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1. Discrete time signals and systems

1. Discrete-time signals and systems 

• Discrete - time signals: sequences

– Discrete-time signals are represented as sequences of numbers

– A sequence is a function whose domain is the set of integers

– Define the nth number in the sequence by         , a set of numbers can be represented  

by 

– Note that

discrete-time signal                        analog signal 

where T denote the sampling period.

– A delayed or shifted version of          :

where       is an integer
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1. Discrete time signals and systems

– An unit sample sequence is defined by

which is also referred to as a discrete-time impulse or simply as an impulse

– An arbitrary sequence can be represented as a sum of weighted and delayed   

impulses

Ex)

– The unit step sequence is defined by
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1. Discrete time signals and systems

• Let             be an exponential sequence given by 

– For complex                     and 

– Complex exponential sequence

where        is called the frequency of the complex sinusoid and      is called the phase

– Since

complex exponential sequences with frequencies                  ,  where k is an integer, 

are indistinguishable from one another

– A sinusoidal sequence can be represented by  

– Since

we consider      in a frequency interval of length 

or 
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1. Discrete time signals and systems

– A sequence is called periodic with an integer period of N, if

– In order for a sinusoidal sequence to be

it requires for

– A sinusoidal sequence is not necessarily periodic with a period of           and may not 

be periodic at all, depending on the value of

Ex

• High and low frequency concept: A continuous time sinusoidal signal

oscillates more rapidly as        increases. However,            oscillates

more rapidly as       increases from  0   toward    . 

But, as        increases from      to       ,  the oscillation becomes slower due to symmetry 
with respect to     .
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1. Discrete time signals and systems

• Discrete-time systems 

– Ideal delay system

– Moving averager

– Memoryless system 

A system is referred to as memoryless if the output          depends only on the input

– Linear system : principle of superposition 

Ex: accumulator
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1. Discrete time signals and systems

– Time-invariant system (TIS): A time shift or delay of the input sequence results in a 

corresponding shift in the output sequence

– Causality: A system is causal if the output sequence at             depends only on the 

input sequences for

Ex:  non causal

causal

– Stability: A system is stable in the BIBO sense iff every bounded input sequence 

produces a bounded output sequence
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1. Discrete time signals and systems

• Linear time-invariant systems

– Let             be the response of the system to the input      , i.e.,

– Time invariance implies

– Discrete-time convolution

– To compute                  first reflect          about the origin to obtain            and then shift 

the origin to
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1. Discrete time signals and systems
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1. Discrete time signals and systems

• Properties of LTI system

– Commutative

– Cascaded connection

Letting                                  we have
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1. Discrete time signals and systems

– A Linear system is stable iff the impulse response is absolutely summable, i,e.,

Proof

Sufficient condition:

If         is bounded, i.e.,

then,

Necessary condition: 

Show that if              , a bounded input can cause an unbounded output.

Consider  a bounded sequence given by 
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1. Discrete time signals and systems

Ex

Note: The property of convolution can be used to analyze the time-invariant system
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1. Discrete time signals and systems

• Linear constant coefficients difference equations

– An Nth order linear const. difference eq. is represented by

When the right side term is equal to zero, it is called the homogeneous difference eqn.

Ex: Accumulator

Ex: Moving average 
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1. Discrete time signals and systems

Ex
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1. Discrete time signals and systems

• Frequency-domain representation of DTS

Let

eigen-value                           eigen-function of the system
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1. Discrete time signals and systems

Ex: Ideal delay

Since                              for an ideal delay system,

– For 

the output of the system is  

← principle of superposition

Ex:
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1. Discrete time signals and systems

Ex:  Delay

– Discrete-time LTI → periodicity of 

Ex:   Ideal frequency selective filters (LPF)
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1. Discrete time signals and systems

Ex: [ ] 1 2
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1. Discrete time signals and systems

• Representation of sequences by Fourier transform

– A stable sequence can be represented by a Fourier integral of the form

where

Since                is periodic with period       , it is of the form of Fourier series for the

continuous-variable periodic function            . 

– Note that  Eq (A)  is the inverse of Eq. (B)
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1. Discrete time signals and systems

– If            is absolutely summable (i.e., stable sequence),               exists.

– Furthermore,          can be showen to converge uniformly to a continuous function of 

⇒ Any stable sequence (or system) have a finite and continuous frequency response:

(Sufficient condition for existence of             ) 

– A finite-length sequence is absolutely summable

Ex:

– If a sequence is not absolutely summable, but square summable ; i.e.,

it can be represented by a Fourier transform with mean-square convergence, i.e.,
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1. Discrete time signals and systems

Ex:  Ideal LPF

non causal and not absolutely summable

is discontinuous at

But          is mean-square summable

Ex:                     :  neither absolutely nor square summable

Since
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1. Discrete time signals and systems

– Theory of generalized functions

– Conjugate symmetric sequence:

– Conjugate anti-symmetric sequence:

where
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1. Discrete time signals and systems

– Note that

Ex:
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1. Discrete time signals and systems

• Fourier transform theorems

– Linearity:

– Delay:

– Time reversal:

If            is real,

– Differentiation:

– Parseval’s theorem:
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1. Discrete time signals and systems

– Convolution:

periodic convolution

⇒ Multiplication of two sequences is equivalent  to periodic convolution of    

corresponding Fourier Transforms.

Ex:
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1. Discrete time signals and systems

• Discrete-time Random Signals

– Consider an LTI system with impulse response 

When            is a WSS discrete-time random process,

– If stationary,

[ ]h n
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1. Discrete time signals and systems

– Autocorrelation of [ ]y n
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2. Periodic sampling of continuous-time signals

2. Periodic Sampling of Continuous-time Signals
• Impulse sampling: ideal continuous-to–discrete (C/D) converter

where                 is the sampling period and      is called the sampling  frequency
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2. Periodic sampling of continuous-time signals

– Fourier transform of 
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c
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2. Periodic sampling of continuous-time signals

• Natural Sampling

( )cx t ( )sx t
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0 τ T T +τ
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2. Periodic sampling of continuous-time signals

• Sample and hold (S/H)

( )cx t ( )sx t

0 τ
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2. Periodic sampling of continuous-time signals

• Nyquist Sampling Theorem

– If              is strictly band limited,  i.e., 

and the sampling frequency is chosen  such that

then

Since

if the sample values              are specified for all time,   is uniquely determined

by using the Fourier series.

⇒ is uniquely determined by  

( )cx t ( ) 0    X f f W= >for
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2. Periodic sampling of continuous-time signals

• Reconstruction of a band limited signal from its samples: Interpolation formula

⇒ A band-limited signal of finite energy can be completely recovered by its samples   

taken at a rate of 2W/sec

– Ideal reconstruction filter
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2. Periodic sampling of continuous-time signals

• Poisson sum formula

A periodic signal           with period T is represented by the Fourier series,( )sx t
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2. Periodic sampling of continuous-time signals

• Discrete-time processing of continuous-time signals

low pass
reconstruction 
filter

– The freq-domain representation is easier than the time-domain representation

x tcb g x n y n y tr b g

T T

C D/ h n D C/

discrete - time
system
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2. Periodic sampling of continuous-time signals

• LTI discrete-time systems

– If                is band limited and the sampling rate is larger than the Nyquist rate,

the effective frequency response is

( ) ( ) ( )j j jY e H e X eω ω ω=
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2. Periodic sampling of continuous-time signals

• Example of signal reconstruction
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2. Periodic sampling of continuous-time signals

Ex: Ideal LPF

Ex: Ideal band-limited differentiator

( ) ( ) ( )
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2. Periodic sampling of continuous-time signals

– Impulse invariance 

⇒ When                          , the discrete-time system is said to be an impulse-invariance

version of the continuous-time system.

Ex:

The resulting discrete-time frequency response is aliased
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2. Periodic sampling of continuous-time signals

• Continuous-time processing of discrete-time signals
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2. Periodic sampling of continuous-time signals

Ex:  Non-integer delay ( ) ,j jH e eω ω ω π− Δ= <
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2. Periodic sampling of continuous-time signals

– Ex:  Moving average with non-integer delay

When M=5,

for ( )
( )

           [ ] cos 0.25

[ ] 0.308cos 0.25 2.5

x n n

y n n

π

π

=

⇒ = −⎡ ⎤⎣ ⎦

[ ]
1 , 0

 1
0,  otherwise

n M
h n M

⎧ ≤ ≤⎪= +⎨
⎪⎩

( ) 2

( 1)sin1 2 ,   
1 sin

2

Mjj

M

H e e
M

ω
ω

ω

ω πω
−

+

⇒ = <
+

[ ] 
2
My n w n⎡ ⎤= −⎢ ⎥⎣ ⎦



420.461: Digital Signal Processing copyright@Yong-Hwan Lee

Seoul National University
School of Electrical Engineering

2. Periodic sampling of continuous-time signals

• Changing the sampling rate

– Decimation by M (sampling rate compressor)

Let                   Then,
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2. Periodic sampling of continuous-time signals

– Decimation by M (cont.)

To avoid aliasing, a LPF is

required before down-sampling

Example: When M=3:

[ ]x n�x n
T

LPF

[ ]dh n
'T MT=

[ ]dx n�
M↓
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2. Periodic sampling of continuous-time signals

– Interpolation by L (sampling rate expander)

[ ] ( );

     

i c
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2. Periodic sampling of continuous-time signals

– D/C conversion

In practice, we use an approximate LPF.

– Linear interpolation
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2. Periodic sampling of continuous-time signals

– Changing the sampling rate by a non-integer ratio

[ ]ex nx n [ ]ix n

T
L
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[ ]dx n
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MT
L
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L
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2. Periodic sampling of continuous-time signals

– Changing the sampling rate by a non-integer ratio                       (cont.)
LR
M

=
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2. Periodic sampling of continuous-time signals

• Multirate signal processing 

– Interchange the filtering and the down sampling process

[ ]x n [ ]ax n [ ]y n
M↓ ( )H z
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2. Periodic sampling of continuous-time signals

• Multirate signal processing 

– Interchange the filtering and the down sampling process

– Interchange the filtering and the interpolation process
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2. Periodic sampling of continuous-time signals

– Poly phase implementation of interpolation filters

Note that only every Lth sample of          is nonzero

Consider decomposition of an impulse response         by

By successively delaying these subsequences, we can reconstruct by
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2. Periodic sampling of continuous-time signals

z
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2. Periodic sampling of continuous-time signals

• Digital processing of analog signals

– Quantization error:

– Assuming that the error sequence           is uncorrelated with and it is uniformly 

distributed over

– For a  (K+1)- bit quantizer with full-scale value 

SQNR is increases approximately 6dB for each bit added to the quantizer.
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Transform analysis of L.T.I. systems
• Frequency response of LTI systems

– Ideal frequency-selective filters

x n y n
h n

[ ] [ ] [ ] ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( )j j

k

j ArgH e ArgX ej j j j j

y n x k h n k Y z H z X z

Y e H e X e H e X e e
ω ω

ω ω ω ω ω +

= − ⇔ =

⇒ = =

∑

[ ] j nx n e ω=

( )

( ) ( )
[ ] [ ] [ ]

[ ]

c

1,

0, otherwise

1 :    

sin     

cj
lp

j j
hp lp

hp lp

c

H e

H e H e

h n n h n

nn
n

ω

ω ω

ω ω

ω ω π

δ

ωδ
π

⎧ ≤⎪= ⎨
< ≤⎪⎩

⇒ = −

⇒ = −

= − ⇐

ideal  high - pass  filter

not computationally realizable

        ↑
complex gain (or eigenvalue)

eigenfunction



Digital Signal Processing Yong-Hwan Lee

Seoul National University
School of Electrical Engineering

– Ideal delay

– Low-pass filter with linear phase (or delay)

– Group delay: A measure of the nonlinearity of the phase

Example

⇒ The time delay of the envelope         of  narrowband signal centered at       is

given by the negative of the slope of the phase at      
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• Linear constant coefficient difference equation

Example
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– Causal system

is a right-sided sequence

⇒ The region of convergence of                 should be outside the outermost pole

– Stable system: absolutely summable

– Example

To be causal, ROC ⇒

To be stable, ROC ⇒

– In order for an LTI system to be both stable and causal, the ROC must be outside the 
outermost pole and include the unit circle, i.e., all poles inside the unit circle

– Depending upon the choice of ROC, the same difference equation results in a different 

impulse response

[ ]h n
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– Inverse system

Let              be

To hold this equation, the ROC of Hi(z) and H(z) must overlap

If H(z) is causal, the ROC is

⇒ The ROC of               should overlap with

Example 1:

Example 2:
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If  H(z) is causal with zeros at      ,             will be causal iff the Roc of              is

If             is stable, the RoC of           must include the unit circle,

H(z) and its inverse are stable and causal iff both poles and zeros of H(z) are

inside the limit circle.  ⇒ minimum-phase system

– Impulse response of for rational system functions

If causal,

Example: A first-order IIR filter

( )
1

0 1

,
1

M N N
k

k k

A
H z B z M N

d z

−
−

−
= =

= + ≥
−

∑ ∑A
A

A

[ ] [ ] [ ]

[ ] [ ] [ ] [ ]
0 1

0 1

,   
M N N

n
k k

k

M N N
n

k k
k

h n B n A d u n M N

y n B x n A d u n x n

δ
−

= =

−

= =

= − + ≥

⇒ = − + ∗

∑ ∑

∑ ∑

A
A

A
A

A

A

[ ] [ ] [ ] ( )

[ ] [ ]
1

11     ;    :  
1

  1  n

y n ay n x n H z z a
az

a h n a u n

−− − = ⇒ = >
−

< ⇒ =

ROC

For stability,

max 1kk
c <

max kk
z c>

( )H zi( )H zi

( )H zi

IIR termFIR term

kc

( )H zi



Digital Signal Processing Yong-Hwan Lee

Seoul National University
School of Electrical Engineering

FIR system

Example
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• Frequency response for rational systems

– Gain (or attenuation)

– Phase response

– Group delay
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• Frequency response of a single pole or  zero

– Single zero
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– Example: Real single zero
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– Second-order IIR system

( ) ( )( )
[ ] [ ] [ ] [ ]

[ ] ( ) [ ]

1 2 21 1

2

1 1
1 2 cos1 1

2 cos 1 2

sin 1
sin

j j

n

H z
r z r zre z re z

y n r y n r y n x n

r n
h n u n

θ θ θ

θ

θ
θ

− −− −
= =

− +− −

⇔ − − + − =

+
⇒ =

1v
ω 3v

2vθ−

( )

( )( ) ( )
( )

( )
( )

2
3

1 2 1 2

1 1

1

sin sin
rg tan tan

1 cos 1 cos

j

j

v
H e

v v v v

r r
A H e

r r

ω

ω θ ω θ ω
θ ω θ ω

− −

= =
⋅

− +
= − −

− − − +

( ) 1 2

1
1 0.9 2 0.81

H z
z z− −

=
− +



Digital Signal Processing Yong-Hwan Lee

Seoul National University
School of Electrical Engineering

– Third-order IIR system

( ) ( )( )
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1 1 2
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• Relationship between magnitude and phase

– In general, magnitude information                          phase information

– In cases of rational system functions, there is some constraint between magnitude and 

phase 

– The square of the magnitude frequency response is the evaluation of z-transform on 

the unit circle

– Question: Can we know of H(z) from C(z) ? 
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– If H(z) is assumed to be causal & stable, all its poles are in the unit circle 

⇒ Poles of H(z) can be identified uniquely 

Example  System with the same C(z)
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• All pass system

– A stable system function of the form

has a frequency-response magnitude independent of 

– In general, the transfer function of an all-pass system is given by

– All-pass system can be used for compensating group delay distortion.

– Causal all-pass system has positive group delay (but not continuous phase) property      
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– Example                                                         
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– Example                                                         
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• Minimum-phase system

– It has its poles and zeros all inside the unit circle.

⇒ Any minimum-phase system             is causal and stable.

⇒ is a causal, stable, and min-phase system

– Cascade of both systems will not introduce any delay 

– Energy concentration

For an arbitrary stable and causal system             ,  let    be the min-phase 

function s.t.,

Then, for any sequence           and K, 

⇒ The signal energy is transported with the smallest possible delay using a 

minimum-phase system

Example If                     

( )1H z−
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– The min-phase function has its energy maximally concentrated near the time origin.

proof

Let

The energy of 

Assume           vanishes for

But            is not necessarily zero for

– cannot be uniquely determined from           , because cascading all-pass filters 

does not affect the magnitude of the frequency response.
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– Any rational rational transfer function can be expressed as

Assume that              has all zeros and poles inside the unit circle except one 

zero outside the unit circle at

where            is minimum phase

has poles and zeros of            inside the unit circle plus zeros that are 

conjugate reciprocals of the zeros of           outside the unit circle

contains all the zeros of             outside the unit circle

Example
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– The amplitude characteristics of a minimum-phase filter is fully determined by the 

phase characteristics and vice versa

Proof

Since          has its poles and zeros inside the unit circle,

has a causal and well behaved inverse Fourier transform, i.e., 

We can see that                  and                    form a Hilbert transform pair.

Since                 is the logarithm of a real-valued symmetric function of frequency, it 

is real and symmetric

Thus we can compute  

( ) ( )   j jG e G eω ω⇒ We can compute  from
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– Frequency-response compensation

If                is a min-phase system, perfect compensation is generally possible

The frequency response magnitude is exactly compensated with some delay

Example

s n s nc
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In general, min-energy delay property

– Maximum phase system is a stable system  whose poles and zeros are all outside the 

unit circle

stable                                     smallest

⇒ all poles contribute to           with terms of the form

⇒ anti causal!
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Note that FIR max-phase sequence can be made causal by introducing a finite 

delay

– Property of min-phase systems

minimum phase-lag

negative for 

minimum group-delay

minimum energy delay property
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4. Structure for discrete-time systems

Structure for discrete-time systems
• Characterization of an LTI system can be represented by difference equation, impulse 

response or system function

Example:

• For description of systems for implementation, use the block diagram  and/or signal flow 

graph method

( )
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1
0 1

1

1
0 1

                             ,
1
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az
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⇒
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Impulse response :
Infinite duration impulse response 
Not possible to implement the system by discrete time convolution
The

[ ] [ ] [ ] [ ]0 1                       1 1y n ay n b x n b x n= − + + −

 output can be calculated by a recursive computation algorithm
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4. Structure for discrete-time systems

• Basic block diagram symbols 

Example

y n

x n

z n x n y n= +

x n a y n ax n=

x n y n x n= −1
z−1

[ ] [ ] [ ] [ ]1 21 2y n a y n a y n bx n= − + − +

z−1

z−1

x n b y n

y n −1
a1

a2
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4. Structure for discrete-time systems

–

< direct form I>

z−1
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:
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4. Structure for discrete-time systems

– By interchanging the cascaded blocks,

< direct form II or canonic direct form >
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4. Structure for discrete-time systems

• Signal flow graph representation    

Example

node j
j nω ⎡ ⎤⎣ ⎦

branch j k,
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x n ω 1 n c

b

d

e
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4. Structure for discrete-time systems

Example    

z−1

x n ω n
b0

ω n −1

y n

b1a

x n ω n y nb0

b1

z−1

a

[ ] [ ] [ ]
[ ] [ ] [ ]

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )
( )

0 1

1 1

1 1
0 1 0 1

1 1
0 1

1
0 1

1

1

1

1

     

1

1

n x n a n

y n b n b n

W z X z aW z z X z az W z

Y z b W z bW z z Y z b b z W z

Y z X z
W z

b b z az
Y z b b zH z
X z az

ω ω

ω ω
− −

− −

− −

−

−

= + −

= + −

⇒ = + ⇒ = +

= + ⇒ = +

⇒ = =
+ +

+
⇒ = =

+



420.461: Digital Signal Processing copyright@Yong-Hwan Lee

Seoul National University
School of Electrical Engineering

4. Structure for discrete-time systems

• Basic structures for IIR systems

– Direct form I

– Direct form II

( )
1 2

1 2

1 2
1 0.75 0.125

z zH z
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4. Structure for discrete-time systems

– Cascade form

( )
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4. Structure for discrete-time systems

– Parallel form 
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4. Structure for discrete-time systems

Example

x n y n

8

−7

z−1

z−1
80 75.

−01125.

z−1

z−1

x n y n8 18

−0 25.
05.

0 25.

( )
1 2

1 1

1

1 1

1 1

1 2
1 0.75 0.125

7 88
1 0.75 0.125

18 258
1 0.5 1 0.25

z zH z
z z

z
z z

z z

− −

− −

−

− −

− −

+ +
=

− +
− +

= +
− +

= + −
− −
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4. Structure for discrete-time systems

• Transposed forms

– Signal flow graph methods provide procedures for transforming graphs into different forms

– Transposition of a flow graph (flow graph reversal) is obtained by reversing the directions 

of all branches, while keeping the branch transnittances and reversing the roles of the 

input and output

Example
x n y n

z −1

a

y n x n

z −1

a

x n y n

z −1

a

( ) 1

1
1

H z
az−

=
−

The difference is 
the change in ordering

Transposed form
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4. Structure for discrete-time systems

Example Transposed form of a second-order structure

Transposed direct form II

z−1

y nx n ω n

a1 b1

a2 b2

z−1

0b

[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]

1 2

0 1 2

1 2

1 2

n a n a n x n

y n b n b n b n

ω ω ω

ω ω ω

= − + − +

= + − + −

b2a2

b0

b1

z −1

a1

z −1

y n x n

x n y nb0 v n0

z −1

z −1

b1 a1

b2 a2
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4. Structure for discrete-time systems

• Basic network structure for FIR systems

– Direct form

Causal FIR systems

In the transposed form,

[ ] [ ] [ ]
0

, 0
0 , otherwise

M
n

k
k

b n M
y n b x n k h n

=

≤ ≤⎧
= − ⇒ = ⎨

⎩
∑

x n z−1 z−1 z−1

h 0 h 1 h 2

y n

[ ]h M

x n

z−1y n z−1

h 1 h 2 h Mh 0

z−1 z−1 z−1

h M h M −1

y n

h 0
x n

z−1

 ⋅ ⋅ ⋅

[ ]2h M −

Transversal filter or
  tapped delay line
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4. Structure for discrete-time systems

– Cascade form

( ) [ ] ( ) ( )1 2
0 1 2

0 1
;   1 / 2

sMM
n

k k k s
k k

H z h n z b b z b z M M− − −

= =

= = + + = +⎢ ⎥⎣ ⎦∑ ∏

z−1

z−1

z−1

z−1

b02b01

b11 b12

b21 b22

z−1

z−1

0 sMb

1 sMb

2 sMb

[ ]x n [ ]y n
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4. Structure for discrete-time systems

– Structure for linear phase FIR systems

Causal linear phase FIR systems 

[ ] [ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

0

1
2

0 / 2 1

1 1
2 2

0 0

   for 0

2 2
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M
M

k k M

M M
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h M n h n h M n h n n M

y n h k x n k

M Mh k x n k h x n h k x n k

M Mh k x n k h x n h M k x n M k

=

−

= = +

− −

= =

− = − = − ≤ ≤

⇒ = −

⎡ ⎤ ⎡ ⎤= − + − + −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤= − + − + − − +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∑

∑ ∑

∑ ∑
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1

2

0

 

2 2

M

k

h M n h n
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⎡ ⎤ ⎡ ⎤= − + − + + −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∑

When (type - I system),

z−1 z−1 z−1

z−1 z−1
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O
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L
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4. Structure for discrete-time systems

Symmetry condition

⇒ zeros of             occur mirror image pairs

If             is real, zeros of            occur in complex conjugate pairs.

z3

z4

z3
*

z1
*

z1

z2 1

2z

1

1z

1

1z
*

( )H z

[ ]h n ( )H z

( ) [ ]( )( )( )( )

{ }

1 1 2 1 2 1 2 3 4

2

2 3 1 1
2 1 1

0 1 1 1 1

1 1 1,   2Re ,   2Re ,   2

H z h z az z bz z cz dz cz z

a z b z c z d z
z z z

− − − − − − − − −= + + + + + + + + +

⎧ ⎫
= + = = − + = + +⎨ ⎬

⎩ ⎭
where
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5. Filter design techniques

Filter Design Techniques
• Design procedure 

– Specify the desired frequency Response

– Approximate the specifications

– Realize the filter ( ) ,j
effH e H

T
ω ω ω π⎛ ⎞= <⎜ ⎟

⎝ ⎠
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5. Filter design techniques

• Design of discrete-time IIR filters from continuous-time filters

– Filter design by impulse invariance

The discrete-time filter specifications are transformed to continuous-time filter 

specifications by

Design a suitable continuous-time filter

Transform to the desired discrete-time filter 

[ ] ( )d c dh n T h nT=

C D/ h n D C/
xa τb g x n y n ya τb g

TTdT

( ) 2j
c

k d d

H e H k
T T

ω ω π∞

=−∞

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑

( ) ( ) 1, ,      0,
2

j
c c

d d

H e H H f f
T T

ω ω ω π
⎛ ⎞

= ≤ = ≥⎜ ⎟
⎝ ⎠

if

( )2
d

f
T
ω π⇔ =Ω

( )cH s

( )H z
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5. Filter design techniques

For 

By sampling

A pole at             in the s-plane is transformed to a pole at              in the z-plane.

If               is stable, the real part of

⇒

⇒ pole is inside the unit circle

⇒ is also stable

Although the poles in the s-plane are mapped in the z-plane in a simple manner,

the zeros are not.

( ),ch t

[ ] [ ] [ ] ( ) [ ]

( )
1 1

1
1 1

k d k d

k d

N N ns nT s T
d c d d k d k

k k

N
d k
s T

k

h n T h nT T A e u n T A e u n

T AH z
e z

= =

−
=

= = =

⇒ =
−

∑ ∑

∑

ks s= k ds Tz e=

( )cH s 0ks <

1k ds Te <

( )H z

( ) ( ) 1
1

, 0
,    

0 , 0

k
N

s tN
kk

kc c
k k

A e tAH s h t
s s t

=
=

⎧ ≥⎪= = ⎨− ⎪ >⎩

∑∑
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5. Filter design techniques

– Butterworth (BW) filter

The magnitude response of a BW filter is

where        is the   3dB frequency

( ) ( ) ( )2 2

2 1    
1

1

1
2

Nc

c

N

c

H s H s
s
f

H f
f
f π

= ⇐ − =
⎛ ⎞

+ ⎜ ⎟
⎝

⎞
⎜ ⎟
⎝ ⎠

⎛
+

⎠

cf

( )2 1
2 ; 0,1,2, ,2 1

j k N
N

k cs e k N
π

+ −⎧ ⎫⇒ =Ω = −⎨ ⎬
⎩ ⎭

"poles are
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5. Filter design techniques

Example Design a continuous-time Butterworth (BW) filter s.t.

The magnitude response of a BW filter is

where       is the          frequency

By solving

1

1 1− δ

δ 2

ω p ω s

1

2

0.10875
0.17783
0.2
0.3

p

s

δ
δ
ω π

ω π

=
=
=

=

( )

( )

0.89125 1, 0 0.1

10.17783 0.15
2

c

c

H f f

H f f

≤ ≤ ≤ ≤
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( ) ( ) ( )2 2

2 1    
1

1

1
2

Nc

c

N

c

H s H s
s
f

H f
f
f π
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⎛ ⎞

+ ⎜ ⎟
⎝

⎞
⎜ ⎟
⎝ ⎠

⎛
+

⎠

2 2

2 2

0.1 11
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0.15 11
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N

c
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c

f

f

⎧ ⎛ ⎞ ⎛ ⎞+ =⎪ ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎪ ⎝ ⎠

⎨
⎛ ⎞⎪ ⎛ ⎞+ =⎜ ⎟ ⎜ ⎟⎪ ⎝ ⎠⎝ ⎠⎩

5.8858 6
0.11216c

N N
f

⇒ = ⇒ =
=

cf 3dB

1    dT ω= = ΩLet so that

( )2 1
2
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N
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j
s f e j

j
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π
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c
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5. Filter design techniques

This method is useful only for band-limited filters

( ) ( )( ) ( )

( ) ( )

( ) ( )

( ) ( )

2 2 2

1 2

3 4

5 6

0.12093
0.3645 0.4945 0.99455 0.4945 1.35855 0.4945
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5. Filter design techniques

– Bilinear transformation

To avoid aliasing, we employ the bilinear transform

∞ −∞

2πf

−π π
ω

( )
1

1

2 1
1c

d

zH z H
T z

−

−

⎡ ⎤−⎛ ⎞= ⎢ ⎥⎜ ⎟+⎝ ⎠⎣ ⎦

1

1

1
2            2

1
2

1
2                               

2 1

  
1

2
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1

  

d

d
d

d
d

d

s
z s jzs
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T j fT

T j fT

z

π

σ π

σ π

σ π

σ

−

−

⎛ ⎞ +
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−
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− −
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−
= ⎜ ⎟+⎝ ⎠

<if

1

1

2 1
1d
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−

−

−⎛ ⎞= ⎜ ⎟+⎝ ⎠



420.461: Digital Signal Processing copyright@Yong-Hwan Lee

Seoul National University
School of Electrical Engineering

5. Filter design techniques

The             axis of the s-plane maps onto the unit circle of the z-plane

For

or

2j fπ

2 ,
1 1  1    
1 1

jd d

d d

s j f
j fT j fTz z e
j fT j fT
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⎝ ⎠
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5. Filter design techniques

H
c

(Ω
)

Ω
p

Ω
s

Ω

ω p ω s π
ω
ω
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5. Filter design techniques

Example Bilinear transformation of a BW filter 

( )
2 2

2

2

2 2

1 0.6498 11 1.2589
0.89125

1

1.01905 1                                         1 31.6220
0.17783

N

c N
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ω
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N
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5. Filter design techniques

( ) ( )( )

( )

2 2

2

0.20238
0.39965 0.5871 1.08365 0.5871

1
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cH s
s s

s
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+ + + +

×
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5. Filter design techniques
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5. Filter design techniques

The magnitude of N-th order Butterworth filter can be  represented  by

Note  that  this BW filter is maximally flat,                   , and periodic with a period 

of 2π.

Maximally flat ⇔ The first (2N-1) derivatives of are zero at  

It is not easy to directly find the poles and zeros in the z-plane from                                         

since the magnitude-squared function should be factorized into                      to 

determine     

( ) 2

2
1 2;     tan tan

2 2 2
tan

21
tan

2

j c c D
N

d

c

TH e
T

ω ω ω
ω

ω

Ω
= = ⇐Ω =

⎛ ⎞
⎜ ⎟

+ ⎜ ⎟
⎜ ⎟
⎝ ⎠

( ) 1
2

cjH e ω =

0ω =

( ) 2jH e ω

( ) ( )1H z H z−

( ).H z
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5. Filter design techniques

• Design of type-I Chebyshev filters 

– is the N-th order Chebyshev polynomial defined by

( ) 2

2 2

1

1 N
c

H
Vε

Ω =
⎛ ⎞Ω+ ⎜ ⎟Ω⎝ ⎠

( )NV x

( ) ( )1cos cosNV x N x−=

( )
( ) ( )
( ) ( )
( ) ( )

( ) ( ) ( )
( )

( )

0

1
1

1 2
2

2 3
3

1 1

2

1

cos0 1

cos cos

cos 2cos 2 1

2 1 4 3

                       
2    

0 1 0 1

      1 cos        

N N N

N

N

V x

V x x x

V x x x

V x x x x x x

V x xV x V x

x V x

x x V x

−

−

+ −

−

= =

= =

= = −

= − − = −

= −

⇒ ≤ ≤ ⇒ ≤ ≤

> ⇒ ⇒

#

∼is imaginary hyperbolic cosine
                    ( ) NV x⇒                                increases monotonically

1
1 ε−

Ω p Ωs
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5. Filter design techniques

– Property of

forms an orthogonal set over

For each N,

For even N,

For odd N,

The zeros of                lie in

The range of                is between –1 and 1 for

( )NV x

( ){ }NV x

( ) ( )
1

21

0,            
1 / 2,   0

1 ,       0
N M

M N
V x V x dx M N

x M N
π
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− = = −
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N N

V V

V x V x

− = − =

= − −

1 1x− ≤ ≤( ){ }NV x

( ){ }NV x 1 1x− ≤ ≤

1 1x− ≤ ≤
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Ripple factor:

Since 

Rule: choose           and

( )

( )

2

2

1 0 1,   1
1

             1,    

c

c

H

H

ε
Ω

⇒ ≤ ≤ ≤ Ω ≤
Ω +

Ω
> Ω

Ω
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,  Nε cΩ

1
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Ω p Ωs2

2
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ε δ
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N
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ε ε ω
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– Consider the first zeros of

Letting

The poles of the Chebyshev filter lie on an ellipse in the s-plane

( )2 21 0NV xε+ =

( )
1

1cos cosh 0 &  sin sinh

2 1 / 2 , 0,1,2, ,2 1
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cos cosh sin sinh
/

N

r u jv x x r

V x N x Nr

Nu Nv j Nu Nv
j ε

−

−

≡ + = ⇒ =

= =

= −
= ±

1 1 1 1
1 21 1,   ,   1

2 2
N N N Na bα α α α α ε ε

− − − −⎛ ⎞ ⎛ ⎞
= − = + = + +⎜ ⎟ ⎜ ⎟
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• Design of Type II Chebyshev Filters

• Elliptic filter

– The error is distributed over the entire frequency band ⇒ Equal ripple in all band

⇒ min order of the filter

: Chebyshev rational function

of degree N

( ) 2

1
2

1

1
c

c
N

H
Vε

−Ω =
Ω⎡ ⎤⎛ ⎞+ ⎜ ⎟⎢ ⎥Ω⎝ ⎠⎣ ⎦

( ) 2

2 2

1

1
c

N
c

H
Uε

Ω =
⎛ ⎞Ω+ ⎜ ⎟Ω⎝ ⎠

( )NU Ω
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• Example

– Filter specifications

Passband

Stopband

This implies that 1 20.01,   0.001,   0.4    0.6p sδ δ ω π ω π= = = =and

( ) 0.001;       0.6jH e ω π ω π≤ ≤ ≤

( )0.99 1.01;       0.4jH e ω ω π≤ ≤ ≤
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Butterworth filter with N=14                                      Chev-type I filter with N=8
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5. Filter design techniques

Chev-type II filter with N=8                                          Elliptic filter with N=6

1

1

2 1
1d

zs
T z

−

−

−⎛ ⎞= ⎜ ⎟+⎝ ⎠
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– Poles and zeros of the designed filters
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• Design of FIR filters by windowing

– FIR filter design directly approximates the desired frequency response of the discrete-

time system

– When the desired frequency response is

consider the design of a causal FIR filter that approximates the ideal response

– The truncation of the desired impulse response results in the Gibbs phenomenon 

– Rectangular Windowing

where           is the windowing function given by

Note that               is a smeared version of 

( ) [ ] [ ] ( )1  
2

j j n j
d d d d

h
H e h n e h n H e d

πω ω ω

π
ω

π

∞
−

−
=−∞

= =∑ ∫; 

[ ] [ ] [ ] [ ] [ ], 0
  

0 , otherwise
d

d r

h n n M
h n h n h n nω

≤ ≤⎧
= ⇒ =⎨
⎩

[ ]r nω

[ ] 1, 0
0, otherwiser

n M
nω

≤ ≤⎧
= ⎨
⎩

( ) ( ) ( )( )1
2

jj j
d rH e H e e d

π ω θω θ

π
ω θ

π
−

−
⇒ = ∫

( )jH e ω ( )j
dH e ω
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0

0

H ed
jωc h

ω ω

( )j
rW e ω

– Effect of windowing

( )
( )

( )

0

1

2

1
1

1
sin

2
sin

2

M
j j n

r
n

j M

j

Mj

W e e

e
e

M

e

ω ω

ω

ω

ω
ω

ω

−

=

− +

−

−

=

−
=

−
+

=

∑

ω ω
r

jec h

2
1

π
M +

ΔW
Mm =

+
4

1
π

peak side lobe

 design  paramters
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• Common windowing functions

– Bartlett (triangular)

– Hanning

– Hamming

– Blackman 

[ ]

2 , 0
2

22 ,
2

0, otherwise

B

n Mn
M

n Mw n n M
M

⎧ ≤ ≤⎪
⎪
⎪= − ≤ ≤⎨
⎪
⎪
⎪⎩

[ ]
20.5 1 cos , 0

0 , otherwise
han

n n M
w n M

π⎧ ⎛ ⎞− ≤ ≤⎪ ⎜ ⎟= ⎝ ⎠⎨
⎪⎩

[ ]
20.54 0.46cos , 0

0   , otherwise
ham

n n M
w n M

π⎧ − ≤ ≤⎪= ⎨
⎪⎩

[ ]
2 40.42 0.5cos 0.08cos ,   0

0
BL

n n n M
w n M M

π π⎧ ⎛ ⎞− + ≤ ≤⎪ ⎜ ⎟= ⎝ ⎠⎨
⎪⎩
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Trade off between  the main lobe width and the peak of the side lobe

Peak side lobe           Main-lobe              Peak approx.

width                     error

    13                       4 /( 1)                      21
             25                        8 /                               25

31                   

M
M

π
π

− + −
− −
−

Rectangular
Bartlett
Hanning               8 /                               44

41                        8 /                              53
57                        12 /                            

M
M

M

π
π
π

−
− −
− −

Hamming         
Blackman         74

Rectangular window
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Hanning window

Bartlett window Hamming window

Blackman window
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– Kaiser window

where              is the zeroth-order modified Bessel function of the first kind defined by

As β = 0 → rectangular window case

If the window is tapered more (i.e., β is increased), the main lobe width becomes  

wider and the peak of the side lobe becomes lower

[ ]
( )

2

0

0

1

,0 ,  
2

0    ,otherwise

nI
Mw n n M

I

αβ
α

α
β

⎧ ⎡ ⎤−⎡ ⎤⎪ ⎢ ⎥− ⎢ ⎥⎣ ⎦⎪ ⎢ ⎥⎣ ⎦= ⎨ ≤ ≤ =
⎪
⎪
⎩

( )0I ⋅

( ) ( )sin
0

1 2 cos  for large 
2 4

jxI x e d x x
x

π θ

π

πθ
π π−

⎛ ⎞= ≈ −⎜ ⎟
⎝ ⎠

∫
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Increasing M while holding β constant 

results in the main lobe width decreased 

but does not affect the peak of the side 

lobe.

Given      is  fixed,         is defined to be 

the highest frequency such that

and        to be the lowest frequency such that

Then  β can be empirically determined by

δ pω

( ) 1jH e ω δ≥ −

sω

( )jH e ω δ≤

( )
( ) ( )0.4

0.1102 8.7 , 50

                     0.5842 21 0.07886 21 21 50
0 , 21

8                     ;   
2.285

  ,   20logs p

A A

A A A
A

AM

A

β

ω
ω ω ω δ

− >⎧
⎪⎪= − + − ≤ ≤⎨
⎪ <⎪⎩

−
=

Δ
Δ = − = −where
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– Comparison of commonly used windows
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Design example

( )

1 2

0.4 ;   0.6 0.5
2

                                         0.2
0.01; 0.001 0.001

   20log 60
0.1102 8.7 5.65326

8 60 8 36.219 37;   
2.285 2.285 0.2

p s
p s c

s p

A dB
A

AM M

ω ω
ω π ω π ω π

ω ω ω π

δ δ δ
δ

β

ω π

+
= = ⇒ = =

Δ = − =

= = ⇒ =
⇒ = − =

⇒ = − =

− −
= = = ⇒ =

Δ ×
Type - II FIR

[ ] [ ] [ ]

( )
( ) ( )

1
2 2

0

0

18.55.65326 1
18.5sin 0.5 18.5            ,   0

18.5 5.65326
0,                    otherwise

dh n h n n

nI
n n M

n I

ω

π
π

⇒ = ⋅

⎧ ⎡ ⎤⎛ ⎞−⎛ ⎞⎪ ⎢ ⎥−⎜ ⎟⎜ ⎟⎪ ⎢ ⎥⎝ ⎠⎪ ⎝ ⎠− ⎢ ⎥= ≤ ≤⎣ ⎦⎨ ⋅⎪ −
⎪
⎪⎩
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• Linear system with generalized linear phase 

– For casual system, zero phase is not achievable

Phase distortion exists

Linear phase results in a simple time shift

– System with linear phase

Ideal delay

From the inverse Fourier transform, 

For an input                 

( )
( )

( )

( )

,

1

rg

grd

j j
id

j
id

j
id

j
id

H e e

H e

A H e

H e

ω ωα

ω

ω

ω

ω π

αω

αω α
ω

−= <

⇒ =

⎡ ⎤ = −⎣ ⎦
∂⎡ ⎤ = − =⎣ ⎦ ∂

[ ] ( )
( )

sin
,id

n
h n n

n
π α

π α
−

= −∞ < < ∞
−

[ ],x n

[ ] [ ] ( )
( )

[ ] ( )
( )

sin

sin

k

n
y n x n

n

n k
x k

n k

π α
π α

π α
π α

∞

=−∞

−
= ∗

−

− −
=

− −∑
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In particular, if                                               

Ideal LPF with linear phase

If                the impulse response is symmetric about       i.e.,

[ ] [ ]
[ ] [ ] [ ] [ ]

,   d id d

id d

n h n n n

y n x n h n x n n

α δ= = −

⇒ = ∗ = −

( ) [ ] ( )
( )

,  sin
  

0,        

j
cj c

p p
c

e n
H e h n

n

ωα
ω ω ω ω α

π αω ω π

−⎧ < −⎪= ⇒ =⎨ −< ≤⎪⎩
A A

,dnα = ,n α=

[ ] [ ]2p ph n h nα − =A A



420.461: Digital Signal Processing copyright@Yong-Hwan Lee

Seoul National University
School of Electrical Engineering

5. Filter design techniques

– Generalized linear phase

This is a necessary condition for          to have a constant group delay

There are other systems having linear phase characteristics without  this 

symmetry condition 

( ) ( )
( )

[ ]
[ ] [ ] ( )sinsin

tan   sin 0,
cos cos n

h n n
h n n

h n n
ωβ ωα

β ωα ω α β ω
β ωα ω
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− = = − ⇒ − + = ∀⎡ ⎤⎣ ⎦−
∑ ∑∑

[ ]h n

[ ] [ ]
[ ] ( )

[ ] [ ]

0 or ,  2     2

 = /2  3 / 2,   cos 0

2  2

h n h n
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M h n h n

β π α α

β π π ω α

α α

= − =

− =⎡ ⎤⎣ ⎦
⇒ = = − = −

∑
This  is  satisfied  when  is an integer, and

Alternatively, if or

an integer and

( ) ( ) ( )

( ) ( ) ( ) ( )cos sinj j

jj jH e

A e jA

A e e
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αω βω ω
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– Causal generalized linear phase systems

If causal,                                          

Causal FIR systems of length (M+1) have generalized linear phase, if 

If

If

[ ] ( )
0

sin 0,
n

h n nω α β ω
∞

=

− + = ∀⎡ ⎤⎣ ⎦∑

[ ] [ ]

( ) ( )
( )

2

, 0
       

0 , otherwise

 

  

j M
j j

e

j
e

h M n n M
h n

H e A e e

A e

ω
ω ω

ω ω

−

− ≤ ≤⎧
= ⎨
⎩

=then 

where  is a real, even periodic function of

[ ] [ ]

( ) ( ) ( )
( )

2 2

, 0
       

0 , otherwise

 

  

j M j M
j j j

o o

j
o

h M n n M
h n

H e jA e e A e e

A e

ω ω π
ω ω ω

ω ω

+
− −

− − ≤ ≤⎧
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⎩
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where  is a real, odd periodic function of

[ ] [ ] [ ] [ ] 2 or 2h n h n h n h nα α= − = − −
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Type I FIR linear phase systems

where  M is an ever integer

where

where

[ ] [ ] 0h n h M n n M= − ≤ ≤
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Mn n n
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Example

[ ]
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2

0

1, 0 4
0, otherwise

5sin
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sin
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H e e eω ω ω
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Type II linear phase systems

where       is an odd integer

Example

[ ] [ ], 0h n h M n n M= − ≤ ≤

M

( ) [ ]
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1
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2
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1 12 cos
2 2

M
j j n

n

M
Mj

k

H e h n e

Mh k k e

ω ω

ω

ω

−

=

+

−

=

⇒ =

+ ⎡ ⎤⎡ ⎤ ⎛ ⎞= − − ⋅⎜ ⎟⎢ ⎥⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦

∑

∑

[ ]

( )
5
2

1, 0 5
0, otherwise

sin3

sin
2

jj

n
h n

H e e
ωω ω

ω
−

≤ ≤⎧
= ⎨
⎩

⇒ =



420.461: Digital Signal Processing copyright@Yong-Hwan Lee

Seoul National University
School of Electrical Engineering

5. Filter design techniques

Type III FIR linear- phase systems

where  M is an even integer   

Example

[ ] [ ], 0h n h M n n M= − − ≤ ≤
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2 sin
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Type IV FIR linear- phase systems

where        is an odd integer  

Example

[ ] [ ], 0h n h M n n M= − − ≤ ≤

( )
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2 2
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– Location of zeros for FIR linear-phase systems

If              are symmetric,

If                 is a zero of            then

That is,                    is also a zero of 

When          is real and      is a zero of                     will also be a zero of 

and so will

Therefore, when        is real, there will be four conjugate reciprocal zeros of the 

form 

unless   

( ) [ ]
0

M
n

n

H z h n z−
=

=∑
[ ]{ }h n

( ) [ ] [ ] ( )1

0

M o
n k M M

n k M

H z h M n z h k z z H z− − − −

= =
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jz re θ= ( ),H z

( ) ( )1
0 0 0 0MH z z H z− −= =

1 1
0

jz r e θ− − −=

[ ]h n
( ).H z

0z ( ) 0,   jH z z re θ∗ −= ( ),H z

( ) 1

0 .z
−∗

( )( )( )( )1 1 1 1 1 11 1 1 1j j j jre z re z r e z r z zθ θ θ θ− − − − − − − −− − − −

[ ]h n

1.r =
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If            are anti-symmetric, we have

In particular, when     

Thus,             must have a zero at             

It also must have a zero at             when      is even.

( ) [ ] [ ] ( )1

0

M o
n k M M

n k M

H z h M n z h k z z H z− − − −

= =

= − − = − = −∑ ∑

[ ]{ }h n

( ) ( ) ( ) ( ) ( )11,   1 1    1,  1 1 1 .Mz H H z H H+= = − = − − = − −and  if 

( )H z 1.z =

1z ω π= − ⇔ = M

type - II                                               type - III                                        type - IV
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• Relation of FIR linear-phase systems to minimum-phase systems

– Any FIR linear-phase system can be represented by

where

and              has only        zeros on the unit circle.

⇒ The order of  

( ) ( ) ( )1
max min min,   iM

iH z H z z M H z−−= = no.of zeros of

( )ucH z

( ) ( ) ( ) ( )min max ucH z H z H z H z=

0M

0    2 iM M M+is
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Example: Decomposition of a linear-phase system

The overall system                                              has linear phase( ) ( ) ( )min maxH z H z H z=

( )( )( )( )
( ) ( )( )( )( )

2 0.6 1 0.6 1 0.8 1 0.8 1
min

2 0.6 1 0.6 1 0.8 1 0.8 1
max

( ) 1.25 1 0.9 1 0.9 1 0.8 1 0.8

( ) 0.9 1 1.1111 1 1.1111 1 1.25 1 1.25

j j j j

j j j j

H z e z e z e z e z

H z e z e z e z e z

π π π π

π π π π

− − − − − −

− − − − − −

= − − − −

⇒ = − − − −
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– Causal and linear phase FIR filter

The impulse response of a desired filter is also symmetric;

The overall response

The resulting response has generalized linear phase and its magnitude is also an 

even real function.
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Example Linear-phase lowpass filter 

[ ] [ ] [ ]dh n h n w n=[ ] [ ] [ ]dh n h n nω=
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2
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5. Filter design techniques

– Filter design by Kaiser method

High-pass filter

• Design example:

( )

( ) ( )
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5. Filter design techniques

High-pass filter example

Actual error=0.0213>0.021

33.56
2.5974
24

A

M
β
=
=
= ⇒ type  I  FIR



420.461: Digital Signal Processing copyright@Yong-Hwan Lee

Seoul National University
School of Electrical Engineering

5. Filter design techniques

High-pass Kaiser high-pass filter example with M=25 (type-II)

• Use of a type-II Kaiser HPF

may not be appropriate
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5. Filter design techniques

– FIR filter with generalized response

– Differentiator

Kaiser formulae were developed for frequency response with simple magnitude 

discontinuities, but still works on differentiator

G1
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G4

G3

0 ω 1 ω 2 ω 3 π
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In the case of using a symmetric window of size results in
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5. Filter design techniques

Kaiser window design of a differentiator

The amplitude error:

By not imposing constraint  H(z) to have a zero at z=-1, it is possible to design a 

filter having better approximation to the desired response, while using a less 

number of filter taps.

( ) ( )
( ) ( )

                                      ;   0

   1

j
o

j
o

E A e

A e H z z

ω

ω

ω ω ω π= − ≤ ≤

= ±where is the amplitude of the filter and has zeros at 
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5. Filter design techniques

Example: Impulse response of Kaiser-windowed differentiatore
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5. Filter design techniques

• Optimum approximation of FIR filters

– Design a filter that best approximates the desired response for a given M

– Rectangular window provides the best-mean squared approximation:

minimizes

Do not permit  individual control errors in 

different bands
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5. Filter design techniques

• Consider the design of a type-I FIR filter with zero phase, i.e.,

– Corresponding frequency response 

is a real, even and periodic function of

A causal system can be obtained by delaying it by L samples

– From a polynomial approximation

can be represented as an L-th degree trigonometric polynomial

– Define an error function by

where               is a weighting function
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5. Filter design techniques

– Example

Maximum weighted absolute approximation error

is 

( )
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H e ω
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5. Filter design techniques

– Minimax or Chevyshev criterion

Find a set of impulse response that minimizes

– Alternative theorem:

Let denote a closed subset comprising the disjoint union of closed subsets of real 

axis x. Then

is an m-th order polynomial

For desired function                and  positive function      which are continuous 

on           , and weighted error defined by

a necessary and sufficient condition that     be a unique r-th order polynomial 

minimizing                                 is that              has at least              alternations

At least              values          in        such that       and

( )PE x
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5. Filter design techniques

– Example: Consider 5-th order polynomials             that 

approximate unity for                       and zero for

Assume that                      for these two regions 

The optimum 5-th order polynomial has at least 7 

alternations of the error in the region in

has 3 alternations in                            and

2 alternations in 

also has 5 alternations; 3 in

and 2 in

has 8 alternations in                            and 

optimum polynomial

( )1P x

( )3P x

( ) 1PW x =
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5. Filter design techniques

• Optimum type-I lowpass filters

– Consider polynomial               defined by

– Assume that

– Equi-ripple approximation

A set of coefficients          is designed to make              have at least              

alternations on     

{ }ka ( )2L +

PF
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5. Filter design techniques

• Optimum type-I lowpass filters (cont.)

– Redraw                  in terms of 

7L =

( )jA e ω cosx ω=
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5. Filter design techniques

• Optimum type-I lowpass filters (cont.)

– Max. possible number of alternations of the error 

is                since an L-th degree polynomial can 

have at most               points with zero slope

Has zeros at                          and roots of  

-th order polynomial

– Alternations always occur at

– The filter will be equi-ripple except possibly at
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5. Filter design techniques

• Parks-McClellan algorithm

– The alternation theorem indicates that the optimum filter       will satisfies

– can be rewritten as

– Solution for                        can be found by means of polynomial interpolation
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5. Filter design techniques

• Parks-McClellan algorithm (cont.)

– For a given set of extremal frequencies, the P-M algorithm determines

– For given                   , the error function has magnitude  at                 frequencies  

– has values                    for                and               for 

– An L-th order trigonometric polynimial can be obtained by interpolating ( )iE ω
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5. Filter design techniques

• Parks-McClellan algorithm (cont.)

Example: 7 L =

( )j
eA e ω

   ka δand

1 Kδ±



420.461: Digital Signal Processing copyright@Yong-Hwan Lee

Seoul National University
School of Electrical Engineering

5. Filter design techniques

• Characteristics of optimum FIR filters

– Size of the filter tap
( )
( )

1 210log 13
2.324 s p

M
δ δ
ω ω

− −
=

−
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5. Filter design techniques

• Filter design examples by Parks-McClellan algorithm

26M = 27M =

0.4 ;  0.6p sω π ω π= =

2 3
1 210 ;  10δ δ −= =
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5. Filter design techniques

• Filter design example (cont.)

– Compensation of zero-order holder

28 14M L= ⇒ =

( ) ( )
/ 2 ;   0

sin / 2
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H e ω

ω ω ω
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ω ω π
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5. Filter design techniques

• Optimum bandpass filter design

– Local extrema may occur in the transition 

regions

– The approximation need not be equi-ripple 

in the approximation regions

( )
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5. Filter design techniques

• Optimum approximation of FIR filters

– Design a filter that best approximates the desired response for a given M

– Rectangular window provides the best-mean squared approximation:

minimizes

Do not permit  individual control errors in 

different bands
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0 , otherwise
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5. Filter design techniques

• Consider the design of a type-I FIR filter with zero phase, i.e.,

– Corresponding frequency response 

is a real, even and periodic function of

A causal system can be obtained by delaying it by L samples

– From a polynomial approximation

can be represented as an L-th degree trigonometric polynomial

– Define an error function by

where               is a weighting function
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5. Filter design techniques

– Example

Maximum weighted absolute approximation error

is 
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5. Filter design techniques

– Minimax or Chevyshev criterion

Find a set of impulse response that minimizes

– Alternative theorem:

Let denote a closed subset comprising the disjoint union of closed subsets of real 

axis x. Then

is an m-th order polynomial

For desired function                and  positive function      which are continuous 

on           , and weighted error defined by

a necessary and sufficient condition that     be a unique r-th order polynomial 

minimizing                                 is that              has at least              alternations

At least              values          in        such that       and
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5. Filter design techniques

– Example: Consider 5-th order polynomials             that 

approximate unity for                       and zero for

Assume that                      for these two regions 

The optimum 5-th order polynomial has at least 7 

alternations of the error in the region in

has 3 alternations in                            and

2 alternations in 

also has 5 alternations; 3 in

and 2 in

has 8 alternations in                            and 

optimum polynomial

( )1P x

( )3P x

( ) 1PW x =

0.1 1x≤ ≤

0.1 1x≤ ≤
1 0.1x− ≤ ≤ −
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5. Filter design techniques

• Optimum type-I lowpass filters

– Consider polynomial               defined by

– Assume that

– Equi-ripple approximation

A set of coefficients          is designed to make              have at least              

alternations on     

{ }ka ( )2L +

PF
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5. Filter design techniques

• Optimum type-I lowpass filters (cont.)

– Redraw                  in terms of 

7L =

( )jA e ω cosx ω=
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5. Filter design techniques

• Optimum type-I lowpass filters (cont.)

– Max. possible number of alternations of the error 

is                since an L-th degree polynomial can 

have at most               points with zero slope

Has zeros at                          and roots of  

-th order polynomial

– Alternations always occur at

– The filter will be equi-ripple except possibly at
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5. Filter design techniques

• Parks-McClellan algorithm

– The alternation theorem indicates that the optimum filter       will satisfies

– can be rewritten as

– Solution for                        can be found by means of polynomial interpolation
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5. Filter design techniques

• Parks-McClellan algorithm (cont.)

– For a given set of extremal frequencies, the P-M algorithm determines

– For given                   , the error function has magnitude  at                 frequencies  

– has values                    for                and               for 

– An L-th order trigonometric polynimial can be obtained by interpolating ( )iE ω
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5. Filter design techniques

• Parks-McClellan algorithm (cont.)

Example: 7 L =

( )j
eA e ω

   ka δand

1 Kδ±
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5. Filter design techniques

• Characteristics of optimum FIR filters

– Size of the filter tap
( )
( )

1 210log 13
2.324 s p

M
δ δ
ω ω

− −
=

−
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5. Filter design techniques

• Filter design examples by Parks-McClellan algorithm

26M = 27M =

0.4 ;  0.6p sω π ω π= =

2 3
1 210 ;  10δ δ −= =
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5. Filter design techniques

• Filter design example (cont.)

– Compensation of zero-order holder

28 14M L= ⇒ =

( ) ( )
/ 2 ;   0

sin / 2
0;                 

pj
d
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H e ω

ω ω ω
ω

ω ω π
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2 3
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5. Filter design techniques

• Optimum bandpass filter design

– Local extrema may occur in the transition 

regions, which may not be acceptable

– The approximation need not be equi-ripple 

in the approximation regions

( )

( )
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1;        0.35 0.3
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6. Discrete Fourier transform

Discrete Fourier transform
• Discrete Fourier series representation of periodic sequences

– Let           be a periodic sequence with period N such that                               for any 

integer m

Example A periodic complex exponential

– A set of N periodic complex exponentials                                  defines all the 

frequency components

– Fourier series representation      

[ ]x n
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6. Discrete Fourier transform

The Fourier series coefficient can be obtained by 

The Fourier series coefficients is a periodic sequence

– Discrete Fourier series (DFS)

Define by

[ ] [ ]
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6. Discrete Fourier transform

Example   Periodic pulse train

Example Duality in DFS

Let the DFS coefficient be a periodic impulse train
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6. Discrete Fourier transform

Example      Periodic rectangular pulse train

Any periodic sequence can be represented as a sum of complex exponential 

sequences                                             

[ ]
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6. Discrete Fourier transform

• Properties of DFS

– Linearity

– Shift of a sequence

– Duality

– Symmetry properties
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6. Discrete Fourier transform

⇒ If            is real,  

– Periodic convolution

Duality

Difference between aperiodic convolution and periodic convolution

• The sum is over an interval

•
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6. Discrete Fourier transform

Example   Periodic convolution
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6. Discrete Fourier transform

– Properties of DFS
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6. Discrete Fourier transform

– Properties of DFS (cont.)
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6. Discrete Fourier transform

• Fourier transform (F.T.) of periodic signals 

– A sequence should be absolutely summable to guarantee the uniform convergence of 

its Fourier transform

– Periodic signals are not absolutely summable

– The F.T. of a periodic signal can be interpreted as an impulse train in the frequency 

domain with impulse values proportional to the DFS coefficients for the sequence

– If            is periodic with period N, the Fourier transform of             is defined by

Although the F.T. of a periodic sequence does not converge in the normal sense, 

the introduction of impulses enables to use the F. T.

Note:                  has a necessary periodicity with period  
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6. Discrete Fourier transform

Example: Fourier transform of a periodic impulse train 

– For a finite-length sequence 

Thus,              is obtained by sampling the Fourier transform of a finite sequence   
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6. Discrete Fourier transform

Example: Relationship between the DFS coefficients and the FT of one period
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6. Discrete Fourier transform

• Sampling the Fourier transform 

– Since                 is periodic with period                   is also periodic in k with period N. 

– Since

The samples of the F.T. of           can be thought of as DFS coefficients of a periodic 
sequence           obtained through periodic replication of
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6. Discrete Fourier transform

– A periodic sequence             can be interpreted as equally spaced samples of the 
Fourier transform of one period of 

Example
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Sampling of the Fourier transform at a rate of
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6. Discrete Fourier transform

• Fourier representation of finite-duration sequences: Discrete Fourier transform (DFT)

– can be visualized as warping the finite sequence around the cylinder

– Since the Fourier series coefficients             of            is also a periodic sequence with 

a period of N, the DFT of            can be obtained by

– Since
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6. Discrete Fourier transform

– Example

N=5;
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6. Discrete Fourier transform

– Example:   N=10

x n⎡ ⎤⎣ ⎦

x n⎡ ⎤⎣ ⎦

[ ]X k
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6. Discrete Fourier transform

• Properties of the DFS

– Linearity

– Circular shift

Let

Since
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6. Discrete Fourier transform

– Example: circular shift
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6. Discrete Fourier transform

– Duality

Let

– Symmetry
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6. Discrete Fourier transform

Similarly, 

– N-point   Circular convolution
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6. Discrete Fourier transform

Example

[ ] [ ]1 1x n nδ= −
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6. Discrete Fourier transform

Example: N-point circular convolution

N=L:

N =2 L: Linear convolution ?
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6. Discrete Fourier transform

Example: N(=2L)-point circular convolution
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6. Discrete Fourier transform

• Linear convolution using the DFT

– -point circular convolution with zero padding

0 L

0 p
0 L p+ −1
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∞
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6. Discrete Fourier transform

– The circular convolution of two finite-length sequences can be equivalent to linear 

convolution of the two sequences.

– Calculation of the output of an LTI using the DFT

– How to resolve the issue when           is infinite?

Assume              

The  sequence           can be decomposed in to a sum of shifted finite-length 

segments of length L

[ ]
[ ]3

3

, 0 1

0, otherwise
m
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x n mN n N
x n
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x n x n mL x n
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⎩
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6. Discrete Fourier transform

– Illustration of warping around due to improper circular convolution

N L= 1N L p= + −
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6. Discrete Fourier transform

• Linear convolution using the discrete Fourier transform

– How to resolve the issue when           is infinite?

Assume              

The  sequence           can be decomposed in to a sum of shifted finite-length 

segments of length L

[ ]x n

[ ] 0   0x n n= <for

[ ]x n

[ ] [ ]
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                      ;   
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6. Discrete Fourier transform

– Overlap-add method [ ] [ ] [ ]y n h n x n= ∗

[ ] [ ]

[ ] [ ] [ ]
0m

m

m m

y n y n mL

y n h n x n

∞

=
= −

= ∗

∑

[ ] [ ],  0 1mx n x n mL n L= + ≤ ≤ −

-N point circular convolution
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6. Discrete Fourier transform

– Overlap-save method [ ] [ ] [ ]y n h n x n= ∗

-N point circular convolution

[ ] ( ) 1 1
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6. Discrete Fourier transform

• The discrete Cosine transform (DCT)

– General class of finite-length transform

where              are referred to the basis sequences s.t.

e.g.   DFT:

– DCT definition

The basis sequences             are cosine functions

Assume that           are periodic and even symmetric

– Type-I periodic sequence: even periodic symmetry about  n=0, N-1, 2(N-1), 
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6. Discrete Fourier transform

DCT-1 is defined by

– Type-II  periodic sequence: periodic with period 2N

DCT-2 is defined by

[ ] [ ] [ ]
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6. Discrete Fourier transform

– Relationship between DFT and DCT-1

2(N-1)-point DFT of 

The DCT-1 of N-point sequence is identical to 2(N-1)-point DFT of
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6. Discrete Fourier transform

Note :  DCT-1 involves only real-valued coefficients

⇒ reduce the implementation complexity.

– Relationship between DFT and DCT-2

2N-point DFT of 2N-point sequence 
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6. Discrete Fourier transform

– Energy compaction property of DCT-2

Since DCT-2 coefficients of a finite-length sequence are concentrated in the low 

indices than DFT, DCT-2 is often used for data compression applications in 

preference to DFT

Example
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1 12 2

0 0
2

1N N

n k

cx n k X k
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32⇐ −point DCT

32 - point DFT
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6. Discrete Fourier transform

Energy concentration can be examined by measuring the truncation error of the 

transformations.
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6. Discrete Fourier transform

Discrete Fourier transform
• Discrete Fourier series representation of periodic sequences

– Let           be a periodic sequence with period N such that                               for any 

integer m

Example A periodic complex exponential

– A set of N periodic complex exponentials                                  defines all the 

frequency components

– Fourier series representation      
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6. Discrete Fourier transform

The Fourier series coefficient can be obtained by 

The Fourier series coefficients is a periodic sequence

– Discrete Fourier series (DFS)

Define by
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Analysis equation :
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6. Discrete Fourier transform

Example   Periodic pulse train

Example Duality in DFS

Let the DFS coefficient be a periodic impulse train
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6. Discrete Fourier transform

Example      Periodic rectangular pulse train

Any periodic sequence can be represented as a sum of complex exponential 

sequences                                             
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6. Discrete Fourier transform

• Properties of DFS

– Linearity

– Shift of a sequence

– Duality

– Symmetry properties
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6. Discrete Fourier transform

⇒ If            is real,  

– Periodic convolution

Duality

Difference between aperiodic convolution and periodic convolution

• The sum is over an interval

•
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6. Discrete Fourier transform

Example   Periodic convolution
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6. Discrete Fourier transform

– Properties of DFS
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6. Discrete Fourier transform

– Properties of DFS (cont.)
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6. Discrete Fourier transform

• Fourier transform of periodic signals 

– A sequence should be absolutely summable to guarantee the uniform convergence of 

its Fourier transform

– Periodic signals are not absolutely summable

– The F.T. of a periodic signal can be interpreted to be an impulse train in the frequency 

domain with the impulse values proportional to the DFS coefficients for the sequence

– If            is periodic with period N, the Fourier transform of             is defined as

Although the F.T. of a periodic sequence does not converge in the normal sense, 

the introduction of impulses enables to use the F. T.

Note:                  has the necessary periodicity with period
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6. Discrete Fourier transform

Example: Fourier transform of a periodic impulse train 

– For a finite-length sequence 

Thus,              is obtained by sampling the Fourier transform of the finite sequence   
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6. Discrete Fourier transform

Example: Relationship between the DFS coefficients and the FT of one period
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7. Fourier analysis of signals using DFT 

• Discrete Fourier transform (DFT) can analyze the frequency content of continuous-time 

signal

Fourier Analysis of Signals Using DFT
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7. Fourier analysis of signals using DFT 

– Example
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7. Fourier analysis of signals using DFT 

– Length of the DFT

Example: T=1/5000 and 10Hz resolution

– Relationship between DFT values
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7. Fourier analysis of signals using DFT 

• DFT analysis of sinusoidal signals

– Windowing and spectral sampling have an important effect on the analysis of 

sinusoidal signals using the DFT

– Effect of windowing

After the windowing

it can be suffered from reduced resolution and leakage of spectrum
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7. Fourier analysis of signals using DFT 

Example      Leakage due to the use of a rectangular window
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7. Fourier analysis of signals using DFT 

The resolution is primarily affected by the width of the main lobe of 

The degree of leakage depends on the relative amplitude of the main and side 

lobe of 

These are associated with the window length L and the shape of the window
( )jW e ω

( )jW e ω
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7. Fourier analysis of signals using DFT 

Example: Kaiser window 
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7. Fourier analysis of signals using DFT 

– Effect of spectral sampling 

Example
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7. Fourier analysis of signals using DFT 

– Spectral sampling with frequencies matching DFT frequencies

Example [ ] 2 2cos 0.75cos ;   0 63
16 8

n nv n nπ π
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7. Fourier analysis of signals using DFT 

– DFT analysis by Kaiser window

Example [ ] [ ] [ ]2 4cos 0.75 cos ;   0 63
14 15K K
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7. Fourier analysis of signals using DFT 

– DFT analysis with 32-point Kaiser window and zero padding

Example [ ] 2 4cos 0.75cos ;  5.48,  32 Kaiser window
14 15

n nv n Lπ π β= + = =

32N = 128N =

1024N =64N =
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7. Fourier analysis of signals using DFT 

– DFT analysis with Kaiser window and zero padding

Example [ ] 2 4cos 0.75cos ;  5.48 Kaiser window
14 15

n nv n π π β= + =

1024,  32N L= = 1024,  54N L= =

1024,  64N L= =1024,  42N L= =
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7. Fourier analysis of signals using DFT 

• Fourier analysis of stationary random signals: Periodogram

– The sample mean and sample variance respectively defined by

are unbiased and asymptotically unbiased estimators, respectively

– Periodogram analysis: estimation of the power spectrum

Periodogram is the F. T. of aperiodic correlation of windowed data sequence

Modified periodogram:              is not a rectangular window
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7. Fourier analysis of signals using DFT 

– Periodogram can be calculated by means of the DFT

– Properties of the periodogram:

To make the periodogram unbiased,
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7. Fourier analysis of signals using DFT 

– As the window size increases, the peridogram becomes a consistent estimate

Example: white noise generation with rectangular windowing
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7. Fourier analysis of signals using DFT 

– Edge effect due to covolution of finite sequences

As m becomes close to L, the

calculation becomes inconsistent

This problem can be alleviated by

averaging multiple independent

periodogram estimates
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7. Fourier analysis of signals using DFT 

– Example
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