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Definitions
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A random variable consists of an experiment with a probability measure

P[-] defined on a sample space S and a function that assigns a real number
fo each outcome in the sample space of the experiment.

X(s)=x

»

X real line
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Random Variable and Event Space

A ={S : X(5)< x} for every set 4 S, A = event = the set of s in S such that
the values assumed by the random variable function X (.), for those as its
argument, X(-) =¢, are less than or equal to the given number on the real line.

& Note : 4 should be identified for all xe R'.
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Valid and Invalid Random Variable

Example (Valid and Invalid Random Variable)

Consider throwing a dice once and reading the face value.
S={fiforforfirfisfi}  E={#.5, {event, odd}}
(1)Define

B 1 for s=f, f;, /s
X(9)=1, for s= f, fi, f,

(Note that a sample has to be mapped to a unique value the same as a function.)
Then

(i) for x<1, A={s:x(s)<x}=4¢
(i) for 1<x<2, A={s:x(s)<x}
{

(i11) for x>2, A= {S :X(s5) < x} =
X(+) 1s a valid random variable.

={ /. /3 [} ={odd}
fisfosfos fos fos fi} =S
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Example (continued)

(2) Define y such that, Y(s)=for s=f

(1) for y<l, A:{y(s)ﬁy}zqﬁ
(1) for 1<y<2, A:{y(s)Sy}:{fl}ievent

y(+) 1s an invalid random variable.

08 1 Yates Chapter 2
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X is adiscrete random variable if the range of X is a countable set

.J.

= {x1, X2, ..

Sx
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Section 2.2

Probability Mass Function
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Definition 2.4 Probability Mass Function (Pl

The probability mass function (PMF) of the discrete random variable X is

Py (x) = P[X = x]

08 1 Yates Chapter 2 10



Example 2.5

Suppose we observe three calls at a telephone switch where voice calls
(v) and data calls (d) are equally likely. Let X denote the number of voice
calls, Y the number of data calls, and let R = XY. The sample space of
the experiment and the corresponding values of the random variables X,
Y,and R are

Qutcomes | ddd ddv dvd dvv vdd vdv vvd vov
P[] /8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

Random X 0 1 1 2 1 2 2 3
Variables Y 3 2 2 1 2 1 1 0
R 0 2 2 2 2 2 2 0

08 _1 Yates Chapter 2 11
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Example 2.6

From Example 2.5, what is the PMF of R?

12
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Example 2.6 Sol

From Example 2.5, we see that R = 0 if either outcome, DDD or VVV,
occurs so that

P[R=0]=P[DDD]+P[VVV]=1/4

For the other six outcomes of the experiment, R = 2 so that P[R =2] =
6/8. The PMF of R is

1
05 1/4 r =0,
- Pr(r) =14 3/4 r=2,
0 I 0  otherwise.
-1 0 2 3

08 1 Yates Chapter 2 13



Theorem 2.1

For a discrete random variable X with PMF Px(x) and range Sx:

(a) For any x, Px(x) > 0.

(0) X es, Px(x) = 1.
(c) For any event B C Sy, the probability that X is in the set B is

P[Bl=) Px(x).

xeB

08 1 Yates Chapter 2
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All three properties are consequences of the axioms of probability (Sec-
tion 1.3). First, Px(x) > 0 since Px(x) = P[X = x]. Next, we observe
that every outcome s € S is associated with a number x € Sx. There-
fore, Plx € Sx] = > ,c5, Px(x) = P[s € S§] = P[S] = 1. Since the events
{X =x} and {X = y} are disjoint when x # y, B can be written as the
union of disjoint events B = | J,.p{X = x}. Thus we can use Axiom 3 (if B
is countably infinite) or Theorem 1.4 (if B is finite) to write

P[B]=) P[X=x]=) Px().

xeB xeB

08 1 Yates Chapter 2 15



Quiz 2.2

The random variable N has PMF

) e/n n=1,2,3,
Py (n) = { 0  otherwise.
Find
(1) The value of the constant ¢ (3) P[N > 2]
(2) P[N =1] (4) P[N > 3]

08 1 Yates Chapter 2
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Section 2.3

Families of Discrete Random
Variables
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Example 2.8

Consider the following experiments:

e Flip a coin and let it land on a table. Observe whether the side facing
up is heads or tails. Let X be the number of heads observed.

e Select a student at random and find out her telephone number. Let
X = 0 if the last digit is even. Otherwise, let X = 1.

e Observe one bit transmitted by a modem that is downloading a file
from the Internet. Let X be the value of the bit (0 or 1).

08 1 Yates Chapter 2 18
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Suppose you test one circuit. With probability p, the circuit is rejected. Let
X be the number of rejected circuits in one test. What is Px(x)?

08 1 Yates Chapter 2 20
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Example 2.9 Sol

Because there are only two outcomes in the sample space, X = 1 with
probability p and X = 0 with probability 1 — p

Il—p x=0
Px(x)=141 p x =1
0 otherwise

Therefore, the number of circuits rejected in one test is a Bernoulli (p)

random variable.

08 _1 Yates Chapter 2 21



Example 2.10

If there is a 0.2 probability of a reject,
1

EX 0.5 0.8 x =90
= Py(x) =4 02 x=1
. i 0 otherwise

-1 0 | 2

08 _1 Yates Chapter 2 22
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Example 2.11

In a test of integrated circuits there is a probability p that each circuit is
rejected. Let Y equal the number of tests up to and including the first test

that discovers a reject. What is the PMF of Y?

08 1 Yates Chapter 2 23
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Example 2.11 So

The procedure is to keep testing circuits until a reject appears. Using a to
denote an accepted circuit and r to denote a reject, the tree is

From the tree, we see that P[Y = 1] = p, P[Y =2] = p(1—p), PIY =3] =
p(1 — p)z, and, in general, P[Y = y] = p(1 — p)y_l. Therefore,

_pa=p¥t y=1,2,...
Pr(y) = { 0 otherwise.

Y is referred to as a geometric random variable because the probabilities
in the PMF constitute a geometric series.

08 1 Yates Chapter 2 24
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Example 2.12

If there is a 0.2 probability of a reject,

0.2
3 0.1
Ne Poly) = 0.2)(0.8)~! y=1,2,...
. Y= 0 otherwise
0 10 20

08 1 Yates Chapter 2 26



% N SN
e S
A adele)

Suppose we test n circuits and each circuit is rejected with probability p
independent of the results of other tests. Let K equal the number of rejects

in the n tests. Find the PMF Pk (k).

08 _1 Yates Chapter 2 27
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Example 2.13 Sol

Adopting the vocabulary of Section 1.9, we call each discovery of a defec-
tive circuit a success, and each test is an independent trial with success
probability p. The event K = k corresponds to k& successes in n trials,
which we have already found, in Equation (1.18), to be the binomial prob-

ability
Pk (k) = (Z)pk“ —p)"k,

K is an example of a binomial random variable.

Remember P(AB) = P(A)P(B) if A and B are independent!

08 1 Yates Chapter 2 28



\\\\\\\x

§
N\\§§
V7
“%)
w\\

%Y%)
%,

i

7

w

V22
%
\,\\\\&
y iy,
@)
&\\Q\\\
U
\\\\\§
<
Uty
A ]

§

Py

W\\\\N&
§
Uty

@

Yol

tion 2.7

ini

Def.

form
has the

Fof X

f the PM

dom variable if th
ran

inomial (n, p)

' blnom|a

X isa

)Px(l -

(.

— 1.
tn >
uch tha
dn is an integer s
1 andn
O<p<
where

PX (X)

29

Yates Chapter 2

08_1



Example 2.14

If there is a 0.2 probability of a reject and we perform 10 tests,
0.4

P (k)

0 5 10

08 1 Yates Chapter 2

0.2
I||I Pr (k) = (1}(0) 0.2)K(0.8)10-k,
0
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Example 2.15

Suppose you test circuits until you find k rejects. Let L equal the number

of tests. What is the PMF of L?

31
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Example 2.15 Sol
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For large values of k, the tree becomes difficult to draw. Once again, we view the tests as
a sequence of independent trials where finding a reject is a success. In this case, L = [ if
and only if there are k — 1 successes in the first [ — 1 trials, and there is a success on trial

[ so that

P[L=1]= P |k—1rejectsinl — 1 attempts, success on attempt /
A B
The events A and B are independent since the outcome of attempt [ is not affected by the
previous [ — 1 attempts. Note that P[A] is the binomial probability of K — 1 successes in

[ — 1 trials so that

_ [—1 k—1,1 N—1—(k—1)
P[A]—(k_1>p (I=p)

Finally, since P[B] =

_ _ Y & Nk
PL(l) = P[A] P[B] = k1 p (1 —p)
L is an example of a Pascal random variable.

08 1 Yates Chapter 2 32
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Example 2.16

If there is a 0.2 probability of a reject and we seek four defective circuits,
the random variable L is the number of tests necessary to find the four

circuits. The PMF is
0.06

0.04 |

P,(1)

0.02 | 1P = (l ; 1)(0.2)4(0.8)1—4.

0
0 10 20 30 40

08 1 Yates Chapter 2 34



Example 2.17

In an experiment with equiprobable outcomes, the random variable N has
therange Sy ={k,k+1,k+2,---,1}, where k and [ are integers with k <
[. The range contains / — k + 1 numbers, each with probability 1/(/ —k +1).
Therefore, the PMF of N is

_ 1/U—-k+1) n=kk+1,k+2,...,1
Py (n) = { 0 otherwise

N is an example of a discrete uniform random variable.

08 1 Yates Chapter 2 35
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Example 2.18

Roll a fair die. The random variable N is the number of spots that appears
on the side facing up. Therefore, N is a discrete uniform (1, 6) random

variable and
0.2
g 0.1
= 0. 1/6 n=1,2,3,4,5,6
_ _ y &y iy Ty Sy
Fya) = { 0  otherwise.
0
0 5

08 1 Yates Chapter 2 37



B

o

e
)
§

-]

%

Yy,

@y
Ly,

Ve
7
-
o,
)
)
-
§
o=
v
y=

@2
L=

o,
P Y

=
)

N
N
8

on2.10

ti

ini

Def

form
' of X has the

' (o) random variable if the PMF

X is a Poisson («

otherwise,

Ye™®/x! x=0,1,2,..

k

0.
s in the range a >
ameter o IS In

where the par

Px (x)

38

Yates Chapter 2

08_1



1 8
| p TPy § -~ B
Example 2.19 Problen
| | k\\\\\\@&\%\\ ¥ N § B

The number of hits at a Web site in any time interval is a Poisson random
variable. A particular site has on average A = 2 hits per second. What is
the probability that there are no hits in an interval of 0.25 seconds? What
IS the probability that there are no more than two hits in an interval of one
second?

08 1 Yates Chapter 2 39



:! 1 §\\\ g = 8
. S IR TP NS

In an interval of 0.25 seconds, the number of hits H is a Poisson random variable with
a = AT = (2 hits/s) x (0.25 s) = 0.5 hits. The PMF of H is

0.5%¢ % /n h=012,...
P (h) = { 0 otherwise.

The probability of no hits is
P[H = 0] = Py (0) = (0.5)% /0! = 0.607.

In an interval of 1 second, « = AT = (2 hits/s) x (1s) = 2 hits. Letting J denote the
number of hits in one second, the PMF of J is

| 27e?/j0 j=0,1,2,...
Prij)= { 0 otherwise.

To find the probability of no more than two hits, we note that {/ <2} ={J =0}uU{J = 1}U
{J = 2} is the union of three mutually exclusive events. Therefore,

P[J<21=P[J=0]1+P[J=1]1+P[J =2]
=P;(0)+ P;y(1)+ Py (2)
— e 2+ 2'e72/11 4+ 2272 /21 = 0.677.

08 1 Yates Chapter 2 40



Poisson Random Variable as a Limit of Binomial RV

We place “at random” n points in the (0,T) interval. What is the probability
that & of these points will lie in the interval (4,%)?
Define
A(event) = { When we place a single point, it is placed in the (¢,,z,) interval }

t—t
P(A)=%Ep , gq=1-p=P(A")

Then,

k _n—k

P{ k points in the interval } = P { A occurs k times } = EZJP q

If ">Lp<<l1

n) b owk (D) .
[k]pkq fre™ ]Z:, (Poisson Theorem)

08 1 Yates Chapter 2 41



Poisson Theorem

If n—>ow, p—>0, np—>a then

n e ‘a
lim “A-p) " =
Hw(kjp (1-p) P

k

(Proof)
nn=1)---(n—k+1)

P<x=k>=(ijk<l—p>” = .

np = a , hence p==and 1—p=""¢
n

n

=)= n(n—1)--m—k+1) (g)k(n—ajnk

k! n n

a’ [ 1 k-1, o™
L ya--)-- (-2 1——}
k' | n n || n
a’

k!

n

08 1 Yates Chapter 2
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_(1)(1_1)...(1_E)_ 1_g)n(1_g)_
L n n | n
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Poisson Theorem (continued)

. (94 _
as 1 —> o, lim(1-—)"=e™“

n—oo n

Therefore, when n —

ak

P(x=k)=¢" T

08 1 Yates Chapter 2
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Exercise (Poisson Theorem)

Problem: In a large hotel it is known that 99% of all guests return room keys when
checking out. If 250 engineers check out after a large conference, what is the probability
that not more than three will fail to return their keys?

Solution:
Let N = total number of engineers = 250;
p = probability to fail to return keys = 0.01;
k = number of engineer to fail to return keys.
Conditions are met to apply the Poisson Theorem, i.e.,

N =250>1
p=00I«l
Np=a=225.

08 _1 Yates Chapter 2 44



Exercise (continued)

ot ) 7 50,2
k!

: N N-k
p(0 fail to return key) = . pd-p)y "= =0.0821

1 25
25¢ 02052

p(l fail to return key) =

2'52 e—Z.S

p(2 fail to return key) = =0.2565

3 25
25 00138

p(3 fail to return keys) =

p(no more than 3 fail to return keys) =0.0821+0.2052 +0.2565+0.2138 = 0.7576.

08 1 Yates Chapter 2
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