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UAV Task
Assignment
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with Integrated Health Monitoring
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U
nmanned aerial vehicles (UAVs) are becoming vital
warfare and homeland security platforms because
they have the potential to significantly reduce cost
and risk to human life while amplifying warfighter
and first-responder capabilities. To date, these vehi-

cles have been operated in real missions with some success, but
there remain challenging barriers to achieving the future vision
of multiple UAVs operating cooperatively with other manned
and unmanned vehicles in national airspace and beyond [1].
Among these is the problem of developing efficient and effec-
tive algorithms for simultaneously controlling and coordinating
the actions of multiple autonomous vehicles in a dynamic envi-
ronment. A particular concern is that off-nominal conditions
or degraded components could reduce the capabilities of these
UAVs to accomplish the mission objectives.

This article builds on the very active area of planning and
control for autonomous multiagent systems (see [2] and [3]
and the references therein). In principle, some of the issues
raised in this problem are similar to questions arising in manu-
facturing systems [4], [5] and air transportation [6]–[8]. In
addition, similar problems have been investigated under the
Defense Advanced Research Projects Agency sponsored mixed
initiative control of teams of autonomous agents [9]–[11].
While these efforts have made significant progress in under-
standing how to handle some of the complexity inherent in
multiagent problems, the research in this article considers issues
related to how vehicle health (e.g., fuel management and vehi-
cle failures) affects the real-time mission planning (e.g., the task
assignment). This work represents a step toward enabling robust
decision making for distributed autonomous UAVs by improv-
ing the team’s operational reliability and capabilities through
better system self-awareness and adaptive mission planning.

The proposed methods for solving the overall multiagent
problem typically involve formulating several smaller subpro-
blems, each of which is simpler and, therefore, easier to solve
[12]. One such solution architecture is shown in Figure 1, in
which a number of components are combined to achieve the

overall goals of the mission. The mission planning compo-
nent is the highest level in the system. It keeps track of the
mission objectives and generates tasks, which are discrete
actions whose completion will aid the overall accomplish-
ment of the mission. Examples of tasks include searching for,
identifying, or tracking an object of interest. The mission
planner provides the list of tasks to the task assignment
component, which decides which of the available vehicles
should perform each task based on the information about the
tasks and the capabilities of the vehicles. Once the assign-
ments have been made, they are sent to the trajectory
designer, which plans feasible trajectories for each vehicle.
The output of the trajectory designer is a sequence of way-
points for each vehicle to follow. These waypoints are sent to
the vehicle controllers, which compute the actual controls
needed to follow the waypoint plans.Digital Object Identifier 10.1109/M-RA.2007.914931



Inherent in each of the components in the architecture is a set
of interconnected models used to predict future system behavior.
For example, the controller contains a model of the control input
dynamics of the vehicle, while the task assignment component
contains a model of the performance each vehicle can be
expected to produce if assigned to a given task. In the most gen-
eral sense, system actions are selected by searching for actions that
lead to desirable, predicted outcomes as given by the system
models. Clearly, the performance of the system, therefore,
depends heavily on the accuracy of these models.

One strategy for improving the accuracy of the models is to
include additional feedback loops that provide information that
can be used to adjust the models in real time. The amount, type,
and quality of feedback information that each component
receives plays a large role in how effectively the system can deal
with dynamically changing factors in the environment, mission
objectives, and state of the vehicles. Intuitively, feedback is neces-
sary wherever there is uncertainty in the system, so that the initial
plan of action made by each of the components of the planner can
be modified when changes occur. Uncertainty may be present at
all levels of the planning architecture as a result of incomplete
knowledge of many factors, such as actuator performance at the
control level, dynamic constraints at the trajectory design level,
sensor health at the task assignment level, and long-term mainte-
nance needs at the mission management level.

This article focuses on the health management problem at
the task assignment level, developing a feedback mechanism
for the performance model used by the task assignment algo-
rithm. The assignment problem has been studied extensively
[13]–[15]. However, most of the work done to date has used
only a static vehicle performance model, making it difficult
for these approaches to adapt to unexpected changes, such as
sensor failures, during the course of the mission. The goal of
this article is to develop a feedback loop that uses health state
information to update the performance model in real time.

By updating the performance model of an already existing
algorithm, previous work on the task assignment problem
can be leveraged and extended without requiring the modifi-
cation of the existing algorithm. Its performance can be
improved only by improving the quality of information avail-
able to make assignments.

Selection of Performance Model
The selection of the performance model incorporating health
state information about the vehicle is clearly an important aspect
of the feedback design. The particular details of the model
depend on the mission problem in question and the vehicle
hardware being used. However, there are a number of classes of
general features that may be appropriate to be included in a
performance model.

Vehicle Translational Dynamics
At the level of the task assignment problem, the vehicle
dynamics are usually abstracted as being first order with a
maximum speed vmax. This abstraction allows the task assign-
ment algorithm to capture important aspects of the vehicles’
performance (in particular, how long they can be expected to
take to reach a particular task), while being sufficiently simple
to allow computational tractability. Recall that the trajectory
planning and control levels below the task assignment level are
responsible for carrying out those lower-level functions, allow-
ing this simplification to be made. Note also that this is the
model used in most of the previous work on task assignment.

Propulsion System State
The vehicle propulsion system may be abstracted as an entity
that enables the vehicle to move at the maximum speed vmax.
Health feedback about the propulsion system may dynamically
modify vmax to reflect the state of the propulsion system. For
example, knowledge of a failing motor may cause vmax to
decrease from its nominal value.

Fuel State
Knowledge of the fuel state of the vehicle is important to be
able to estimate the remaining useful flight time of the vehicle.
The performance model should include an estimator that
performs the remaining flight time calculation based on the
remaining fuel, average fuel consumption rates, and perhaps
other environmental factors. Use of this information allows
the task assignment algorithm to safely make assignments

while ensuring that vehicles
can return to the base before
running out of fuel.

Sensor States
The current performance
level of any sensing system
onboard the vehicle should
be included in the model if
they are required to carry out
tasks. For example, if an
onboard camera is to be used
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Figure 1. Overall autonomous mission system architecture.
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for a surveillance task, the state of the camera (e.g., quality of
the video signal) should be accounted for in the model.

Communication System State
Communication with other vehicles is often a requirement to
enable vehicles to coordinate their actions with each other or
relay messages to a distant ground station. Accounting for a
vehicle’s current estimated transmission and reception distan-
ces may allow the tasking system to avoid sending a vehicle to a
location where it will be out of the communication range.

Modification of RHTA to Include Health
Feedback: An Example
For the purposes of illustration, an example of incorporating a
simple health feedback loop in the receding horizon task
assignment (RHTA) algorithm is presented here. Briefly, the
RHTA algorithm works as follows (for more details, see
Alighanbari, 2004; Algorithm 2.3.1 [16]). Given the set of
tasks W , distances between tasks d(i, j), and vehicles V , RHTA
enumerates all possible task sequences of specified length nc.
These sequences are called petals. The value of each petal is
estimated as

Svp ¼
X

kTip swd,

where Tip is the time at which task i is completed in petal p, swd

is the task value, and k is a time discount factor. Given the val-
ues of all the petals Svp, RHTA solves the following optimiza-
tion problem to select the optimal petal for each UAV:

max J ¼
XNv

v¼1

XNvp

p¼1

Svpxvp

subject to
XNv

v¼1

XNvp

p¼1

Avpixvp � 1, xvp 2 f0, 1g

XNvp

p¼1

xvp ¼ 1, 8 v 2 f1, . . . , Nvg:

Here, xvp is a binary variable that is equal to 1 if the pth petal is
selected and 0 if not, and Avpi equals 1 if task i is visited by vehi-
cle v in petal p and 0 otherwise.

In the example, health state information is represented by
adding a fuel state to the vehicle model. In this case, the fuel
model is straightforward.

u The vehicle’s fuel level fi decreases at a constant rate
kfuel anytime the vehicle is flying.

u If fi reaches zero before the vehicle refuels, the vehicle
crashes and is lost.

u In addition, the occurrence of failures is modeled as a
Poisson process with time intensity qf ; when a failure
occurs, the rate of fuel burn increases to kfuel;failure[
kfuel. Thus, this failure mode increases the rate at which
fuel is burned (and, thus, decreases the time a vehicle
can complete tasks).

Due to the inclusion of randomly occurring failures, the fuel
model is able to capture some of the uncertainty in the health state

of the vehicle. If a failure occurs, the optimal task assignment may
change due to the fact that the failed vehicle may no longer be
able to service its assigned task. When this happens, the task
assignment algorithm must be able to calculate the new optimal
solution, subject to the new constraint imposed by the failure.

To handle these types of scenarios, the RHTA algorithm was
extended to include the fuel state in the vehicle model. This was
accomplished by including an estimate of each vehicle’s opera-
tional radius, which is defined as ri � vmax ( fi=kfuel). The quantity
ri represents the maximum distance a vehicle can fly given its cur-
rent fuel state, before running out of fuel. This information can
be used to effectively prune the list of petals that RHTA considers
to ensure that the vehicle can always safely return to the base
before its fuel is exhausted. Specifically, the following constraint
was added to the RHTA optimization problem:

Li þ d(wnc , xbase) � ri:

Here, dðwnc, xbaseÞ represents the normal Euclidean distance
between the last waypoint in the petal and the base, and

Li ¼ d(v, w1)þ
Xnc

j¼2

d(wj�1, wj)

is the total length of the petal. The constraint effective rejects a
petal if the length of the petal plus the distance from the termi-
nal waypoint wnc to base is greater than the current operational
radius of the vehicle. This ensures that the vehicle visits only
waypoints that allow it to return safely to the base.

With this extension, RHTA will assign a vehicle to return
to the base when every possible permutation of waypoints is
rejected by the pruning criterion. Thus, this method provides
a simple rule that determines when a vehicle should return to
the base for refueling since it cannot safely service any of the
remaining tasks. Note that this method can create some prob-
lems if the above rule is followed too strictly since too many
vehicles may be sent back to the base unnecessarily (i.e., when
they still have large operational radii) if there are few or no
active tasks. This problem can be solved by inserting artificial
loiter tasks (wloiter, ploiter) into W . These tasks are treated in the
same way as real tasks by the RHTA algorithm, but their pur-
pose is to force the vehicles to remain in advantageous areas.

Simulation Results
A multivehicle mission simulation was developed to test the task
assignment algorithms. This simulation includes a base location
and a number of vehicles (20 were simulated in the following
tests), as well as a mechanism to randomly generate tasks and
vehicle failures. The simulation runs RHTA to repeatedly assign
tasks to vehicles and simulate the resulting system response.

Unmanned aerial vehicles (UAVs)
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There are two metrics of performance calculated in the
simulation: the average time it took to service each task
(response time) and how many vehicles were lost during the
mission (vehicle loss occurs when a vehicle runs out of fuel
before returning to the base).

Simulation results are shown in Figure 2. The first test used
RHTA in its original form. Since unmodified RHTA does
not account for vehicle failures, it will command a failed vehi-
cle to continue toward its original target despite the risk that it
may run out of fuel and crash before returning to the base. The
performance of unmodified RHTA results in an average ser-
vice time of 21.3 s, and a vehicle loss rate of 25%.

The second test used the modified form of RHTA, which
proactively recalls failed vehicles to the base while quickly reas-
signing a new, healthy vehicle to the task, using the idea of the
operational radius discussed previously.

The results in Figure 2 clearly show that the modified RHTA
provides a faster average response time due to its proactive reas-
signment behavior. The improvement in response time is about
18%, which is significant considering that the speed of the
vehicles has not been changed, only the way they are assigned.
In addition, the vehicle loss rate is significantly reduced (by
20%) because failed vehicles are automatically returned to the
base instead of continuing toward their assigned tasks.

Flight Results
A set of experiments incorporating all aspects of the work
presented thus far was conducted to demonstrate a complete,
fully autonomous, persistent search and track mission on
MIT’s RAVEN (Real-time indoor Autonomous Vehicle test

Environment) platform [17]. In these experiments, the UAVs
used were Draganfly V Ti Pro R/C helicopters (see Figure 3).
The mission goals were to search for, detect, estimate, and track
an unknown number of ground vehicles in a predefined search
region. The mission was to be carried out over a period of time
longer than the flight endurance of the UAVs being used
(around 5–10 min, depending on the charge of the battery),
necessitating the coordination of multiple UAVs coming in and
out of the flight area as required to maintain coverage. Finally,
active health monitoring was required to detect and adapt to
potential vehicle camera failures during the test.

To carry out the mission, a cooperative vision-based target
estimation and tracking system [18], [19] was combined with
the modified RHTA algorithm. Furthermore, the RHTA
tasking system was interfaced to an autonomous mission sys-
tem [12] that employed battery monitors to estimate the time
of flight remaining for each UAV in the search area and
handled requests by the tasking system to activate vehicles for
use in the search or tracking activities.

The experiment setup is shown in Figure 3. Three UAVs
are initially stationed at their base location at the far north end
of the flight area, while two ground vehicles are positioned at
random locations in the southern region. For these experi-
ments, one of the vehicles was positioned on top of a box, while
the other was located on the ground and was free to move.

The progression of the mission is according to the follow-
ing sequences.

1) At the beginning of the test, the tasking system requests
a single UAV from the mission system.

2) Once the requested UAV is airborne, the tasking system
commands this UAV to begin an area search. During
this initial detection phase, the UAV keeps track of how
many distinct targets it has detected so far and stores
them in a target list. The detection phase lasts for 2 min.

3) After the detection phase ends, the tasking system re-
quests another UAV from the mission system.

Histogram of Service Times for Normal RHTA

N
um

be
r 

of
 O

cc
ur

re
nc

es

20

15

10

Service Time (s)
0 10 20 30 40 50 60 70

5

0

Histogram of Service Times for Extended RHTA
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Figure 2. Simulation results: (a) Normal RHTA: median service time, 18.8 s; average service time, 21.3 s; vehicles lost, 5 of 20
(25.0%). (b) Extended RHTA: median service time, 14.0 s; average service time, 17.4 s; vehicles lost, 1 of 20 (5%).
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4) Once the second UAV is airborne, the system enters
the tracking phase. The tasking system commands the
second UAV into the search area so that there are now
two UAVs in the area. Together, these two UAVs se-
quentially visit each location in the target list found
during the detection phase. The UAVs spend 1 min at
each location before moving on to the next. If there is
a target at the given location when the UAVs arrive,
they begin tracking the target. Additionally, although
the tracking logic is designed to prevent collisions be-
tween the vehicles, a potential function-based method
is used to ensure an additional level of safety. If a UAV
comes too close to another UAV or an obstacle in the
environment, it is repelled away by seeking to move to
an area of lower potential.

5) At any point in the mission, the tasking or mission sys-
tems may determine that a particular UAV needs to re-
turn to the base. The reason for this may be either that
the UAV is getting low on the remaining battery lifetime
or that the UAV’s camera has failed or is performing
poorly. In either case, when a return-to-base condition
is detected, the tasking system sends a sequence of way-
points to the UAV to command it back to the base.
Once at the base location, the mission system lands the
UAV and schedules any necessary refuelling or mainte-
nance. At the same time, another UAV is launched and
sent to the search area. In this manner, the mission is
able to continue as UAVs cycle in and out.

6) The mission continues until a preset mission time
expires or the human operator stops the mission. For
these experiments, the mission time was 11 min.

In the detection phase, a single vehicle explored the search
area and detected the presence of two ground vehicles. Figure 4
shows an early segment of the tracking phase after the second
UAV had entered the search area. In this phase, the two UAVs
estimated and tracked the position of the eastern ground vehi-
cle using the vision tracking system [18], [19].

Figure 5 shows the time history of the mission for all the
three UAVs used in the experiment. At t¼ 0, UAV 1 is taking
off and surveying the area. It then requests a second vehicle
for support at t ¼ 182 s, and UAV 2 takes off and begins

assisting in tracking targets. At t¼ 304 s, UAV 1 receives a low
battery warning and returns to base, while UAV 3 takes off to
replace UAV 1. At t ¼ 433 s, UAV 3 experiences a simulated
camera failure. The system detects the failure and sends UAV 3
back to base while commanding UAV 1 to take off again. The
mission ends at t¼ 650 s. At several points during the mission,
UAVs were successfully changed out because of low-battery
states. In addition, a simulated camera failure during the
tracking phase of the mission resulted in the failed vehicle
returning to the base and a replacement vehicle being sent
out. Due to these correct system responses, the goals of the
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Figure 5. Time history of the persistent surveillance mission.
Colored blocks indicate times when that UAV was actively
flying in support of accomplishing the mission.

Figure 4. Time-lapse image of one phase of the persistent
mission showing cooperative tracking of a moving ground
vehicle using two UAVs.

Figure 3. Persistent search and track mission setup.
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overall mission were able to be accomplished continuously
over the course of the mission.

Conclusions
The health-aware task assignment algorithm developed in this
article was demonstrated to be effective both in simulation and
actual flight experiments. These initial results are very promis-
ing; however, more can be done in the health management
problem in terms of accounting for other types of health states
(sensor performance and control actuator failure modes). Fur-
thermore, an important concept in the health management
problem is to provide a robust performance in the face of uncer-
tainty. Future work will focus on embedding more sophisticated
stochastic models of numerous health states (including fuel usage
and sensor performance) into the problem formulation and
devising techniques to maximize performance while being
robust to the uncertainty inherent in the problem.
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