Probability and Stochastic Processes

A Friendly Introduction for Electrical and Computer Engineers
SECOND EDITION

Roy D. Yates David J. Goodman

Definitions, Theorems, Proofs, Examples,
Quizzes, Problems, Solutions

Chapter 4

08 1 Yates Chapter 4



Section 4.1

Joint Cumulative Distribution
Function
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Figure 4.1

The area of the (X, Y) plane corresponding to the joint cumulative distribu-
tion function Fy y(x, y).
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Definition 4.1 Func

The joint cumulative distribution function of random variables X andY is

Fx,y(x,y):P[XSx,ny].

—PLAND]
WHetre A={st}13={\/5‘}}
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Theorem 4.1

For any pair of random variables, X, Y,

(@) 0 < Fx y(x,y) <1,

(b) Fx(x) = Fx y(x,00),= PE X<, Y< 0"] =PEX57¢]

(c) Fy(y) = Fx y(oo,y),

(d) Fx y(—o0,y) = Fx y(x, —00) =0,

L PLX<S-00,Y¥YsY]) = PLenB]I=PLP] =0

(e) If x <xyandy <y, then Fx y(x,y) < Fx y(x1, y1),

(f) FX’Y(OO, OO) = 1.
Ls PLX S, Y0 ] =P Lsns]=PLsT=I
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Section 4.2

Joint Probability Mass Function
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4.2

ion

{

Defini

The joint probability mass function of discrete random variables X andY is

»

PXy(x,y):P[X:x,Y:y].

Yates Chapter 4
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Example 4.1
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Test two integrated circuits one after the other. On each test, the possi-
ble outcomes are a (accept) and r (reject). Assume that all circuits are
acceptable with probability 0.9 and that the outcomes of successive tests
are independent. Count the number of acceptable circuits X and count the
number of successful tests ¥ before you observe the first reject. (If both
tests are successful, let Y = 2.) Draw a tree diagram for the experiment
and find the joint PMF of X and Y.

08 1 Yates Chapter 4 8
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Example 4.1 Solt

The experiment has the following tree diagram.

0.9 a eaa 0.81 X=2,Y=2
0.1 r ear 0.09 X=1,Y=1
0.9 a era 0.09 X=1,Y=0
0.1 r err 0.01 X=0,Y=0
The sample space of the experiment is
S ={aa,ar,ra,rr}.
Observing the tree diagram, we compute

Plaa] = 0.81, Plar] = P[ra] =0.09, P[rr]=0.01.

Each outcome specifies a pair of values X and Y. Let g(s) be the function that transforms
each outcome s in the sample space S into the pair of random variables (X, Y). Then
[Continued]
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glaa) = (2,2), glar)=(1,1, gra)=(1,0), g@r)=1(0,0).

For each pair of values x,y, Px y(x,y) is the sum of the probabilities of the outcomes
for which X = x and Y = y. For example, Pxy(1,1) = Plar]. The joint PMF can be
given as a set of labeled points in the x, y plane where each point is a possible value
(probability > 0) of the pair (x, y), or as a simple list:

y
1 Pxy(x,v) 081 x=2,y =2,
LI ¥ 009 x=1y=1,

5 81 Pxy(x,y)=14 009 x=1,y=0,

1 . 0.0l x=0,y=0.

09 \ 0 otherwise

1 4 ®
0 oVl 09 X

0 1 2

[Continued]
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Example 4.1

A third representation of Py y(x, y) is the matrix:

2 p—
| |l© © *®
= -
— o)
|l < ©
= -
1< < o©
yOO
P
y
(X\012
Y__ Il
Ao R
S
R,

11

Yates Chapter 4
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Figure 4.2

B={X+Y <3} B={X"+Y'<9}

Subsets B of the (X, Y) plane. Points (X, Y) € Sy y are marked by bullets.

08 1 Yates Chapter 4 12



Theorem 4.2

For discrete random variables X and Y and any set B in the X, Y plane,
the probability of the event {(X, Y) € B} is

P[Bl= )  Pxy(x.y.

(x,y)eB

08 1 Yates Chapter 4 13
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Example 4.2

Continuing Example 4.1, find the probability of the event B that X, the num-
ber of acceptable circuits, equals Y, the number of tests before observing

the first failure.

08 1 Yates Chapter 4 14
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Mathematically, B is the event {X = Y}. The elements of B with nonzero
probability are

BN Sxy=10,0),(,1),2,2)}.
Therefore,

P[B]=Pxy 0,00+ Pxy(, 1)+ Pxy(2,2)
= 0.01 +0.09 + 0.81 = 0.91.

08 1 Yates Chapter 4 15



Section 4.3
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Marginal PMF
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Theorem 4.3

For discrete random variables X and Y with joint PMF Py y(x, y),

Px(x)= ) Pxy(x,), Py(y) = ) Pxy(x,y).

yeSy XESX

08 1 Yates Chapter 4
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Example 4.3

In Example 4.1, we found the joint PMF of X and Y to be

Pxyx,y)|y=0 y=1 y=2
x =0 0.01 0 0
x =1 0.09 0.09 0
x =2 0 0 0.81

Find the marginal PMFs for the random variables X and Y.

08 1 Yates Chapter 4
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To find Px(x), we note that both X and Y have range {0, 1, 2}. Theorem 4.3 gives

2

Px (0) =)  Pxy (0,y) = 0.01
y=0

2
Px(2) =) Pxy(2.y) =08l
y=0
For the PMF of Y, we obtain

Py (0) =) Pxy(x,0)=0.10
x=0

PY (2) = Z PX,Y (X, 2) = 0.81
x=0

2

Px(1)=) Pxy(l,y)=0.8
y=0

Px(x) =0 x#0,1,2

2

Py (1) = Z PX,Y (X, 1) = 0.09
x=0

Pr(y)=0 y#0,1,2

Referring to the matrix representation of Px y(x, y) in Example 4.1, we observe that each
value of Px(x) is the result of adding all the entries in one row of the matrix. Each value

of Py(y) is a column sum.

[Continued]
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&N

\\
e 1 \

////
V772273
//’%’///Z
//’///////

V222
77

)

wy
%
)
ey
)
wil)

7
y &

i
Y ¢

g
¢

é’//////ﬂ

/g’/
.
v’

ey

We display Px(x) and Py(y) by rewriting the matrix in Example 4.1 and placing the row
sums and column sums in the margins.

Pxy(x,y) |y=0 y=1 y=2] Px(x)
x =0 0.01 0 0 0.01
x =1 0.09 0.09 0 0.18
x =2 0 0 0.81 0.81
Py (y) 0.10 0.09 0.81

Note that the sum of all the entries in the bottom margin is 1 and so is the sum of all the
entries in the right margin. This is simply a verification of Theorem 2.1(b), which states
that the PMF of any random variable must sum to 1. The complete marginal PMF, Py(y),
appears in the bottom row of the table, and Px(x) appears in the last column of the table.

Px(x) —

08_1

[ 001 x=0,
0.18 x =1, _
0.81 x =2 Py (y) = |

L 0 otherwise.

Yates Chapter 4

[ 0.1

y =0,
009 y=1,
0.81 y=2,

L 0 otherwise.
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Section 4.4

Joint Probability Density Function
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tion 4.3 |

ini

Def

The joint PDF of the continuous random variables X and Y is a function

fx.y(x,y) with the property

fx.y (u,v) dvdu.

- L

Fxy(x,y)

22

Yates Chapter 4
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Theorem 4.4

08_1

32Fx y (x,)

xX,y) =
fxy&x,y) 9%y

Yates Chapter 4
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Theorem 4.5

Plxi <X <xp,y1 <Y <yl=Fxyx,y)— Fxy(x2,y1)
— Fx y (x1,y2) + Fx y (x1, y1)

Plx, <x<x,,y, <y<y,|=P[x,<x<x, ,y<y,|-P[x,<x<x, ,y<y]

- any(x29y2)_Fx,y('xl’y2)_Fx,y(x2’y1)+Fx,y('xl’y1)

08 1 Yates Chapter 4 24



Theorem 4.6

A joint PDF fx y(x, y) has the following properties corresponding to first
and second axioms of probability (see Section 1.3):

(@) fx.y(x,y) > 0forall (x,y),

(b) f_ f_ Fry (e y)ydxdy = 1.

08 1 Yates Chapter 4 25



Theorem 4.7

The probability that the continuous random variables (X, Y) arein A is

P[A] = f/ fxy &x,y)dxdy.
A

08 1 Yates Chapter 4
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Example 4.4

Random variables X and Y have joint PDF
_J e 0=x=<50=<y=<3,
fx.y & 3) _{ 0 otherwise.

Find the constant c and P[A]=P[2 <X < 3,1 <Y < 3].

08 1 Yates Chapter 4
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The large rectangle in the diagram is the area of nonzero probability. The-
orem 4.6 states that the integral of the joint PDF over this rectangle is 1:

5 p3
1:/ / cdydx = 15c.
Y 0 Jo

Therefore, ¢ = 1/15. The small dark rect-
angle in the diagram is the event A =
2<X <3,1<Y <3}. P[A] is the integral of
the PDF over this rectangle, which is

» X
3 31
P[A]:/ f —dvdu =2/15.
» J1 15

This probability model is an example of a pair of random variables uniformly
distributed over a rectangle in the X, Y plane.
08 1 Yates Chapter 4 28
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Example 4.5

9

<x <1

2 0<y
0 otherwise.

|

fxy&x,y)

2
X

>

A fXY(<‘y)

Y

Find the joint CDF Fy y(x, y) when X and Y have joint PDF

1

29
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The joint CDF can be found using Definition 4.3 in which we integrate the joint PDF
fx y(x,y) over the area shown in Figure 4.1. To perform the integration it is extremely
useful to draw a diagram that clearly shows the area with nonzero probability, and then to
use the diagram to derive the limits of the integral in Definition 4.3.

The difficulty with this integral is that the nature of the region of integration depends criti-
cally on x and y. In this apparently simple example, there are five cases to consider! The
five cases are shown in Figure 4.3. First, we note that with x < 0 or y < 0, the triangle
is completely outside the region of integration as shown in Figure 4.3a. Thus we have
Fxy(x,y) =0if either x < 0ory < 0. Another simple case arises when x > 1 and y > 1.
In this case, we see in Figure 4.3e that the triangle is completely inside the region of in-
tegration and we infer from Theorem 4.6 that Fx y(x,y) = 1. The other cases we must
consider are more complicated. In each case, since fxy(x,y) = 2 over the triangular
region, the value of the integral is two times the indicated area. When (x, y) is inside the
area of nonzero probability (Figure 4.3b), the integral is

y prx
Fxy(x,y) = / / 2dudv = 2xy — y? (Figure 4.3b).
0 Jv
[Continued]
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Figure 4.3

08_1

x<0ory<0 O<y<x<l

@ (b)

74

O<x<y
0<x<l1 x> 1
(c) (d)

Yates Chapter 4
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In Figure 4.3c, (x, y) is above the triangle, and the integral is

Fxy(x,y) = / / 2dudv = x* (Figure 4.3c).
0 Jv

The remaining situation to consider is shown in Figure 4.3d when (x, y) is to the right of
the triangle of nonzero probability, in which case the integral is

y 1
Fxy(x,y)= / / 2dudv =2y — y? (Figure 4.3d)
0 Jv

The resulting CDF, corresponding to the five cases of Figure 4.3, is

[0 x<0ory<0 (a),

2xy —y* 0<y=<x<l1 (b),

Fxy(x,y) =1 x? O<x<y,0<x<1 (c),
2y —y* 0<y<lx>1 (d).

1 x>1,y>1 (e).

In Figure 4.4, the surface plot of Fx y(x, y) shows that cases (a) through (e) correspond
to contours on the “hill” that is Fx y(x, y). In terms of visualizing the random variables,
the surface plot of Fy y(x, y) is less instructive than the simple triangle characterizing the
PDF fxy(x, ).

08 1 Yates Chapter 4 32



Figure 4.4

A graph of the joint CDF Fy y(x, y) of Example 4.5.

08 1 Yates Chapter 4
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As in Example 4.4, random variables X and Y have joint PDF

_J1/15 0<x<5,0<y<3,
Fxy &, y) = { 0 otherwise.

Whatis P[A] = P[Y > X]?

08 1 Yates Chapter 4
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Example 4.6 Solu

Applying Theorem 4.7, we integrate the density fx y(x, y) over the part of
the X, Y plane satisfying Y > X. In this case,

> o
X P[A]:/O </x 115> v

— 3
— P3-x (3—)6)2
15 dx = — m
: ;X 0

08_1 Yates Chapter 4 e



Section 4.5

08_1

Marginal PDF

Yates Chapter 4
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Theorem 4.8

If X and Y are random variables with joint PDF fx y(x, y),

Jx (x) 2/_ Ifxy (x,y) dy, Jr (v) 2/_ Jxy (x,y) dx.

08 1 Yates Chapter 4
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From the definition of the joint PDF, we can write

FX(x):P[ng]:/ (f fX,Y(M,Y)dY)dM-

Taking the derivative of both sides with respect to x (which involves differ-
entiating an integral with variable limits), we obtain fx(x) = ffooo fxy(x,y)dy.
A similar argument holds for fy(y).

08 1 Yates Chapter 4 38



yn
2%
Y
e
7
v
N\\\\\\\
t
V22,

A |
| 7 7

Example 4.7

The joint PDF of X and Y is

’

p—

WA

y

VI

@\l

x

1’ .
@

<_.B

=

VI ©

nk =

| ©

4

~

y

o

|

Find the marginal PDFs fx(x) and fy(y).

fxy&x,y)

39
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Example 4.7 Soli

We use Theorem 4.8 to find the marginal PDF fx(x). When x < —1 or
when x > 1, fx y(x,y) =0, and therefore fx(x) =0. For -1 <x <1,

Y
X=x
4 v )
I's 5(1 — x%)
I/ fxt = [ Zdy= .
xz_ 2 4 8
<« — X
-1 x 1
The complete expression for the marginal PDF of X is
= 05
Ny [ 50-xY/8 —1<x<1,
. Tx @) = { 0 otherwise.
-1 0 1
X
[Continued]
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For the marginal PDF of Y, we note thatfory <Oory > 1, fy(y) =0. ForO <y <1, we

integrate over the horizontal bar marked Y = y. The boundaries of the bar are x = —,/y
and x = /y. Therefore, for0 <y <1,
Y
/

\ “

Y=y frn = Fdx=Zx =5
/ v =
<« p X
172 ]/2]
-1 -y y

The complete marginal PDF of Y is

3
= 2
< f()_{ (5/2y*? 0<y<1,
otherwise.
0
—1 0 1
Y

UB_1 Yates Chapter 4 41



Section 4.6

Functions of Two Random
Variables

08 1 Yates Chapter 4
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Functions of Two Random Variables

Let the random variable Z be defined as a function of X and Y:
Z=g(X.,Y).
The cdf of Z 1s found similar to the functions of single random variable. If there exists D, such that:

Z<zy={gX,Y)<z}={(x,y)eD,},
then, the cdf of Z is found by,

Fy(2)=P{Z <z} =P{(X,Y)e D} = [[ fi, (x,y)dxdy.
DZ
The pdf of Z 1s found by taking the derivative of F,(z) with respect to z such that,

1A= F, )

08 1 Yates Chapter 4 43



l.Z=X+Y

Fy(2) = [[ fyy (x, y)dxdy

- I: J:;y fX,Y (x, v)dxdy

OF,(z) O =~ =
@) ==L =] [ fr (o p)ddy

= foy G-y
If x and y are independent, the following hold
Trr(@=2:0)=fx (=) (D).

In this case, Eq. (*) reads

L@ =] fez=0f0)dy.

This is a convolution integral.

08 1 Yates Chapter 4
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Example (Z=X+Y)

X and Y are independent r.v. with

fr()=ae ™ ux);  f,(y)= Be " u(y).
Findf (z) whenZ =X + Y.

£, =], L= 1)y
— aﬂJ: e e Py
__ (o7, Bra
94

(fy(x)=0 for x<0 = f,(z=y)=0 for y>z and f,(y)=0 for y<0)
Ifa=p,

f,(2)=a’ze ™.
In this case, note that x and y are exponential random variables and z is an Erlang random variable

with parameter m=2. Let's plot f,, (x) and f, (z) for o =1.

08 1 Yates Chapter 4 45
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2.Z=X'Y

Fy(2) = [[ fr G, y)dxdy

= j: I_y; Sy y (X, y)dxdy + I_OOO J.: Sy y (X, y)dxdy

(%gz’ y>0 =>x<yz; %SZ, y<0 = x2yz)

1D =4[ e eondsdy + [ [ frey oy
= f:yfx,y (zy,y)dy + j_ow(—y) Jry(2y,y)dy

= [ 191 fey @)y

08 1 Yates Chapter 4
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Example 4.10

X and Y have the joint PDF

48

’

o
Al @
= .0
- =
S o
Al <
e
= O
= <
; g
I ©
=3 =
~< O
%e 3
= N
< O
{
|| i
—~ X
SN
N
o
SE -
< =
@)
LL
s
al
(¢b)
-
-+ A w
O |
= 3
LL



U

//////A

]
7
///
)
)

Example 4.10 Solutior
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First we find the CDF:
Fyw(w)=PlY/X <w]=PlY <wX].

Forw < 0, Fy(w) = 0. For w > 0, we integrate the joint PDF fx y(x, y)
over the region of the X, Y plane for whichY < wX, X >0,andY > 0 as

shown:
27 0.0 wx
PlY <wX]= ,v)dy ) d
Y=wX [Y < wX] fo (0 Ix,y (x,) Y) X
o0 wx
— / S (/ we MY dy) dx
Y<wX . J
— / re M (1 —e H*Y) dx
0
B A
X T
[Continued]
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w < 0,
— A

Fy (w)

Differentiating with respect to w, we obtain

@
0
S 2
Al 2
3 ©
S
3
3
l_l
=
~
3
< O
N, '
I
6
S
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Section 4.7

08_1

Expected Values
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Theorem 4.12

For random variables X and Y, the expected value of W = g(X,Y) Is

Discrete:  E[W] = Z Z g(x, y)Px y(x,y)

XGSX yeSy

o0 o0
Continuous: E[W] = f / g(x,y) fxy(x,y)dxdy.
-0 J =00

08 1 Yates Chapter 4
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Theorem 4.13

Elgi(X,Y)+---+ (X, V)] = E[g1(X, V)] +--- + Elgn(X,Y)].

08 1 Yates Chapter 4
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Letg(X,Y) = g1(X,Y)+---+g,(X,Y). For discrete random variables X, Y, Theorem 4.12
states

E[gX. V)= Y (&1(x,y) 4+ gulx.y)) Pxy (x. ).

xeSy yedy

We can break the double summation into n double summations:
ERX.NI=) Y &1, »)Pxyx.y)+ -+ Y > gulx.y)Pxy (x.y).

xeSx yelsy xeSx yedy

By Theorem 4.12, the ith double summation on the right side is E[g;(X, Y)], thus
Elg(X,V)]=E[e1(X, V)] +---+ E[gn(X, Y)].
For continuous random variables, Theorem 4.12 says
E[g(X,Y)] = f / (g1(x, y) + -+ gn(x,¥)) fxy (x,y) dxdy.

To complete the proof, we express this integral as the sum of n integrals and recognize
that each of the new integrals is an expected value, E[g;(X, Y)].

08 1 Yates Chapter 4 54



Theorem 4.14

For any two random variables X and Y,

EIX+Y|=E[X]+E[Y].

08 1 Yates Chapter 4
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Theorem 4.15

The variance of the sum of two random variables is

Var[X + Y] = Var[X] + Var[Y] +2E [(X — ux)(¥Y — uy)l.

08 1 Yates Chapter 4
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Since E[X + Y] = ux + uy,
VarlX + Y] = E (X +¥ = (ux + uy)?|
= E[(X = px) + (Y = uy))?]
= E|(X = x)? + 20X = px) (¥ — ) + (¥ = up)? |

We observe that each of the three terms in the preceding expected values
is a function of X and Y. Therefore, Theorem 4.13 implies

VarlX + Y1 = E [ (X = px)? | + 2B [(X = ux)(¥ = pp)] + E | (¥ = up)?].

The first and last terms are, respectively, Var[X] and Var[Y].

08 1 Yates Chapter 4 57
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Theorem 4.16

(@) Cov[X, Y] =rxy —uxuy.
(b) Var[X + Y] = Var[X] + Var[Y] + 2 Cov[X, Y].

(c) If X =Y, Cov[X, Y] = Var[X] = Var[Y] and ry y = E[X?] = E[Y?].

08 1 Yates Chapter 4
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Cross-multiplying inside the expected value of Definition 4.4 yields

Cov[X,Y]=E[XY —uxY —puyX +uxuyl.

Since the expected value of the sum equals the sum of the expected val-
ues,

Cov[X,Y]|=E[XY]—-E[uxY]—E[uyX]I+ Eluyux].

Note that in the expression E[uyX], uy Is a constant. Referring to Theo-
rem2.12, we seta = uy and b = 0 to obtain E{uyX] = uyE[X] = uyux.
The same reasoning demonstrates that E{uxY] = uxE[Y] = uxuy.
Therefore,

Cov[X,Y]=FE[XY]—uxuy —uyux + uymx =rx,y — MxHy-

The other relationships follow directly from the definitions and Theorem 4.15.
08 1 Yates Chapter 4 61
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For the integrated circuits tests in Example 4.1, we found in Example 4.3
that the probability model for X and Y is given by the following matrix.

Px y (x,y)

y=0y=1y=2

Px (x)

x =20
x =1
x =2

0.01 0 0
0.09  0.09 0
0 0 0.81

0.01
0.18
0.81

Py (y)
Find rx y and Cov[X, Y].

08_1

0.10 0.09 0.81

Yates Chapter 4
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Example 4.12 Solution

By Definition 4.5,

2

2
rxy = E[XY] = Z ZX)’PX,Y (X, )
x=0y=0

= (1)(1)0.09 + (2)(2)0.81 = 3.33.

To use Theorem 4.16(a) to find the covariance, we find

E[X] = (1)(0.18) + (2)(0.81) = 1.80,
E[Y] = (1)(0.09) + (2)(0.81) = 1.71.

Therefore, by Theorem 4.16(a), Cov[X, Y] = 3.33 — (1.80)(1.71) = 0.252.

08 1 Yates Chapter 4
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Definition 4.7 Uncorrel.

Random variables X and Y are uncorrelated if Cov[X, Y] = 0.

08 1 Yates Chapter 4
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Theorem 4.17
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Let o and oy denote the variances of X and Y and for a constant a, let
W =X —aY. Then,

Var[W] = E [(X _ aY)z] _(E[X —aY]?.
Since E[X —aY] = ux —auy, expanding the squares yields
Var[W] = E [X2 —2aXY + a2Y2] _ (,@( _auxpy + a%u%)
— Var[X] — 2a Cov [X, Y] + a? Var[Y].

Since Var[W] > 0 for any a, we have 2a Cov[X, Y] < Var[X] + a? Var[Y].
Choosing a = oy /oy Yyields Cov[X, Y] < oyoy, which implies py y < 1.
Choosing a = —ox /oy yields Cov[X, Y] > —oyoy, Which implies px y >
—1.

08 1 Yates Chapter 4 68



Theorem 4.18

If X and Y are random variables suchthat Y = aX + b,

—1 a <0,
PX,Y = 0 a=0,
1 a>0.

08 1 Yates Chapter 4
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Quiz 4.7(B)

The joint probability density function of random variables X and Y is

xy 0<x<1,0<y<?2
Ix.y (%, y) :{ Oy otherwise. T
Find the following quantities.
(1) E[X] and Var{X]
(2) E[Y]and Var[Y]
(3) The correlationry y = E[XY]
(4) The covariance Cov[X, Y]
(9) The correlation coefficient py y

08 1 Yates Chapter 4
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Section 4.8

Conditioning by an Event
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Theorem 4.19

For any event B, a region of the X, Y plane with P[B] > 0,

Px y(x,y)

X, € B,
Px y\p(x,y) = P [B] (*x, )
0 otherwise.

08 1 Yates Chapter 4
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Example 4.13

V22722
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Var
O
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Y 1

4 1 Pxy(x,y) 16

1 1

3 4 el2 @16

1 1 1

2 4 Y el2 @16

1 1 1 L

1 4 o4 o8 ol2 @lb6
O I I I I
0 1 2 3 4

08 1

Random variables X and Y have the joint
PMF Py y(x,y) as shown. Let B denote
the event X +Y < 4. Find the conditional
PMF of X and Y given B.

Yates Chapter 4 74



Example 4.13

\\\\\ \i
SO0l

08_1

Event B = {(1,1),(2,1),(2,2), (3, 1)}
consists of all points (x, y) such that x +
y < 4. By adding up the probabilities of
all outcomes in B, we find

P[Bl=Pxy(,1)+ Px y(2,1)

7
+Pxy(2,2)+Pxy@3,1)= o

— X The conditional PMF Py yg(x,y) Is

y
1 PxyBx,Y)
3
. el4
3 3 1
- 'Y el4 7
0 1 2 4

shown on the left.
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X and Y are random variables with joint PDF

] 1/15 0<x<5,0<y<3,
Jxy & ¥) = { 0 otherwise.

Find the conditional PDF of X and Y giventhe event B = {X +Y > 4}.

08 1 Yates Chapter 4
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Example 4.14 Solu

We calculate P[B] by integrating fx y(x, y) over the region B.

1 3 p5 1
P [B] :f / —dx dy
e ~ 0 Ja—y 15
L

\ 1 3 | ;

\\\\\\\ : T ( )

. 15 Jo +y)ay
NN N

| , X =1/2.
Definition 4.10 leads to the conditional joint PDF

2/15 0<x<50<y<3,x+y=>4,

IxyiB(x.y) =1 otherwise.

08 1 Yates Chapter 4 78
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Theorem 4.20

For random variables X and Y and an event B of nonzero probability, the

conditional expected value of W = ¢(X, Y) given B is

E[W[B]= ) > g y)PxyBx.y)

Discrete:

XESX yeSy

gx, ) fx yip(x,y)dxdy.

[

Continuous: E[W|B]

79
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Theorem 4.21

Var[W|[B] = E | W2|B| — (uwp)?

08 1 Yates Chapter 4
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Example 4.15 Frop

Continuing Example 4.13, find the conditional expected value and the con-
ditional variance of W = X + Y giventhe event B = {X + Y < 4}.

08 1 Yates Chapter 4 82



Example 4.15 Solutior

We recall from Example 4.13 that Px y|p(x, y) has four points with nonzero
probability: (1, 1), (1, 2), (1, 3), and (2, 2). Their probabilities are 3/7, 3/14,
1/7, and 3/14, respectively. Therefore,

E[W|Bl =) (x+y)Px y|B(x, )
X,

—23+33+41+43—41
T 14 7 14 14

Similarly,

E [WZIB] = ny:(x + )’)ZPX,Y|B (x,y)

3 3 1 3 131
=027 132 4242
TR R VI

The conditional variance is Var[W|B] = E[W?2|B]—(E[W|B])? = (131/14)—
(41/14)% = 153/196.
08 1 Yates Chapter 4 83
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Example 4.16

84

Continuing Example 4.14, find the conditional expected value of W = XY
Yates Chapter 4

giventhe event B = {X + Y > 4}.
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Y

A B For the event B shown in the adjacent graph, Exam-
ple 4.14 showed that the conditional PDF of X, Y given
B is

] 2/15 0<x<50<y<3,(x,y) €B,
SxxiB (%, y) = { 0 otherwise.

From Theorem 4.20,

E[XY|B]:// —xydxdy
4y

2
- d
150< |4y>yy

1 [3 123
- — Oy +8y% — y3) dy = —.
150(y+y y°) dy 0

08 1 Yates Chapter 4 85



Quiz 4.8(A)

From Example 4.8, random variables L and T have joint PMF

Prr(,1) t =40sec r=60secC
| =1page |0.15 0.1
| =2 pages | 0.3 0.2
| = 3 pages | 0.15 0.1

For random variable V = LT, we define the event A = {V > 80}. Find the
conditional PMF Py, 7 4(/,t) of L and T given A. What are E[V|A] and
Var[V|A]?

08 1 Yates Chapter 4 86
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Quiz 4.8(A) Solut
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g
)

Since the event V > 80 occurs only for the pairs (L, T) = (2,60), (L, T) =
(3,40) and (L, T) = (3, 60),

P[A]=P[V > 80] = P 7 (2,60) + P 1 (3,40) + Pp 7 (3, 60) = 0.45
By Definition 4.9,

P (1) It > 0

P [, 1) = P[A]
L.7IA( { 0 otherwise

We can represent this conditional PMF in the following table:

Prpia,t) |t =40 t =60
I =1 0 0
[ =2 0 4/9
| =3 /3 2/9

[Continued]

08 1 Yates Chapter 4 87
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The conditional expectation of V can be found from the conditional PMF.

E[VIAI=) » ltPLrja,0)
[ !

=2 60)4+(3 40)1+(3 60)2—1331
- 9 3 9 3

For the conditional variance Var[V|A], we first find the conditional second

moment
E|VAIA| =YY an?Prria
[ !

= (2-60) §+(3°40) §+(3°60) 9 18, 400
It follows that

Var[VIA] = E [VZIA] —(E[V]A])? = 622%

0{)_ 1 1dLlCOo viigapLwol - Vv



Quiz 4.8(B)

Random variables X and Y have the joint PDF

[ xy/4000 1<x<3,40 <y < 60,
Fxy (%, y) = { 0 otherwise.

For random variable W = XY, we define the event B = {W > 80}. Find the
conditional joint PDF fx y|p(l,7) of X and Y given B. What are E[W|B]
and Var[W|B]?

08 1 Yates Chapter 4 89



Section 4.9

Conditioning by a Random Variable
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Theorem 4.22

For random variables X and Y with joint PMF Py y(x, y), and x and y such
that Py (x) > 0 and Py(y) > 0,

Px y (x,y) = Px|y (x|y) Py (y) = Py|x (y|x) Px (x).

08 1 Yates Chapter 4 92
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Referring to Definition 4.12, Definition 1.6, and Theorem 4.3, we observe

that

P[X=x,Y=y] Pxyx,y)
PlY=yl  Py(@y)

Hence, Px y(x,y) = Px|y(x|y)Py(y). The proof of the second part is the

same with X and Y reversed.

Pxiy (x|y) =P[X =x|Y =y] =

08 1 Yates Chapter 4 93
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Example 4.17 Problem
n f DWW EINs DR

Y

4 1 Pxy(x,y) oTs _ o
1 1 Random variables X and Y have the joint PMF
- 1 '112 '116 Px y(x,y), as given in Example 4.13 and re-
2 e oI2 o6  peated in the accompanying graph. Find the
i o o b o conditional PMF of Y given X = x for each
x € Sy.
0 X
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Example 4.17 Solu

To apply Theorem 4.22, we first find the marginal PMF Px(x). By The-
orem 4.3, Py(x) = ZyESY Px y(x,y). For a given X = x, we sum the
nonzero probablities along the vertical line X = x. That is,

[ 1/4 x =1, [ 1/4 x =1,
1/8 +1/8 x =2, 1/4 x =2,
Py (x) =4 1/12+1/12+1/12 x =3, =1 1/4 x =3,
1/16 +1/16 +1/16 +1/16 x =4, 1/4 x =4,
| 0 otherwise, | 0 otherwise.

Theorem 4.22 implies that for x € {1, 2, 3, 4},

P ,
Py x (y|x) = X]’Ji((i)y) =4Px y (x,y).

[Continued]
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For each x € {1, 2, 3, 4}, Py|x(yIx) is a different PMF.

(1 oy=1, (12 ye{1,2),
PrixOID) = | 0 otherwise. Prix(v]2) = 0

_ |13 yef1,2,3), |14 ye{1,2,3,4}
PrixB) =10 otherwise.  FYxOMH =1

otherwise.

otherwise.

Given X = x, the conditional PMF of Y is the discrete uniform (1, x) random

variable.

08 1 Yates Chapter 4
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Example 4.18

In Example 4.17, we derived the following conditional PMFs: Py x(y|1),
Py \x(¥12), Py|x(y¥|3), and Py x(y|4). Find E[Y|X =x] forx =1, 2, 3, 4.
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Applying Theorem 4.23 with g(x, y) = x, we calculate

E[YIX=1]=1, E[Y|X =2] =15,
E[Y|X =3]=2. E[Y|X =4] =25.

08 1 Yates Chapter 4
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Returning to Example 4.5, random variables X and Y have joint PDF

Y
A Juxy)=2

2 0<y=<x<l,
0 otherwise.

fxyx,y) = {

- X

/
For 0 < x < 1, find the conditional PDF fy x(y|x). For 0 <y <1, find the

conditional PDF fx |y (x]y).
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Example 4.19 Solutio

For0 < x < 1, Theorem 4.8 implies

Jx (x) = / fxy (x,y)dy = / 2dy = 2x.

0
The conditional PDF of Y given X is

Jxr(x.y) [ 1/x 0<y<x,
fx(x) | 0 otherwise.

Jrix (ylx) =

Given X = x, we see that Y is the uniform (0, x) random variable.

Theorem 4.8 implies

o0 1
fr <y>=f Frr (5 9) dxzf 2dx = 2(1 — ).

y
Furthermore, Equation (4.102) implies

fxrx,y) [ 1/0—-y) y<x<I,
frv |0 otherwise.

fxiy (xly) =

For0 < y < 1,

Conditioned on Y = y, we see that X is the uniform (y, 1) random variable.

08 1 Yates Chapter 4
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Theorem 4.24

fxy x,y) = frix OIx) fx x) = fxjy &ly) fy ().

08 1 Yates Chapter 4 103
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For continuous random variables X and Y and any y such that fy(y) > 0,

the conditional expected value of g(X,Y) givenY =y is

g(x, y) x|y (x|y) dx.

/..

E[g(X, Y)Y =y]

104
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Example 4.20

For random variables X and Y in Example 4.5, we found in Example 4.19
that the conditional PDF of X given Y is

o fxy Gy 1/ —-y) y<x <1,
iy (ly) = fr(y) { 0 otherwise.

Find the conditional expected values E[X|Y = y] and E[X|Y].

08 1 Yates Chapter 4 106
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Example 4.20 Solutio

Given the conditional PDF fxy(x|y), we perform the integration

o0
E[X|Y = y] =f xfxiy (xly) dx
— 00
=3I
/1 1 x2 * I+y
— de:— = —,
, Ty 2—y)| 2

Since E[X|Y =yl =(1+y)/2, E[X|Y]= (1 +Y)/2.

08 1 Yates Chapter 4
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Theorem 4.25

E[E[X]|Y]] = E[X].

108
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We consider continuous random variables X and Y and apply Theorem 3.4:

o0

E[E[X|Y]]:/ E[X]Y =y] fr () dy.

To obtain this formula from Theorem 3.4, we have used E[X|Y = y] in place of g(x)
and fy(y) in place of fx(x). Next, we substitute the right side of Equation (4.108) for
E[X|Y =]

E[E[X|Y]] = / (/ xfxy (x]y) dX) fr (y) dy.

—00 o0

Rearranging terms in the double integral and reversing the order of integration, we obtain:

E[E[X|Y]]:/ X/ Ixiy (x|y) fy (y) dy dx.

Next, we apply Theorem 4.24 and Theorem 4.8 to infer that the inner integral is simply
fx(x). Therefore,

o0

E[E[X|Y]]:/ xfx (x) dx.

—00

The proof is complete because the right side of this formula is the definition of E[X]. A
similar derivation (using sums instead of integrals) proves the theorem for discrete random

v 1dLlCOo viigapLwol - IU\')
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Theorem 4.26

E[E[g(X)|Y]] = E[g(X)].

08 1 Yates Chapter 4 110
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Example 4.21

At noon on a weekday, we begin recording new call attempts at a telephone
switch. Let X denote the arrival time of the first call, as measured by the
number of seconds after noon. Let Y denote the arrival time of the second
call. In the most common model used in the telephone industry, X and Y
are continuous random variables with joint PDF
B Me ™ 0<x < y,
Txy @.y) = { 0 otherwise.
where A > 0 calls/second is the average arrival rate of telephone calls. Find
the marginal PDFs fx(x) and fy(y) and the conditional PDFs fxy(x|y)

and fy x(y|x).
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Forx <0, fx(x) =0. For x > 0, Theorem 4.8 gives fx(x):

o0
Jx (x) = / MM dy = re M.
X

Referring to Appendix A.2, we see that X is an exponential random variable
with expected value 1/A. Given X = x, the conditional PDF of Y is

fxy (x,y) { e MO8y sy

fx (x) 0 otherwise.
To interpret this result, let U = Y — X denote the interarrival time, the time
between the arrival of the first and second calls. Problem 4.10.15 asks the
reader to show that given X = x, U has the same PDF as X. Thatis, U is
an exponential (1) random variable. [Continued]

frix (lx) =

08 _1 Yates Chapter 4 112
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Now we can find the marginal PDF of Y. Fory < 0, fy(y) = 0. Theorem 4.8
implies
_ | g e dx =2Fye™ y =0,
Ty ()= { 0 otherwise.

Y is the Erlang (2, A) random variable (Appendix A). Given Y = vy, the
conditional PDF of X is

fxiy (xly) = /X,y (%, ) :{ I/y 0<x <y,

fy &) 0  otherwise.

Under the condition that the second call arrives at time y, the time of arrival
of the first call is the uniform (0, y) random variable.
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Let R be the uniform (0, 1) random variable. Given R = r, X is the uniform
(0, r) random variable. Find the conditional PDF of R given X.
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Example 4.22 So

The problem definition states that

1 0=<r<1, ) 1/r O0<x<r <1,
fR(r)_{O otherwise, fX|R(x|r)_{O otherwise.

It follows from Theorem 4.24 that the joint PDF of R and X is

1 1
frax ) = S o0 = { o G, !

Now we can find the marginal PDF of X from Theorem 4.8. For0 < x < 1,

o0 L ar
fx (x) = /_ JRx (r,x) dr = — = —Inx.

X

By the definition of the conditional PDF,

1
fRxX) | =5 x <7 = 1,
fx (x) 0 otherwise.
08 1 Yates Chapter 4 115
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Quiz 4.9(A)

The probability model for random variable A is

04 a=0,
Pa(a)y=4 0.6 a=2,

0 otherwise.

The conditional probability model for random variable B given A is

0.8 b=0, 0.5 b=0,
Ppia(hl0) =41 02 b=1, Ppia(b|12) =43 05 b=1,
0 otherwise, 0 otherwise.

(1) What is the probability model for A and B? Write the joint PMF P4 g(a, b)
as a table.

(2) If A =2, whatis the conditional expected value E[B|A = 2]?

(3) If B =0, what is the conditional PMF P4 p(a|0)?

(4) If B =0, what is the conditional variance Var[A|B = 0] of A?
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Quiz 4.9(B)

The PDF of random variable X and theconditional PDF of random variable
Y given X are

2y/x2 O0<y<x,0<x <1,

3x2 0<x<lI1, ForgHlx) =
YIXOIE) =1 otherwise.

Tx@) = { 0  otherwise,
(1) What is the probability model for X and Y? Find fx y(x, y).
(2) If X =1/2, find the conditional PDF fy x(y]1/2).

(3) If Y =1/2, what is the conditional PDF fxy(x|1/2)?

(4) If Y =1/2, what is the conditional variance Var[X|Y = 1/2]?
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Section 4.10

Independent Random Variables

08 1 Yates Chapter 4 118



-
Al

y w %
Y
L

)
Q\\\\\\\\M
“%

g

S
S

§l\

Yoy
V27

V2
) .
7,
o

§\\\\§
)
ey
L .
Yoy

Z Z7

W\&\\\\\

\\\v\\\\&

Yoy
)
)
Yy
2

o
Vg,

4.16

tion

ini

Def.

119

T = e
N,@m
o
mP[)J
)

x
m@ﬂ N
aDNAf o)
W—” -—

[ <
m__) 5
g2 = = g
n,x S
mmﬂ g
e.,
£ &
lm S

S
w..w
Ym.m
g 2 =
a.snw
ST
k¢
I
L
S T
= S
o
©
Ly
<



o
N\\\\&
V7
Y/

.

%

\\\\

V722
Py,
et

Example 4.23

120

’

—
V]
y
VI
-
-8
<_M <
= & o)
e -—
VI £ o
-+ =
S O O
- 8
s ©
<+ o >
e
1 .
Ve )
N -
N ()
N
> 8
)
N
<
S
©
c
©
< -
(€b) 00
Arn o



\\\\

Example 4.23 So!

///////////
7]

\
L
B

P
=
)
)

2
//I/////A

[ A 4

The marginal PDFs of X and Y are

] 2x 0<x <1, 2y 0<y<I1,
Ix (x)_{ 0 otherwise, fY(y)_{ 0 otherwise.

It is easily verified that fx y(x,y) = fx(x)fy(y) for all pairs (x, y) and so
we conclude that X and Y are independent.
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Are U and V independent?
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Example 4.24 So

Since fy v (u, v) looks similar in formto fx y(x, y) in the previous example,
we might suppose that U and V can also be factored into marginal PDFs
fu(u) and fy(v). However, this is not the case. Owing to the triangular
shape of the region of nonzero probability, the marginal PDFs are

_ [ 12u0—w? 0=<u=<1,
Juw) = | 0 otherwise,
[ 1200 —-v)? 0<v <1,
Jv )= | 0 otherwise.

Clearly, U and V are not independent. Learning U changes our knowledge
of V. For example, learning U = 1/2 informs us that P[V < 1/2] = 1.
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Theorem 4.27

For independent random variables X and Y,

(@) E[g(X)h(Y)] = E[g(X)]E[h(Y)],
(b) rx,y = E[XY] = E[X]E[Y],

(c) Cov[X,Y]=pxy =0,

(d) Var[X + Y] = Var[X] + Var[Y],

(e) E[X|Y = y] = E[X] forall y € Sy,

(f) E[Y|X =x] = E[Y] forall x € Sy.
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Proof:

{722

We present the proof for discrete random variables. By replacing PMFs and sums with
PDFs and integrals we arrive at essentially the same proof for continuous random vari-
ables. Since PX,Y(X, yv) = Px(x)Py(y),

E[gX)h(M)] =) Y g(x)h(y)Px (x) Py (y)

.XESX yESY

= | Y e@Px@ | [ X r0Py ) | = E[gCOTE (D]

.XESX yESY

If ¢(X) = X, and h(Y) = Y, this equation implies rxy = E[XY] = E[X]E[Y]. This
equation and Theorem 4.16(a) imply Cov[X, Y| = 0. As a result, Theorem 4.16(b) implies
Var[X + Y] = Var[X] + Var[Y]. Furthermore, px y = Cov|X, Y]/(oxoy) = 0.

Since Pxy(x|y) = Px(x),
E[X|Y =y]=) xPxy(xly) =) xPx(x)=E[X].
xeSy xeSx
Since Pyix(y|x) = Pr(y),
E[YIX=x]=) yPyx(lx) =) yPr(y)=E[Y].

yESY yESY
08 1 Yates Chapter 4 125
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Example 4.25 Prok

Random variables X and Y have a joint PMF given by the following matrix

y=-1y=0 y=1

Px y(x,y)
x =—1
x =1

0 0.25 0
0.25 0.25 0.25

Are X and Y independent? Are X and Y uncorrelated?

08 1 Yates Chapter 4 126
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For the marginal PMFs, we have Py(—1) = 0.25 and Py(—1) = 0.25. Thus

Px (=1) Py (—1) = 0.0625 # Py y (—1,—1) =0,

and we conclude that X and Y are not independent.

To find Cov[ X, Y], we calculate
E[X]=0.5, E[Y] =0, E[XY]=0.
Therefore, Theorem 4.16(a) implies
Cov[X,Y]=E[XY]—E[X]E[Y]=pxy =0,

and by definition X and Y are uncorrelated.
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Section 4.11

Bivariate Gaussian Random
Variables
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Figure 4.5

The Joint Gaussian PDF fx y(x,y) for uy = up =0, oy = op = 1, and

three values of p.
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Theorem 4.28

If X and Y are the bivariate Gaussian random variables in Definition 4.17,

X is the Gaussian (u1, o1) random variable and Y is the Gaussian (u», 0»)
random variable:

1 2 /92 1
—(x—p1)/20 _
e 1
o1V 2T fr ) oo 2

2 2
e~ O—H2)* /205

fx (x) =

08 1 Yates Chapter 4 131
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Integrating fx y(x, y) in Equation (4.146) over all y, we have

fx (x) 2/_ fxy(x,y)dy

1 2 1 2
_ o~ @—p1)?/207 / o~ 020?257 4
o1V 21 o0 (72\/ 27‘[

.~

1
The integral above the bracket equals 1 because it is the integral of a Gaus-
sian PDF. The remainder of the formula is the PDF of the Gaussian (u1, o1)

random variable. The same reasoning with the roles of X and Y reversed
leads to the formula for fy(y).
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Theorem 4.29

If X and Y are the bivariate Gaussian random variables in Definition 4.17,
the conditional PDF of Y given X is

o~ V= 2())?/257

frix (lx) = P

where, given X = x, the conditional expected value and variance of Y are

~ 0> ~
po(x) = M2‘|‘,00—1(X — K1), 222 022(1 — 0%
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Theorem 4.30

If X and Y are the bivariate Gaussian random variables in Definition 4.17,
the conditional PDF of X given Y is

o~ (—A1())*/257

fX|Y (x|y) = m

where, given Y = y, the conditional expected value and variance of X are

~ 01 ~
my(y) = g + pa—z(y — U2) 012 = 012(1 — p?).
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Figure 4.6

Cross-sectional view of the joint Gaussian PDF with u; = up = 0, 01 =
or = 1, and p = 0.9. Theorem 4.29 confirms that the bell shape of the

cross section occurs because the conditional PDF fy|x (y|x) is Gaussian.
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Theorem 4.31

Bivariate Gaussian random variables X and Y in Definition 4.17 have cor-
relation coefficient

PX.Y = P.
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Proof:

Substituting w1, o1, w2, and o, for ux, ox, wy, and oy in Definition 4.4 and Definition 4.8,

we have
E[(X — pn)Y — u2)]
0102 .
To evaluate this expected value, we use the substitution
Sxy(x,y) = frix(y]x) fx(x)

in the double integral of Theorem 4.12. The result can be expressed as

PXy =

1 o0 o0
PXy = —— (x — 1) (/ (y — n2) frix (v|x) d)’) fx (x) dx
0102 J -0 —00
1 o0
= — (x —u) E[Y — ua|X = x] fx (x) dx
0102 J -

Because E[Y|X = x] = u2(x) in Theorem 4.29, it follows that
- O
ELY — puolX = x] = jia(x) — pp = pa—f(x — 1)
Therefore,

0 o0
PX.y = —2/ (x — u1)* fx (x) dx = p,
of Jox

because the integral in the final expression is Var[ X |=o7.
08 1 Yates Chapter 4
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Theorem 4.32

Bivariate Gaussian random variables X and Y are uncorrelated if and only
if they are independent.
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Quiz 4.11

Let X and Y be jointly Gaussian (0, 1) random variables with correlation
coefficient 1/2.

(1) What is the joint PDF of X and Y'?

(2) What is the conditional PDF of X given Y = 27
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