
"Imagination is more important than knowledge. For knowledge is limited to all we now know and understand, while imagination embraces the entire world, and all there ever will be to know and understand."

Albert Einstein (1879-1955)

eoul National University

Stimulated Emission

At equilibrium

$$N_i B_{ij} u(\nu) = N_j \left[A_{ji} + B_{ji} u(\nu) \right]$$

Seoul National University

Stimulated Emission

$$N_{i}B_{ij}u(\nu) = N_{j}\left[A_{ji} + B_{ji}u(\nu)\right]$$
$$u(\nu) = \frac{A_{ji} / B_{ji}}{\left(\frac{N_{i}}{N_{j}}\right)\left(\frac{B_{ij}}{B_{ji}}\right) - 1}$$
$$\frac{N_{i}}{N_{j}} = e^{\left(E_{j} - E_{i}\right)/k_{B}T} = e^{h\nu/k_{B}T}$$
$$u(\nu) = \frac{8\pi h\nu^{3} / c^{3}}{\left(\frac{B_{ij}}{B_{ji}}\right)}e^{h\nu/k_{B}T} - 1$$

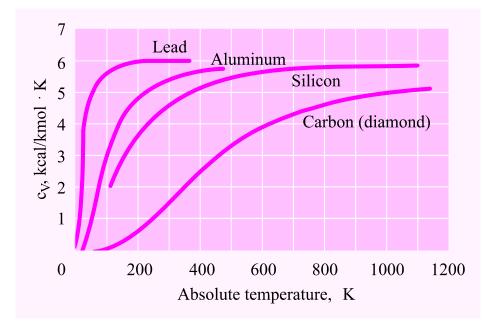
Boltzmann factors

Planck's distribution

Center for Active Plasmonics

Emission's A, B Coefficients

$$B_{ij} = B_{ji} \equiv B$$
$$A \equiv A_{ji} = \frac{8\pi hv^3}{c^3} B_{ji}$$


Stimulated emission should exist!

Seoul National University

Center for Active Plasmonics

Specific Heat of Solids

 $E = 3N_0k_BT = 3RT$

internal energy of 1kilomole of soild N_0 : Avogadro's number

$$c_V = \left(\frac{dE}{dT}\right)_V$$

 $c_V = \frac{d(3RT)}{dT} = 3R$ Dulong-Petit law

Seoul National University

Center for Active Plasmonics

$$\overline{\varepsilon} = \frac{h\nu}{e^{h\nu/k_BT} - 1}$$

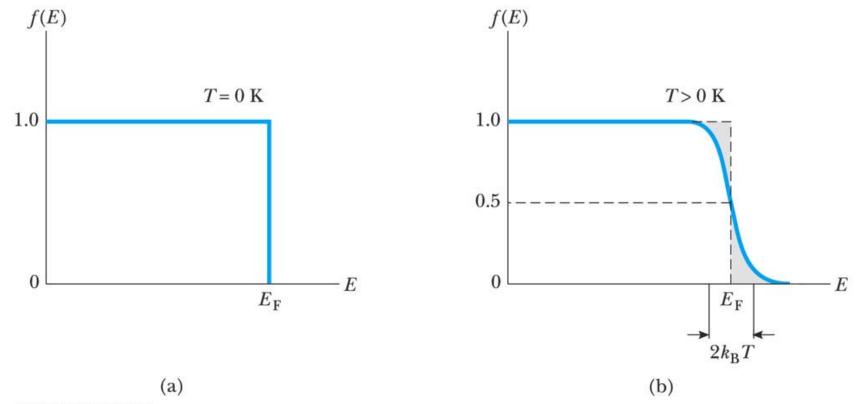
$$E = 3N_0\overline{\varepsilon}$$

$$c_V = \left(\frac{dE}{dT}\right)_V = 3R\left(\frac{h\nu}{k_BT}\right)^2 \frac{e^{h\nu/k_BT}}{\left(e^{h\nu/k_BT} - 1\right)^2}$$

Seoul National University

Center for Active Plasmonics

Debye's Theory of Specific Heat of Solids


Coupled harmonic oscillators

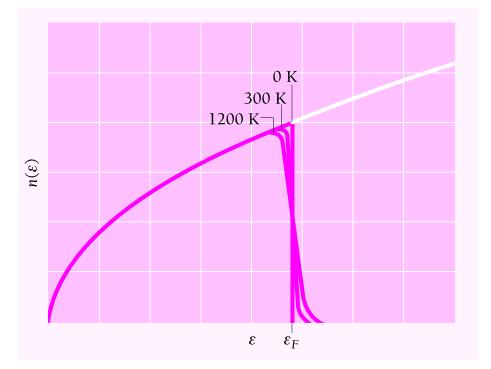
Phonons

Fermi-Dirac Distribution

@ 2005 Brooks/Cole - Thomson

Seoul National University

Density of States in 3D Structure (Metal)


$$g(E)dE = D\sqrt{E}dE$$
$$D = \frac{8\sqrt{2}\pi m^{3/2}}{h^3}$$
$$n(E)dE = \frac{D\sqrt{E}dE}{e^{(E-E_F)/k_BT} + 1}$$
$$\frac{N}{V} = \int_0^\infty n(E)dE = D\int_0^\infty \frac{\sqrt{E}dE}{e^{(E-E_F)/k_BT} + 1}$$

Seoul National University

Center for Active Plasmonics

Fermi Energy in Metal

At
$$T = 0K$$

$$\frac{N}{V} = D \int_0^{E_F} \sqrt{E} dE = \frac{2}{3} D E_F^{3/2}$$

$$E_F(0) = \frac{h^2}{2m} \left(\frac{3N}{8\pi V}\right)^{2/3}$$

Seoul National University

Center for Active Plasmonics

표 9.2 페르미 에너지 eV

금속		페르미 에너지, eV
Lithium	Li	4.72
Sodium	Na	3.12
Aluminum	Al	11.8
Potassium	Κ	2.14
Cesium	Cs	1.53
Copper	Cu	7.04
Zinc	Zn	11.0
Silver	Ag	5.51
Gold	Au	5.54

Seoul National University