besides the standard capabilities of AUVs common
in both types of vehicles. The coverage mission (MC) contains
predefined number of waypoints (wi 2 MC, 0\i � jjMCjj) to
be visited by all UUVs (RUUV � R). One way to represent a task
is to directly assign it for each waypoint. However, this representa-
tion has a drawback of high communication requirements for effi-
cient completion of the mission. Instead, we represent tasks as
interest points of regions or search areas (Wk ¼ [wi, 8wi is unvis-
ited, and Wk � MC). These regions (and the corresponding cen-
ters) are determined by the robots during runtime dynamically
although the waypoint locations are fixed at known coordinates.
Therefore, both the allocation of the waypoints to the robots and
the paths constructed to traverse these waypoints are determined
online by negotiations. Negotiating the interest points (regions)
instead of the individual waypoints reduces the communication
overhead. Regions determined by different UUVs may vary dur-
ing runtime and may sometimes overlap. However, the uncer-
tainty related to the region determination is within an acceptable
range, especially when the cost is compared with the require-
ments of complete knowledge sharing by representing each way-
point as a task. Before defining the regions, the relative distance
values, reldist(rj, wi), are determined for each unvisited waypoint

wi using (1), where function dist returns the Euclidean distance
between points. rk locations are the latest updated locations of the
robots. If there is no known active robot assumed to be running
properly, reldistðrj;wiÞ is the value of the distance between the
robot and the waypoint

reldist(rj, wi) ¼ dist(rj, wi)�min8k6¼j (dist(rk, wi)). (1)

Each robot defines its regions (Wjk; 1 � k � jjRUUVjj).
The number of regions equals the number of UUVs believed
to be running properly. After sorting the reldist(rj, wi) values of
the unvisited waypoints in descending order as an array, the
array is cut into subarrays that represent the regions. Each
region contains approximately an equal number of waypoints.
Each robot specifies the region of highest interest as its first
region. If the robots are closely located, the regions of highest
interest may overlap. In this case, negotiations are needed to
resolve conflicts and to assign only one robot for each region.

The identification mission (MI) contains an unknown
number of tasks for the MLO locations (ti 2 MI,0\i �
jjMIjj) to be visited by the crawlers. Therefore, the tasks in MI

are generated online during runtime.

Exploration for Detection of MLO Locations
To begin the mission, the UUVs survey the operational area fol-
lowing waypoints determined a priori; however, corresponding
regions containing waypoints may be reassigned by the negotia-
tions among UUVs autonomously. After determining regions,
each UUV proposes an auction for the region of highest interest
(interest point). After negotiations on several auctions, each UUV
is assigned to the closest region (interest point). If more than one
robot is almost at the same distance from the interest point, the
one with the smaller id number is assigned to the region. The
other UUVs continue to offer auctions for the remaining regions.
Allocations of the regions may also change during run time to
maintain higher solution quality. Whenever UUVs detect failures
or recoveries from failures, they change their region definitions
accordingly and offer new auctions. After the region assignments
are completed, each robot visits waypoints in its region (Wj) in a
sequence identified by an ordering of their cost values from the
smallest to the largest:

c(rj, wiÞ ¼ a � dist(rj, wi)

þ (1� a) � ½dist(wf 1, wf 2)

�max (dist(wi, wf 1), dist(wi, wf 2))�
fdist(wf 1, wf 2) ¼ max (dist(wk, wl)), w0;k;j;f1;f2 2Wjg: (2)

This heuristic function considers boundary targets, wf 1 and
wf 2 in Wj, which are the targets with the maximum distance
value. The basic idea of this function is to forward the robot to
one of these boundary targets since these targets determine the
diameter of the region (Wj) and both of them should be vis-
ited. If the robot initially heads toward one of the boundary
targets, the diameter (the longest path) can be traveled by visit-
ing other targets along the path. A sample illustration of this
cost function is given in Figure 3. In this figure, although t2 is
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Figure 3. Target selection strategy by the FAC heuristic
function.

In undersea operations,

communication windows are

restricted and bandwidth is limited.

IEEE Robotics & Automation Magazine48 MARCH 2008



closer to r1 than t1, with the farthest addition cost (FAC) heu-
ristic applied, t1’s cost value is smaller than that of t2 (3 < 3.6),
which results in a better route shown by the dashed arrows.
The cost penalty applied to forward the robot to the boundary
targets is limited to a small degree. By introducing a constant
(a), this degree of direction can be adjusted. When a is
assigned a value of 2/3, this heuristic function produces close
to optimal results for the multirobot multitarget allocation
domain [2]. If more than one pair of boundary targets exist,
the pair that has a member at the smallest distance from the
UUV is selected.

An illustrative example of the generation of the search
regions (areas) and the traversed path patterns by the robots are
depicted in Figure 4. Since there are three robots in this figure,
three search regions are determined and covered by the robots.

As UUVs detect the MLOs on their way, they broadcast
these estimated target positions to all AUVs (hence, tasks
for crawlers are generated online during execution). Then,
MLO information can propagate to all other AUVs in the
group that can possibly be reached. Periodic broadcasting
of important information (coming from either owned sen-
sors or external agents) is a way to handle communication
range limitations.

Identification of MLOs
When the crawlers are informed about the MLO locations,
they update their world knowledge and dynamically select the
best MLO targets to visit and propose auctions. Therefore,
they can switch among tasks when new tasks appear if it is
more profitable. It is also possible that a crawler may inadver-
tently discover a mine without being informed of its position
by a UUV. In this case, the crawler identifies the target, adds it
to its task list as an achieved task, and broadcasts achievement
information to maintain the system consistency. Crawlers
determine their bid values by using the cost functions pro-
posed for the multirobot multitarget exploration domain [2].

In the identification task, when crawlers are within an area
close to an MLO location, they begin keeping time while sur-
veying the MLO location. Whenever the time limit is reached,
they set the task status as achieved and broadcast this informa-
tion. If a detection event occurs during this time period, the
MLO location is considered to be an actual mine; otherwise, it
is determined as a false alarm after deadline. In either case, the
task is marked as achieved.

Experimental Results on the MCM Mission
The performance of our framework and the precaution rou-
tines is evaluated in ALWSE-MC. Three sample scenarios in
the simulator are given to illustrate the performance of our
framework for the naval MCM mission. The MCM mission
movies are available online at [14]. UUVs are equipped with
sensors capable of detecting mines within 30 ft from the skin
of a target. However, they are not able to correctly identify
them. The crawlers are equipped with cameras that can both
detect and identify mines within 20 ft. None of the AUVs
have predefined search patterns. UUVs have internal naviga-
tion errors; therefore, their estimated location values are

different from actual locations in most cases. Two AUVs can
communicate each other whenever the receiver AUV is in
the sender AUV’s transmitter range, within its transmitter
beam width, and the sender AUV is within the transmitter
AUV’s receiver beam width.

All UUVs and crawlers begin execution from a deployment
area. There is no a priori information about mine locations.
Around 121 waypoint locations (environment size: 200 3

200) are known but are not assigned initially. UUVs begin
negotiations and divide the overall mission area into three
(known number of UUVs) regions. Since they are within the
line of sight, they can communicate their location informa-
tion. Therefore, initially defined regions are nearly the same
for all UUVs. Figure 5 illustrates a successful mission scenario
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Figure 4. (a) Mission execution begins. The overall area is
divided into regions. (b) Robots patrol the area in the
corresponding regions.
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Figure 5. Scenario 1: (a) The UUVs cover the area, and the
crawlers visit the MLO locations. (b) The UUV regions are
illustrated.
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counter the effectiveness of

underwater mines.
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with three UUVs and two crawlers. Allocations of waypoints
after negotiations can be seen in Figure 5(b). Since there are
no failures, waypoint assignments do not change during run
time. However, the crawlers sometimes switch among tasks if
they are not informed about tasks that are being executed, and
sometimes parallel executions occur. Whenever they are in
communication range, they can resolve the conflicts effi-
ciently by means of the precaution routines. As shown in Fig-
ure 5(a), the crawlers can also detect mines without being
informed (red circled in the figure). The routes of the crawlers
may seem somewhat random. However, it should be noted
that the tasks related to the MLO locations appear online dur-
ing run time when they are discovered, and the communica-
tion range is limited.

In Scenario 2, UUV3 fails in the same setting of Scenario
1 (Figure 6, the location of the failure is indicated with a red
arrow in the figure). Initial regions for all UUVs change after
UUV3 fails [Figure 6(b)]. The other UUVs revise their

region definitions and, after negotiations, they share the full
area as indicated in the figure. The visited waypoints are not
in their region coverage. Because of the uncertainties, some
waypoints may remain uncovered in the schedules (indicated
with the red diamond in the figure). However, this uncer-
tainty-related problem is resolved by UUV2, and the mission
is completed.

In the Scenario 3 (Figure 7), UUV3 fails and the other
UUVs detect the failure and they negotiate the remaining
unvisited waypoints and new schedules are determined as in
Figure 7(b). While these UUVs execute their tasks, UUV4 is
released from the deployment area. Detecting the arrival of a
new UUV, the other UUVs change their region definitions
accordingly [Figure 7(d)] and offer auctions for these areas.
Initially UUV4 is not informed about the visited waypoints

(a) (b)
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UUV3 
Crawler1
Crawler2
Mines
Missing Waypoint
is Visited
UUV 1 Search Area
UUV 2 Search Area
UUV 3 Search Area

Figure 6. Scenario 2: (a) Initially, all UUVs begin execution,
UUV3 fails, and other UUVs take responsibility of all unvisited
waypoints. (b) Region assignments are changed for UUV1–2
after detecting the failure. Because of an uncertainty, one
waypoint is left uncovered. (c) UUV2 completes its region
coverage task and adds the waypoint missing in (b) to its
schedule after detecting that it is not visited.
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(c) (d)
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UUV1 
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Crawler1 
Crawler2 
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UUV 2 Search Area
UUV 3 Search Area
UUV 4 Search Area

Figure 7. Scenario 3: (a) UUV3 fails and other UUVs take
responsibility of the waypoints initially assigned to UUV3.
(b) Region assignments are changed for UUV1–2 after
detecting the failure. (c) Another UUV(4) is released from
the deployment area. (d) Schedules are changed accordingly
after negotiations. However, UUV4 is not informed about
visited waypoints and form regions by considering all
waypoints. (e) After being informed about visited
waypoints, UUV4 only visits unvisited waypoints in its
schedule.

DEMiR-CF is designed with the

capability to deal with real-time

situations.
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and defines its regions with this incomplete knowledge.
After negotiations, the regions are assigned and the schedules
are formed. Entering into the communication range, UUV4
redefines its regions by considering incoming information
for the visited waypoints.

In the same settings, another experiment is conducted to
evaluate the message loss rate effects on the success of the
completion of mission. Table 1 illustrates the results (ljr)
averaged over ten runs. When the message loss rate is differ-
ent from 0, as expected, the mission completion time
performance of the system degrades but linearly. It should be
noted that, even for a rate of 0.75, the overall mission (MC

and MI) by the final identification of the mines is completed.
The average of the first visit times of the waypoints increases
linearly because of the delays occurring by redundant visits
of the targets. The number of waypoint (w) visits increases
with high message loss rates. When the message loss rate is
one, there is no communication among AUVs, and they can-
not correctly reason about the region portions. Therefore,
each UUV searches the full area completely. The crawlers
detect and identify 12.8% of mines by their local detection in
a small area (MLO target information cannot be communi-
cated in this case). Since the identification mission is not
complete, the overall mission is not completed. This table
illustrates the performance of our framework against message
losses. As a final remark, auction generation and clearing in
an environment with communication delays desires special
attention. Especially, auction deadlines should be deter-
mined by considering communication delays that may vary
during the run. Plan B precautions can resolve these kinds of
problems. Precautions for delayed messages on out-of-date
situations prevent the system from getting stuck into further
inconsistencies and deadlocks.

Further Extending MCM Mission to
Prevent Hostile Attacks
The MCM mission can be further extended with the pres-
ence of possible threats from hostile vehicles. We analyze this
situation in a dynamic simulation environment where the
mission consists of the online tasks, whose generation times
are not known in advance by the robots (AUVs). The overall
mission is to search a predefined area as a part of the MCM
mission and additionally protecting the deployment ship
from any hostile intent [1].

Discussion and Conclusions
In this article, we presented the performance of a new
framework, DEMiR-CF, in the context of a naval MCM mis-
sion in the realistic NAVY simulator ALWSE-MC. DEMiR-CF
is a distributed framework for multirobot teams that integrates
incremental task selection schemes, distributed allocation meth-
ods, and several precaution routines to handle failures and limita-
tions of the real-world task execution. It maintains high solution
quality with available resources. Precaution routines can respond
to several failures as illustrated in the scenarios presented in this
article. Evaluations reveal the high performance of DEMiR-CF
on online task and situation handling. Since the framework is a
single-item auction method, it can be used for environments
with limited, delayed, or unreliable communication. In general,
the framework is designed for more complex missions of interre-
lated tasks. We have implemented the DEMiR-CF framework
on Khepera II real robots for the allocation of tasks of the multi-
robot multitarget exploration mission that can be treated as the
classification tasks. Since the proposed approach is computa-
tionally cheap, its implementation on even very small robots
has been possible, which makes the approach broadly applicable
for different robot platforms. Accordingly, as the realistic simu-
lation results reveal, limiting the assumptions in the design of
the approach facilitates its porting to the real underwater
vehicles. The naval MCM domain has appropriate characteris-
tics to deploy teams of robots and let them cooperate to achieve
the overall mission. It should be noted that the objectives and
the limitations of this domain are similar to those of both search
and rescue and space exploration domains. Therefore, we be-
lieve that research in this work can be useful for these domains
as well.

Future work on the presented research includes considering
the coverage and the detection strategies of the MCM mission
together to improve the performance of the system. Especially,
if the communication range is known a priori, this informa-
tion can also be used in region determination and in construct-
ing the paths of the robots to improve the responses of the
system to robot failures.

Table 1. Performance results (ljr) for different message loss rates.

0 0.25 0.5 0.75 1

Message Loss Rate l r l r l r l r l r

MC completion (%) 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0

MI completion (%) 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 12.8 4.1

MC completion (t) 3,349.4 60.5 3,683.2 167.1 4,909.0 430.1 5,141.2 938.1 6,304.2 139.0

MI completion (t) 2,852.8 35.3 3,227.6 205.3 4,205.0 836.9 5,021.2 692.7 N/A N/A

w first visit 1,380.1 6.1 1,390.0 16.3 1,922.0 92.8 2,256.6 334.5 2,936.0 104.5

w number of visits 1.0 0.0 1.0 0.0 1.01 0.01 1.09 0.04 3.0 0.0

The MCM mission is performed

undersea and in real time.
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