Probability and Stochastic Processes

A Friendly Introduction for Electrical and Computer Engineers
SECOND EDITION

Roy D. Yates David J. Goodman

Definitions, Theorems, Proofs, Examples,
Quizzes, Problems, Solutions
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The random pointer on disk of circumference 1.
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Suppose we have a wheel of circumference one meter and we mark a
point on the perimeter at the top of the wheel. In the center of the wheel
is a radial pointer that we spin. After spinning the pointer, we measure the
distance, X meters, around the circumference of the wheel going clock-
wise from the marked point to the pointer position as shown in Figure 3.1.
Clearly, 0 < X < 1. Also, it is reasonable to believe that if the spin is hard
enough, the pointer is just as likely to arrive at any part of the circle as at
any other. For a given x, what is the probability P[X = x]?
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This problem is surprisingly difficult. However, given that we have devel-
oped methods for discrete random variables in Chapter 2, a reasonable
approach is to find a discrete approximation to X. As shown on the right
side of Figure 3.1, we can mark the perimeter with n equal-length arcs num-
bered 1 to n and let Y denote the number of the arc in which the pointer
stops. Y is a discrete random variable with range Sy = {1, 2, ..., n}. Since
all parts of the wheel are equally likely, all arcs have the same probability.
Thus the PMF of Y is

) 1/n y=1,2,...,n,
Py ) _{ 0  otherwise.

From the wheel on the right side of Figure 3.1, we can deduce that if X = x,
then Y = [nx], where the notation [a] is defined as the smallest integer
greater than or equal to a.
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Example 3.1 Solution (continued)

Note that the event {X =x} {Y = [nx—|} ., which implies that

P[X =x]<P[Y=[nx]] -1
n
At the limit,

P[X =x]<limP[Y =[nx]|= lim~ =0,

n—0 n—>0 n

08 1 Yates Chapter 3



Section 3.1

The Cumulative Distribution
Function
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The cumulative distribution function (CDF) of random variable X is

Fy (x) = P[X < x].

Yates Chapter 3
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Theorem 3.1

For any random variable X,

(@) Fx(—o00) =0
(b) Fx(oco) =1

() Plx1 < X <x3] = Fx(xp) — Fx(x1)

08 1 Yates Chapter 3
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Example 3.2
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In the wheel-spinning experiment of Example 3.1, find the CDF of X.
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We begin by observing that any outcome x € Sx = [0, 1). This implies that Fx(x) = 0
forx < 0, and Fx(x) = 1 for x > 1. To find the CDF for x between 0 and 1 we consider
the event {X < x} with x growing from 0 to 1. Each event corresponds to an arc on the
circle in Figure 3.1. The arc is small when x ~ 0 and it includes nearly the whole circle
when x ~ 1. Fx(x) = P[X < x] is the probability that the pointer stops somewhere in the
arc. This probability grows from 0 to 1 as the arc increases to include the whole circle.
Given our assumption that the pointer has no preferred stopping places, it is reasonable
to expect the probability to grow in proportion to the fraction of the circle occupied by the
arc X < x. This fraction is simply x. To be more formal, we can refer to Figure 3.1 and
note that with the circle divided into n arcs,

Y < nx] =1} C{X <x} C{Y < [nx]}.
Therefore, the probabilities of the three events satisfy

Fy ([nx] —1) < Fx (x) < Fy ([nx]).

[Continued]
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Example 3.2 Solution (continued)
Note that Y is a discrete random variable with CDF
0 y <0,
Fy(y)=14 k/n (k—1)/n<y<k/n,k=1,2,...,n,
1 y > 1.
Thus for x € [0, 1) and for all n, we have
[nx] — 1 [nx]
—— < Fx(x) < :
n

In Problem 3.1.4, we ask the reader to verify that lim,,_, o [nx7]/n = x. This implies that as
n — 00, both fractions approach x. The CDF of X is

1
=
:x 05 0 x <0,
Fx(x) =3 x 0<x <1,
0 1 x>1.
0 0.5 1
by
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Section 3.2

Probability Density Function
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Figure 3.2
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The graph of an arbitrary CDF Fx(x).
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The probability density function (PDF) of a continuous random variable X

IS

_ dFx (x)
 dx

fx (x)

15
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Figure 3.3 depicts the PDF of a random variable X that describes the volt-
age at the receiver in a modem. What are probable values of X?

08 1 Yates Chapter 3 16



Example 3.3 Solt

Note that there are two places where the PDF has high values and that it
is low elsewhere. The PDF indicates that the random variable is likely to
be near —5 V (corresponding to the symbol 0 transmitted) and near +5 V
(corresponding to a 1 transmitted). Values far from 5 V (due to strong
distortion) are possible but much less likely.

08 1 Yates Chapter 3 17



Figure 3.3

Jx(x)
A

x (volts)

The PDF of the modem receiver voltage X.
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Theorem 3.2

For a continuous random variable X with PDF fx(x),

(a) fx(x) > 0forall x,

(b) Fx(x) = f_ Fx () du,

(c) f_ Fr(odx = 1.

08 1 Yates Chapter 3
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The first statement is true because Fx(x) is a nondecreasing function of x
and therefore its derivative, fx(x), is nonnegative. The second fact follows
directly from the definition of fy(x) and the fact that Fy(—o0) = 0. The
third statement follows from the second one and Theorem 3.1(b).

08 1 Yates Chapter 3 20



Theorem 3.3
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P[X1<X§xz]=/ 2fX(X) dx.
X1
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Jx (x) dx.

Fx (xp) — Fx (x1)
X2
X1

J

Yates Chapter 3

Plxj <X <x]=P[X <x2]—P[X < x]

From Theorem 3.2(b) and Theorem 3.1,
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Figure 3.4

J(x)
A

The PDF and CDF of X.
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Example 3.4

For the experiment in Examples 3.1 and 3.2, find the PDF of X and the

probability of the event {1/4 < X < 3/4}.

24
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Example 3.4 Solutior

Taking the derivative of the CDF in Equation (3.8), fx(x) =0, when x <0Qorx > 1. Forx
between 0 and 1 we have fx(x) = dFx(x)/dx = 1. Thus the PDF of X is

1
=
< 0.5 Fe(x) = 1 0<x<l1,
XM=1 0 otherwise.
0

0 0.5 1
X
The fact that the PDF is constant over the range of possible values of X reflects the fact
that the pointer has no favorite stopping places on the circumference of the circle. To
find the probability that X is between 1/4 and 3/4, we can use either Theorem 3.1 or
Theorem 3.3. Thus

P[1/4 <X <3/4] = Fx (3/4) — Fx (1/4) = 1/2,

and equivalently,

3/4 3/4

Pl1/4 <X <3/4] = Fx (%) dx:/ dx =1/2.
1/4 1/4

08 1 Yates Chapter 3 25
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Example 3.5

Consider an experiment that consists of spinning the pointer in Exam-
ple 3.1 three times and observing Y meters, the maximum value of X in
the three spins. In Example 5.8, we show that the CDF of Y is

1
;5»().5 0 y<0,
Fy()=1y 0<y<l,
0 1 y>1

0 0.5 1

y
Find the PDF of Y and the probability that Y is between 1/4 and 3/4.

08 1 Yates Chapter 3 26



Example 3.5 So
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Applying Definition 3.3,

3
- 2
>
< oty = | Ay =3y 0 <y <1,

vy 0 otherwise.
0
0 05 1
y

Note that the PDF has values between 0 and 3. Its integral between any pair of numbers
is less than or equal to 1. The graph of fy(y) shows that there is a higher probability of
finding Y at the right side of the range of possible values than at the left side. This reflects
the fact that the maximum of three spins produces higher numbers than individual spins.
Either Theorem 3.1 or Theorem 3.3 can be used to calculate the probability of observing
Y between 1/4 and 3/4:

P[1/4 <Y <3/4]1= Fy (3/4) — Fy (1/4) = (3/4)° — (1/4)° = 13/32,
and equivalently,

3/4 3/4

Pll/4 <Y <3/4] = fyr (y) dy = f 3y dy = 13/32.
1/4 1/4
08 1 /Yates Chapter 3 / 27



Quiz 3.2

Random variable X has probability density function

_ cxe /%2 x>0,
x ()= { 0 otherwise.
Sketch the PDF and find the following:
(1) the constant c (3) P[0 < X <4]
(2) the CDF Fx(x) (4) P[-2 < X <2]

08 1 Yates Chapter 3
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Section 3.3
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Expected Values
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Example 3.6

In Example 3.4, we found that the stopping point X of the spinning wheel
experiment was a uniform random variable with PDF

1 0<x <,
fx (x) = { 0 otherwise.

Find the expected stopping point E[X] of the pointer.

08 1 Yates Chapter 3 31
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00 1
E[X]:/ Xfx (x) dx:/ xdx = 1/2 meter.

—00 0
With no preferred stopping points on the circle, the average stopping point
of the pointer is exactly half way around the circle.
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Example 3.7

In Example 3.5, find the expected value of the maximum stopping point Y
of the three spins:

o0 1
E[Y] 2/ Iy (v) dy :/o y(3y%) dy = 3/4 meter.

— 00

08 1 Yates Chapter 3 33



Example 3.8

Let X be a uniform random variable with PDF

1 0<x <1,
Tx () = { 0 otherwise.

let W = g(X) =0if X < 1/2,and W = g(X) = 1if X > 1/2. Wisa
discrete random variable with range Sy = {0, 1}.

08 1 Yates Chapter 3 34



Theorem 3.4

The expected value of a function, g(X), of random variable X is

0. @

E[g(X)] = / o) fy (x) dx.

— 00

08_1 Yates Chapter 3
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Theorem 3.5

For any random variable X,

(8) E[X —ux] =0,
(b) E[aX + b] = aE[X]+ b,
(c) Var[X] = E[X*] - u%,

(d) Var[aX + b] = a? Var[X].

08 1 Yates Chapter 3
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Example 3.9

Find the variance and standard deviation of the pointer position in Exam-

ple 3.1.

37
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To compute Var[X], we use Theorem 3.5(c): Var[X] = E[X?] — u%. We
calculate E[X?2] directly from Theorem 3.4 with g(X) = X?:

00 1

E[Xz]:/_ X2 fy (x) dx:/o x2dx =1/3.

In Example 3.6, we have E[X] = 1/2. Thus Var[X] = 1/3 — (1/2)2 = 1/12,
and the standard deviation is oy = /Var[X] = 1/4/12 = 0.289 meters.

08 1 Yates Chapter 3 38
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Example 3.10

Find the variance and standard deviation of Y, the maximum pointer posi-

tion after three spins, in Example 3.5.

39
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Example 3.10 Solution

S

We proceed as in Example 3.9. We have fy(y) from Example 3.5 and
E[Y] = 3/4 from Example 3.7:
1

2 < 9 2 (2.2
E[r]= [ vrmay=[ () ay =35
—00 0
Thus the variance is
Var[Y] = 3/5 — (3/4)% = 3/80 m?,

and the standard deviation is oy = 0.194 meters.

08 1 Yates Chapter 3 40



Section 3.4

Families of Continuous Random
Variables

08 1 Yates Chapter 3
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Theorem 3.6

If X is a uniform (a, b) random variable,

(a) The CDF of X is

0 X =a,
Fy(x)=3 —a)/(b—a) a<x <b,
1 x > Db.

(b) The expected value of X is E[X] = (b + a)/2.

(c) The variance of X is Var[X] = (b — a)?/12.

08 1 Yates Chapter 3
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Example 3.11

The phase angle, ®, of the signal at the input to a modem is uniformly
distributed between 0 and 2z radians. Find the CDF, the expected value,

and the variance of ©.

08 _1 Yates Chapter 3 44
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From the problem statement, we identify the parameters of the uniform
(a, b) random variable as ¢ = 0 and b = 2. Therefore the PDF of ® is

fo (6) :{ 1/2r) 0<6 <2,

0 otherwise.
The CDF is
0 6 <0,
Fp@)=1{ 0/Q2nr) 0<x <2m,
1 x > 2.

The expected value is E[®] = b/2 = =z radians, and the variance is
Var[®] = (27)2/12 = 2/3 rad?.

08 1 Yates Chapter 3 45



Theorem 3.7

Let X be a uniform (a, b) random variable, where a and b are both integers.
Let K = [X]. Then K is a discrete uniform (a + 1, b) random variable.

08 1 Yates Chapter 3 46
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Proof: Th

Recall that for any x, [x] is the smallest integer greater than or equal to x.
It follows that the event {K =k} = {k — 1 < x < k}. Therefore,

k 1/b—a) k=a+1,a+2,...,b,

P[K =k] = Pg (k) = / Py (x) dx = { 0 otherwise.

k—1
This expression for Pk (k) conforms to Definition 2.9 of a discrete uniform
(a + 1, b) PMF.

08 1 Yates Chapter 3 47
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otherwise,

re M x>0

K

fx (x)

where the parameter A > 0.
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Example 3.12 Prob

The probability that a telephone call lasts no more than ¢ minutes is often
modeled as an exponential CDF.

1
;} 0.5 e 1 —e /3 ¢ > 0,
0 otherwise.
0

0 5 10
4
What is the PDF of the duration in minutes of a telephone conversation?

What is the probability that a conversation will last between 2 and 4 min-
utes?

08 1 Yates Chapter 3 49
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We find the PDF of T by taking the derivative of the CDF:

0.4
02 iy = LT _ (1/3)e= /3 >0
. =4 " 1o otherwise
0 5 10
4

Therefore, observing Definition 3.6, we recognize that T is an exponential
(AL = 1/3) random variable. The probability that a call lasts between 2 and
4 minutes is

PR<T<4=F1(4) —F Q) =e¢ %3 —e¢ %3 =0.250.

08 1 Yates Chapter 3 50
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Example 3.13

In Example 3.12, what is E[T], the expected duration of a telephone call?
What are the variance and standard deviation of 7?7 What is the probability
that a call duration is within £1 standard deviation of the expected call

duration?

08 1 Yates Chapter 3 51



Example 3.13 Soll

Using the PDF f7 () in Example 3.12, we calculate the expected duration
of a call:

E[T] :/ tfr (1) dt:/ t%e_tﬁdt.
0

— 00

Integration by parts (Appendix B, Math Fact B.10) yields

00 o0
E|[T] = —te_t/3‘0 +/ e 13 dt = 3 minutes.
0

To calculate the variance, we begin with the second moment of T':

o0 o0 1
E[Tz] :/ t2 fr (1) dt:/O tzge_t”dz.
—00
[Continued]
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o
7

Y v
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Again integrating by parts, we have

2 2 3| [ —t/3 i
E [T ] S |O + | enetBPar=2| e Bar
0 0

With the knowledge that E[T] = 3, we observe that [;° te™!/3 dt = 3E[T] =
9. Thus E[T?] = 6E[T] = 18 and

Var[T] = E [Tz] _(E[T])?*=18-32=0.

The standard deviation is o7 = +/Var[T] = 3 minutes. The probability that
the call duration is within 1 standard deviation of the expected value is

PO<T <6]=Fr(®6)—Fr0)=1—e¢2=0.865

08 1 Yates Chapter 3 53



Theorem 3.8

If X is an exponential (A) random variable,

l—e ™ x>0,
(@) Fx() = { 0 otherwise.

(b) E[X]=1/A.

(c) Var[X] = 1/A2.

08 1 Yates Chapter 3
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Theorem 3.9

If X is an exponential (1) random variable, then K = [X] is a geometric
(p) random variable with p =1 — e,

08 1 Yates Chapter 3 55
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As in the proof of Theorem 3.7, the definition of K implies
P (k) = Plk —1 < X <k].

Referring to the CDF of X in Theorem 3.8, we observe
Px (k) = Fy (k) — Fy (k — 1) = e *=D _ o 72k — (o =Mk=1(q _ o4,

If we let p = 1 — e~*, we have Px (k) = p(1 — p)*~1, which conforms to

Definition 2.6 of a geometric (p) random variable with p = 1 — e ™.

08 1 Yates Chapter 3 56
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Example 3.14

Phone company A charges $0.15 per minute for telephone calls. For any
fraction of a minute at the end of a call, they charge for a full minute. Phone
Company B also charges $0.15 per minute. However, Phone Company B
calculates its charge based on the exact duration of a call. If T, the duration
of a call in minutes, is an exponential (A = 1/3) random variable, what are
the expected revenues per call E[R4] and E[Rp] for companies A and
B?

08 1 Yates Chapter 3 57
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Example 3.14 SolL

Because T is an exponential random variable, we have in Theorem 3.8
(and in Example 3.13), E[T] = 1/» = 3 minutes per call. Therefore, for
phone company B, which charges for the exact duration of a call,

E[Rg] =0.15E[T] = $0.45 per call.

Company A, by contrast, collects $0.15[ T for a call of duration T minutes.
Theorem 3.9 states that K = [T] is a geometric random variable with
parameter p = 1 — e~ 1/3. Therefore, the expected revenue for Company A

IS

E[RA] = 0.15E[K] = 0.15/p = (0.15)(3.53) = $0.529 per call.

08 1 Yates Chapter 3 58
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X

(n— 1)!

—1 _—Ax
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0
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fx (x)
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Theorem 3.10

If X is an Erlang (n, A) random variable, then

n n
E[X]=-, Var [ X] :)9'

A

08 1 Yates Chapter 3

60



Theorem 3.11

Let K, denote a Poisson («) random variable. For any x > 0, the CDF of
an Erlang (n, 1) random variable X satisfies

n—1 k ,—Ax
(Ax)“e
Fx(x):1—FKM(n—1):1—E X ,
k=0

08 1 Yates Chapter 3 61



Gamma Random Variable

The pdf of the gamma random variable has two parameters, « >0and
A >0, and is given by

i(ﬂX)a_l e—/lx

0<x<oo,
I'(a)

f (X)) =

where I'(z) is the gamma function, which is defined by the integral

['a)= J.OOO xetdx z>0.
The gamma function has the following properties:

FGJ =Jr, T(z+1)=zI(z) forz >0, and

['(m+1) =m! for m a nonnegative integer.

08 1 Yates Chapter 3
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Gamma Random Variable (continued)

Special cases:

o exponential r. v.

=1:
1 k .. :
A= 5 and o = 5 (k apositive integer): chi-square r. v.

o =m (m a positive integer): m-Erlang r. v.

08 1 Yates Chapter 3 63



Gamma Random Variable (continued)
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Section 3.5

Gaussian Random Variables

08 1 Yates Chapter 3
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Definition 3.8 Gaussian Random Variable

X is a Gaussian (u, o) random variable if the PDF of X is

fx (x) = #e—(x—u)z/%z,
2ol
where the parameter u can be any real number and the parametero > 0.
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Figure 3.5

0.8 0.8
0.6 0.6
:i} 0.4 % 0.4
0.2 0.2/_\'
0Ll— - - 0= - - - -
2 0 2 4 6 2 0 2 4 6
@u=20=1/2 b)u=2,0=2

Two examples of a Gaussian random variable X with expected value n« and
standard deviation o.
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Theorem 3.12

If X is a Gaussian (i, o) random variable,

E[X]=p  Var[X] =02

08 1 Yates Chapter 3
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Theorem 3.13

If X is Gaussian (u,0), Y =aX + b is Gaussian (au + b, ao).
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on 3.9 Vari

1]

ini

Def

The standard normal random variable Z is the Gaussian (0, 1) random

variable.
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Theorem 3.14

If X is a Gaussian (u, o) random variable, the CDF of X is

For (x)zcb(u).
0}

The probability that X is in the interval (a, b] is

P[a<X§b]:cp(b_“)—cb(“_“).
, o o
Define erf (x) = e_tzdt, then

2]
erf (z) = 2@(& Z)—l or d(z) :%{l+erf(%)}

ren=g|iver (g ) ocxsi-3len (52 oo ).
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Example 3.15

Suppose your score on a test is x = 46, a sample value of the Gaussian
(61, 10) random variable. Express your test score as a sample value of the

standard normal random variable, Z.
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Equation (3.54) indicates that z = (46 — 61)/10 = —1.5. Therefore your
score is 1.5 standard deviations less than the expected value.
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Theorem 3.15

P(—z)=1— D(2).

or

| “erdr= —% jox e dt = —erf(x)

0

erf ()=

T
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Figure 3.6

0.5 0.5
0.4 0.4
~ 03 (i =~ 03
< 02| d(z) - = 0o D(-2)
0.1t w - 01t
0 : 0 .
—4 -2 0 zZ 2 4 —4 2 -z 0 Z
x x
(a) (b)

Symmetry properties of th Gaussian (0, 1) PDF.
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Example 3.16

If X is the Gaussian (61, 10) random variable, what is P[X < 46]7?
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Example 3.16 Solu

uo

Applying Theorem 3.14, Theorem 3.15 and the result of Example 3.15, we
have

P[X <46] = Fy (46) = ®(—1.5) = 1 — ®(1.5) = 1 — 0.933 = 0.067.

This suggests that if your test score is 1.5 standard deviations below the
expected value, you are in the lowest 6.7% of the population of test tak-

ers.

Using the error function,

P|X <46]=

l\)|>—

1+erf(\/_6} 1{1+e1f(f/6§_.1601)}

1—erf (1.0607)] = 0.0668.

N | —
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Example 3.17

If X is a Gaussian random variable with © = 61 and o = 10, what is

P[51 < X <71]?

79

Yates Chapter 3

08_1



&

Example 3.17 Soll

22
ZZZ]
///,;

////////
//////

\
k\\

L
\\

N

/
///////
v

Applying Equation (3.54), Z = (X — 61)/10 and the event {51 < X <71}
corresponds to the event {—1 < Z < 1}. The probability of this event is

Pl-1<Z<1]l=o()—o(-1)=o() —[1 =D(1)] =2®(1) — 1 = 0.683.

Using the error function,

P[-1<z<1]= %{erf(%) - erf(—%)} = erf(%) = 0.6827.
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The standard normal complementary CDF is

o 2
f e W2 du =1 — d(z).
Z

1
N 2T

Qi) =PlZ > 7]
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In an optical fiber transmission system, the probability of a binary error is
Q(/y/2), where y is the signal-to-noise ratio. What is the minimum value
of y that produces a binary error rate not exceeding 1077
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Referring to Table 3.1, we find that Q(z) < 107® when z > 4.75. Therefore,
if /y/2 > 4.75, or y > 45, the probability of error is less than 107°.
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Section 3.6

Delta Functions, Mixed Random
Variables
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Let

—e/2 <x <¢€/2,

otherwise.

1/€
0

3(x)

de(x)

tion is
it impulse func
The unit imp

Iim de(x).
e—0
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Figure 3.7

0,(x)
A
1e=1/20

e=1/10

e=1/4
e=1/2 -1
- : 1 1 : > X
-1/2 1/2

As ¢ — 0, de(x) approaches the delta function §(x). For each ¢, the area
under the curve of d.(x) equals 1.
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Theorem 3.16

For any continuous function g(x),

/ g(x)d(x — xp) dx = g(xgp).

— 00
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Theorem 3.17

/X d(v)dv = u(x).

— 00
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Example 3.19

Suppose Y takes on the values 1, 2, 3 with equal probability. The PMF and the corre-
sponding CDF of Y are

[0 y <1,
) 1/3 y=1,2,3, B 1/3 1<y<?2,
PY(y)—{o otherwise. Fr) =123 22y<3
1 y > 3.

Using the unit step function u(y), we can write Fy(y) more compactly as

1 1 1
Fy(y) =-u(y — 1) +-u(y —2) + zu(y — 3).
3 3 3
The PDF of Y is

dFy (y)
dy

1 1 1
fr(y) = 253@—1)+§8(y—2)+§8(y—3).

[Continued]
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We see that the discrete random variable Y can be represented graphically
either by a PMF Py (y) with bars at y = 1, 2, 3, by a CDF with jumps at
y = 1,2,3, or by a PDF fy(y) with impulses at y = 1, 2, 3. These three
representations are shown in Figure 3.8. The expected value of Y can be
calculated either by summing over the PMF Py (y) or integrating over the
PDF fy(y). Using the PDF, we have

E[Y]zf_ vy (y) dy

:/ §5<y—1)dy+/ §8<y—2>dy+f 280y = 3)dy

—00 — 00 — 00

—1/34+2/3+1=2.
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Figure 3.8

1 - 1/3 1/3 1/3
:5 1/3 3 2/3 b»
B S S~
R ~ 13
0 0
0 2 4 0 2 4 0 2 4
y y y

The PMF, CDF, and PDF of the mixed random variable Y.
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Example 3.20

For the random variable Y of Example 3.19,

Fy(27)=1/3,  Fy(2")=2/3.

08 1 Yates Chapter 3

93



Theorem 3.18

For a random variable X, we have the following equivalent statements:

(@) P[X =x9l=g¢
(b) Px(xg) =g¢
(c) Fx(xg) — Fx(x5) =¢

(d) fx(x0) =¢qé(0)

08 1 Yates Chapter 3
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Example 3.21

Observe someone dialing a telephone and record the duration of the call.
In a simple model of the experiment, 1/3 of the calls never begin either
because no one answers or the line is busy. The duration of these calls
is 0 minutes. Otherwise, with probability 2/3, a call duration is uniformly
distributed between 0 and 3 minutes. Let Y denote the call duration. Find
the CDF Fy(y), the PDF fy(y), and the expected value E[Y].
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Let A denote the event that the phone was answered. Since Y > 0, we
know that for y < 0, Fy(y) = 0. Similarly, we know that for y > 3, Fy(y) = 1.
For 0 < y < 3, we apply the law of total probability to write

Fy (y)) =P[Y <yl=P|Y < y|A°| P|A°| + P[Y < y|A] P[A].

When A€ occurs, ¥ = 0, so thatfor0 < y < 3, P[Y < y|A°] = 1. When
A occurs, the call duration is uniformly distributed over [0, 3], so that for
0<y<3, PlY <y|A] =y/3. S0,for0 <y <3,

Fy (y) = (1/3)(1) + 2/3)(»y/3) = 1/3+2y/9.
Finally, the complete CDF of Y is [Continued]
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1/3+2y/9

Fy(y)

1/3

(/g

Consequently, the corresponding PDF fy(y) is
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= 1.

3
0

2y2
92

2 dy =0+
9)’ y =

s(y)dy + f
0
Yates Chapter 3

1
3

-/

For the mixed random variable Y, it is easiest to calculate E[Y] using the PDF:
E[Y]
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Quiz 3.6

The cumulative distribution function of random variable X is

0 x < —1,
Fy(x)=3 x+1)/4 —1<x <1,
1 x > 1.

Sketch the CDF and find the following:

(1) P[X <1]

(2) P[X < 1]

(3) PIX = 1]

(4) the PDF fx(x)
08 1 Yates Chapter 3



Section 3.7

Probability Models of Derived
Random Variables
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Probability Models of Derived Random Variables

Consider
y = g(x)

where ¥ =g(X) is a real function of x and x is a r. v. with F,(x) and £, (x).

Express I, (y) in terms of £ (x) and f, () in terms of f, (x).

By definition
F,(y)=Ply<yl=Plg(x)<y]=P|xeR, |
where R = {x: g(x) < y}.
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Distribution Function of g(x)

We shall express the distribution function F () of the random variables y = g(x)

in terms of the distribution function F, (x) of the random variable X and the function g(x).

1. Continuous and Smooth Function, g(x)

* L4d rin _'
/ & Ton * % *

Consider the function g(x) in the above figure where g(x) 1s between a and b for any x.
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If y > b, then g(x) < y for every x, hence P[y < y]=1;
if y < a, then there is no x such that g(x) < y, hence P[y < y]=0. Thus,
1 y=>b
F =
) {0 y<a
with x;, and y, = g(x,) as shown, we observe that g(x) < y, for x < x,. Hence,
F,(0,)=P[x<x, ]=F.(x)).
We finally note that g(x) < y, if x <x), or x) < x < xJ. Hence,
F,0,)=P[x<x]+P[x)<x<x7 }
= Fx (‘x;) + Fx (‘x;") _ Fx(x;,)'
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Example (Y = aX +b)

To find F, (y), we must find the values of x such that ax+b5 < y.

(@ Ifa>0,ax+b<y forx< & _b). (Fig. 3.7-2(a)) Hence,

a
-b -b
F,()=P[x<221=F,(2=2), a>0.
a a
4 a>0 T a<0
- 2
y<y —| l ! o
— e >
\ 0 X 0 X
x<2=b
y<y

(a) (b)
Figure 3.7-2. y=ax+b

08 1 Yates Chapter 3
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(b)Ifa<0,ax+b<y forx> 8l _b). (Fig. 3-2(b)) Hence,
a

Y=hi_iirdZhy | o

F,(y)=P[x2
a a
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Example (Y = X?°)

(1) When y >0
X<y  for  —Jy<x<y
F@=P| —Jy<x<y|
=F (Jy)=Fe(~»)

(2) When y <0,
F.(»)=P[¢]=0
Let fX(x)z{ 1 hExs)
0 else

then, FX(x):%+x, ‘x‘<%

and

FYO/):FX(\/;)_FX(_\/;)

=\/;+\/;:2\/; for 0<y<ly.

08 1 Yates Chapter 3
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In summary,

1 y>1/4 F,0)¢
F,(y)=42{y 0<y<1/4 1_[_
0 y<0.
0 1/14 ;
(c) F(»
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2. Continuous but not Smooth Function, g(x)

Suppose the function g(x) 1s constant in an interval (x,,x,) such that
g(x)=y, x,<x<x,.

In this case
Ply=y1=Plx, <x<x,]=F (x))—F.(x,).

Hence F| (y) 1s discontinuous at y = y, and its discontinuity equals F, (x,) — F, (x,).

Example (Continuous but not Smooth Function)

Consider the function shown in Fig. 3.7-4 (center-level clipper)
(x—c forx>c

g(x)=40 for —c<x<c

x+c forx<—c
In this case, F, () 1s discontinuous for y = 0 and its discontinuity equals F. (c) — F, (—c¢).
Furthermore, if y >0 then Ply < y|=P[x<y+c]|=F (y+c¢);

ify<0then Ply<y]l=P[x<y-c]=F (y—o).
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F(x) 4

y“ 1/

(@) y=g(x) (b) £ (x)

.<>§
~
<
e
| -
»

0 y
(c) Fy(»)

Fig. A Continuous But Not Smooth Function and Its Distribution Function
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3. Discontinuous, Staircase Function, g(x)

Assume that g(x) 1s a discontinuous, staircase function
g(x)=g(x)=y forx,_ <x<x.

In this case, the random variable y = g(x) 1s of discrete type taking the values y, with
Ply=y,]= Plx,, <x<x;]=F (%) - F(x,).

Example (Hard Limiter Function)

If

1 forx>0
g(x) = {—1 forx <0,
then, y takes the values +1 with
Ply=-1]= P[x <0]=F,(0)
Ply=1]=P[x>0]=1-F (0).

Hence, F, (y) is a staircase function as in Fig. 3.7-5.
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g(x)4 F.(x) , Fi () 4

R

A

Figure 3.7-5. The Hard Limiter Function and Its Distribution Function
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Determination of . ()

We wish to determine the density of Y = g(X) in terms of the density of X.

Suppose, first, that the set R of the y-axis 1s not in the range of the function g(x).

In other words, g(x) is not a point of R for any x. In this case, the probability that g(x)
is in R equals 0. Hence, f, () =0 for y € R. It suffices, therefore,

to consider the values of y such that for some x, g(x) = y.

Fundamental Theorem

We are given a continuous r.v. X with pdf f, (x) and a differentiable function g(x)
of the real variable x. What is the pdf of ¥ = g(X)?

Theorem: Letx, ,x,,---, x, ,--- be the real values satisfying y = g(x). Then,
fy( ) fX(xl) _|_fX(xn)+
g (xl)‘
where g'(x,) = ag(x)
dx

X=X;
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(Proof)

For simplicity, we prove the case that y = g(x) has three roots, x,, x,, and x,.
fi(dy=P{ y<Y<y+dy|
=P{x <X <x +dx |
+ P{ x2+dx2<X£x2}
+ P{x, <X <x,+dx, |

:fX(xl)‘dxl‘ + fx(xz)‘dxz‘ + fX(xs)‘dxs‘

for small dx, 0
X X3 X3
L) g L) L) W
) ) )
where

, dy
X )=—
g( 1) Ix

x=.xl
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Example (Y = aX + b and Its Density Function)
Given
Iy (x) :N<m , O )

1 e—(x—m)2/202

- N27mo
Y=aX+b
find f, ().
(Solution)
Apply the fundamental theorem and we obtain
fr(y) = f)f(XI) where x, = - _b-
4 (xl)‘ a

Considering the following equation

g'(x)= i(azx +b)| =a
dx

X

08 1 Yates Chapter 3 114



we get,

s
() =

a
4
1 ey 202
~2rold
1 ~(y—b-a m)*/2(ac)’

:WQ

Note that f, 1s the Gaussian with mean (b + am) and standard deviation ‘aa

9

which 1illustrates that a linear transformation of Gaussian r.v. is also Gaussian.
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Example (y = ax’ and Its Density Function)

Given
Y=aX?, a>0
X=N(0,0,%)
Find £, (»),

(Answer)

Solving y = ax” for x gives

a a

18'(q) = 2a.x, =2 Jay| =2 Jay
18'(x,) H 2ax, [= | -2Jay| = 2 Jay.

And
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Now

()= fr(x) | fy(x,)

+
g'x)| |g'(x,)

1 . n
_%[f)((\/;)-'_fx( \/:)J , ¥>0
= 1 . 1 |:e‘(M)2/2GX2 4 e_<_m)2/20x2 i|

T T,

3 1
_\/;-\/ZCZO'XZ \/;

Gamma density function is defined by

y

e X U(y). (1)

ho) = 22 gy @)
' [(a) |
Comparing Eqs. (1) and (2), we can tell that /., () 1s the Gamma density function
with A = : - and azl.
2a0, 2
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Note: 1) F(%) =z

2)F0ra:1andaX2:1,Wich=% andaz%,
%y
oy = W
T

This is the chi - square density with 1 degree of freedom.
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Section 3.8

Conditioning a Continuous Random
Variable
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x €B.
otherwise.

P[B]

fX (X)
0
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Figure 3.9
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Example 3.30

For the wheel-spinning experiment of Example 3.1, find the conditional
PDF of the pointer position for spins in which the pointer stops on the
left side of the circle. What are the conditional expected value and the

conditional standard deviation?
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Example 3.30 Solt

Let L denote the left side of the circle. In terms of the stopping position,
L =1[1/2,1). Recalling from Example 3.4 that the pointer position X has a
uniform PDF over [0, 1),

1 1

P[L] = fx (x) dx:/ dx = 1/2.
1/2 1/2

Therefore,

)2 1/2<x <1,
FxiL () = { 0 otherwise.

08 1 Yates Chapter 3 123



Yt
€& 2
vt

V27277]
//
i
7272
Y
Vi<
W
V222271
v
)

Example 3.31

The uniform (—r/2,r/2) random variable X is processed by a b-bit uni-
form quantizer to produce the quantized output Y. Random variable X is
rounded to the nearest quantizer level. With a b-bit quantizer, there are
n = 2P quantization levels. The quantization step size is A = r/n, and Y
takes on values in the set

Oy ={y; =A/2+iAli =—n/2,—n/2+1,...,n/2 — 1}.

This relationship is shown for b = 3 in Figure 3.9. Given the event B; that
Y = y;, find the conditional PDF of X given B;.
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In terms of X, we observe that B; = {iA < X < (i + 1)A}. Thus,

i+1)A A1
P[Bi]:/ fx(x)dx = —=—.
iA r n

By Definition 3.15,

fx (x) . .
x € B;, I/A iIA<x<(G+ 1A,
JxiB; ¥) = P[B] .~ )10 otherwise
0 otherwise, '

Given B;, the conditional PDF of X is uniform over the ith quantization
interval.
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Theorem 3.23

Given an event space {B;} and the conditional PDFs fxp.(x),

fx @) =) fxip (x) P[B;].
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Continuing Example 3.3, when symbol “0” is transmitted (event Bg), X is
the Gaussian (-5, 2) random variable. When symbol “1” is transmitted
(event B;), X is the Gaussian (5, 2) random variable. Given that symbols
“0” and “1” are equally likely to be sent, what is the PDF of X?
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The problem statement implies that P[By] = P[B;] = 1/2 and
_ —(x+5)%/8
X) = ——F—¢€ | X
fX|BO( ) 2@ fX|B1( ) = 2@
By Theorem 3.23,

fx (x) = fx|B, x) P|Bo| + fx|B, x) P [B1]
1 2 2
. —(x+5)“/8 —(x—5)/8
427 (e e ) '

Problem 3.9.2 asks the reader to graph fx(x) to show its similarity to Fig-
ure 3.3.

e~ (x=9)%/8,
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Conditio

Definition 3.16 Give

n an Event

If {x € B}, the conditional expected value of X is

E[X|B]:/ xfx|B (x) dx.

— 00
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Example 3.33 Problem

Continuing the wheel spinning of Example 3.30, find the conditional ex-
pected value and the conditional standard deviation of the pointer position
X given the event L that the pointer stops on the left side of the circle.
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The conditional expected value and the conditional variance are

1

o0
E[X|L] = / xfx|L (x) dx :f 2x dx = 3/4 meters.
—00 1/2

3

7 2
Var[X|L]:E[X2|L] (E [X|L])? = = (Z) — 1/48 m2.

The conditional standard deviation is oy|;, = +/Var[X|L] = 0.144 meters.
Example 3.9 derives ox = 0.289 meters. That is, ox = 2ox . It follows
that learning that the pointer is on the left side of the circle leads to a set of
typical values that are within 0.144 meters of 0.75 meters. Prior to learning
which half of the circle the pointer is in, we had a set of typical values within
0.289 of 0.5 meters.
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Example 3.34

Suppose the duration T (in minutes) of a telephone call is an exponential

(1/3) random variable:

0.4
% 0.2 Fr(t) = (1/3)e—t/3 t >0,
) 7700 otherwise.

0 5 10

t
For calls that last at least 2 minutes, what is the conditional PDF of the call

duration?
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In this case, the conditioning eventis T > 2. The probability of the event is

P[T >2]:/ fr(t) dt = e %/3.
2

The conditional PDF of T given T > 2 is

0.4
= r fT(t) > 2
\“‘7‘\ ) = A P[T>2] ’
£ 0.2 Jrir>2 ) 0 otherwise,
O ( —(Z—Z)/3 l' > 2,
v > 10 —10 otherwise.

4
Note that fr7-2(¢) is a time-shifted version of f7 (7). Inparticular, fri7-2(t) =

fr(t —2). An interpretation of this result is that if the call is in progress af-
ter 2 minutes, the duration of the call is 2 minutes plus an exponential time

equal to the duration of a new call.
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