

Ch. 5. Quantum Mechanics

Erwin Schrödinger (1887-1961)

© 2005 Brooks/Cole - Thomson

Schrödinger's Equation

$$\frac{p^2}{2m} + U(x, y, z, t) = H$$

$$\hat{\mathbf{p}} = -i\hbar\vec{\nabla} \qquad \hat{H} = i\hbar\frac{\partial}{\partial t}$$

$$\frac{\hat{\mathbf{p}}^2}{2m}\Psi(x, y, z, t) + U(x, y, z, t)\Psi(x, y, z, t) = \hat{H}\Psi(x, y, z, t)$$

$$-\frac{\hbar^2}{2m}\nabla^2\Psi(x, y, z, t) + U(x, y, z, t)\Psi(x, y, z, t) = i\hbar\frac{\partial}{\partial t}\Psi(x, y, z, t)$$

Seoul National University

Center for Active Plasmonics

One-Dimensional Schrödinger's Equation

$$-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\Psi(x,t) + U(x,t)\Psi(x,t) = i\hbar\frac{\partial}{\partial t}\Psi(x,t)$$

We consider the case of time-independent potential energy only. U(x,t) = U(x)

$$-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\Psi(x,t) + U(x)\Psi(x,t) = i\hbar\frac{\partial}{\partial t}\Psi(x,t)$$

Seoul National University

Center for Active Plasmonics

Time-Independent Schrödinger's Equation

Try
$$\Psi(x,t) = \psi(x)\phi(t)$$
.
Then, $\phi(t) = e^{-i\frac{E}{\hbar}t}$.

$$-\frac{\hbar^2}{2m}\frac{d^2\psi(x)}{dx^2} + U(x)\psi(x) = E\psi(x)$$

Seoul National University

Center for Active Plasmonics

Wave Functions

Finite and single-valued
Normalized (except for the case of considering plane waves)
Continuous
First-order spatial derivative should be continuous (except for the case of infinite potential energy)

Max Born (1882-1970)

Waves of probability

$|\Psi(x, y, z, t)|^2$ probability density function

Center for Active Plasmonics

One-Dimensional Quantum Well

© 2005 Brooks/Cole - Thomson

One-Dimensional Quantum Well

Seoul National University

Center for Active Plasmonics

eoul National University

One-Dimensional Quantum Well

Center for Active Plasmonics

One-Dimensional Quantum Well

@ 2005 Brooks/Cole - Thomson

One-Dimensional Quantum Well – General Solutions

$$\Psi_{n}(x,t) = \Psi_{n}(x)\phi_{n}(t) = \sqrt{\frac{2}{L}}\sin\left(\frac{n\pi x}{L}\right)e^{-i\frac{E_{n}}{\hbar}t}, \quad n = 1, 2, 3, \cdots$$
$$E_{n} = \frac{\hbar^{2}k^{2}}{2m} = \frac{n^{2}\pi^{2}\hbar^{2}}{2mL^{2}}$$
$$\Psi(x,t) = \sum_{n=1}^{\infty}C_{n}\Psi_{n}(x,t) = \sum_{n=1}^{\infty}C_{n}\sqrt{\frac{2}{L}}\sin\left(\frac{n\pi x}{L}\right)e^{-i\frac{E_{n}}{\hbar}t}$$
where $\sum_{n=1}^{\infty}|C_{n}|^{2} = 1.$

Seoul National University

Center for Active Plasmonics

표 5.1 몇가지 관측가능량에 대한 연산자

물리량	연산자
위치, x	x
선운동량, p	$\frac{\hbar}{i} \frac{\partial}{\partial x}$
퍼텐셜 에너지, <i>U</i> (x)	U(x)
운동 에너지, KE = $\frac{p^2}{2m}$	$-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2}$
총 에너지, E	$i\hbar \frac{\partial}{\partial t}$
총 에너지(Hamilton의 모양), <i>H</i>	$-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + U(x)$

Operators and Observables

모든 물리량에는 해당하는 Hermitian Operator가 있고 그 고유치(eigenvalue)는 실수이며, 그 물리량을 측정할 때 측정될 수 있는 값들은 그 고유치들이다.

기대치
$$\langle Q \rangle = \int_{-\infty}^{\infty} \Psi^* \hat{Q} \Psi dx$$

Seoul National University

Center for Active Plasmonics

V

V

© 2005 Brooks/Cole - Thomson

Seoul National University

Center for Active Plasmonics

Seoul National University

@ 2005 Brooks/Cole - Thomson

(b)

© 2005 Brooks/Cole - Thomson

Finite Potential Well

그림 5.7 유한한 장벽을 가진 네모 퍼텐셜 우물. 갇혀 있는 입자의 에너지 E가 장벽 높이 U보다 작다.

Seoul National University

Finite Potential Well

그림 5.8 유한 퍼텐셜 우물에서의 파동함수와 확률밀도. 입자는 우물 바깥에서도 발견될 일정한 확률을 가진다.

Seoul National University

Center for Active Plasmonics

Seoul National University

Center for Active Plasmonics

Bandgap Engineering

Seoul National University

MBE (Molecular Beam Epitaxy)

 $http://people.deas.harvard.edu/~jones/ap216/images/bandgap_engineering/bandgap_engineering.html$

Seoul National University

Quantum Well Devices

Multiple quantum well lasers

Quantum Well Devices

Seoul National University

More Quantum – Quantum Wires and Quantum Dots

Quantum wire laser operating through the eye of a needle

Average pore

diameter is 52

nm.

Carbon nanotube

V-groove quantum wire field effect transistor http://www.shef.ac.uk/eee/research/smd/research/quantum fet.html

Seoul National University

http://wwwrsphysse.anu.edu.au/ admin/pgbrochure/nano.html

http://www.people.vcu.edu/~sbandy/project1.html

Center for Active Plasmonics