Probability and Stochastic Processes

A Friendly Introduction for Electrical and Computer Engineers
SECOND EDITION

Roy D. Yates David J. Goodman

Definitions, Theorems, Proofs, Examples,
Quizzes, Problems, Solutions
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Probability Models of N Random
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Definition 5.3 Multivariate Joint PDF

The joint PDF of the continuous random variables X,,---, X, 1s the function

n
0 FXl,'--,Xn (xl,---,xn)
lea"'aXn (-xlp"'axn)_ .

Ox, -+ 0x,
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Theorem 5.1

Px, .. x,(X1,--.,Xn),

08_1
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Theorem 5.2

If Xq,..., X, are continuous random variables with joint PDF
le ..... Xn(x19°°°axl’l)s
(a) fX1 ..... Xn(xla axl’l) >05

08 1 Yates Chapter 5



Theorem 5.3

The probability of an event A expressed in terms of the random variables
Xl, o oy Xn |S

Discrete: ~ P[A]l= ) Py, .. x,(x1..-.. %n)

,,,,,

A
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Example 5.1

Consider a set of n independent trials in which there are r possible out-
comes sy, ..., s, for each trial. In each trial, P[s;] = p;. Let N; equal the
number of times that outcome s; occurs over n trials. What is the joint PMF

of Ny,..., N.?

S-,-{s“s.,l.,,)sr} E: , (w

N+« -+tN, =7 ‘( )12' 1”; Ny
T G R (g

- s (n-mJ
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Example 5.1 Soli

The solution to this problem appears in Theorem 1.19 and is repeated here:

n ny _no n
Py, ,N.- (01, ....np) = ( )P1 Py '
nl,...,nr

" )__ 2 ! o
77,’~~~,7"r e 7
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In response to requests for information, a company sends faxes that can
be 1, 2, or 3 pages in length, depending on the information requested. The
PMF of L, the length of one fax is

[ 1/3 [ =1,

)12 1=2,

PLO =1 16 123,
0 otherwise.

For a set of four independent information requests:

(a) What is the joint PMF of the random variables, X, Y,and Z, the number
of 1-page, 2-page, and 3-page faxes, respectively?

(b) What is P[A] = P[total length of four faxes is 8 pages]?

(c) Whatis P[B] = P|at least half of the four faxes has more than 1 page]?

08 1 Yates Chapter 5 11
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Each fax sent is an independent trial with three possible outcomes: L =1,
L =2, and L = 3. Hence, the number of faxes of each length out of four
faxes is described by the multinomial PMF of Example 5.1:

+ NN (1YY (1)?
renrinno=(,1 )6 (G ()

The PMF is displayed numerically in Table 5.1. The final column of the
table indicates that there are three outcomes in event A and 12 outcomes
in event B. Adding the probabilities in the two events, we have P[A] =
107/432 and P[B] = 8/9.

08 1 Yates Chapter 5 12



Table 5.1

The PMF Px y z(x,y,z) and the events A and B for Example 5.2.

08_1

X y Z Pxyz(x,y,2) total events
(1 page) (2 pages) (3 pages) pages

0 0 4 1/1296 12 B
0 1 3 1/108 11 B
0 2 2 1/24 10 B
0 3 1 1/12 9 B
0 4 0 1/16 8 AB
1 0 3 1/162 10 B
1 1 2 1/18 9 B
1 2 1 1/6 8 AB
1 3 0 1/6 7 B
2 0 2 1/54 8 AB
2 1 1 1/9 7 B
2 2 0 1/6 6 B
3 0 1 2/81 6

3 1 0 2/27 5

4 0 0 1/81 4

Yates Chapter 5
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Example 5.3

The random variables X1, ..., X, have the joint PDF

1 Ofxl'fl,i:L...

TX1 X X155 Xn) = { 0 otherwise.

Let A denote the event that max; X; < 1/2. Find P[A].

08 1 Yates Chapter 5
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Example 5.3 Solu

i)
W
)

P[A]=P [maxX,- < 1/2} = P[X;<1/2,...,X, <1/2]

1/2 1/2 |
_ 1dxt .- dx, — —.
A A X1 Xn n

Here we have n independent uniform (0, 1) random variables. As n grows,
the probability that the maximum is less than 1/2 rapidly goes to 0.

08 1 Yates Chapter 5 15
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Vector Notation
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Example 5.4

Random vector X has PDF

otherwise

_/
6e 2X x>0

:{ 0
[1 2 3]. Whatis the CDF of X?

fx (x)

where a
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Because a has three components, we infer that X is a 3-dimensional ran-
dom vector. Expanding a’x, we write the PDF as a function of the vector
components,
B Ge X1 —2x2—3x3 x; >0
X )= { 0 otherwise
Applying Definition 5.7, we integrate the PDF with respect to the three
variables to obtain

_[a—ed—em )1 —e ) x>0
Fx ()= { 0 otherwise

08 1 Yates Chapter 5 22



Quiz 5.2

Discrete random vectors X = [x; x; x3] andY = [y; y, y3] are re-
lated by Y = AX. Find the joint PMF Py(y) if X has joint PMF

(1—=p)p" x1 <xy < x3; 1 0 O
Px (x) = xX1,x0,x3€{l,2,...}, A =]—-1 1 0
0 otherwise, 0 -1 1

08 1 Yates Chapter 5 23



Section 5.3

Marginal Probability Functions

08 1 Yates Chapter 5
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Theorem 5.4

Forajoint PMF Py x vy z(w, x, y, z) of discrete random variables W, X, Y, Z,
some marginal PMFs are

Pxyz(x.y.2)= Y PwxyzWwxyz2)),
weSw

Pwz(w.2)= Y Y Pwxyzwxy2)),

XESX yeSy

Px (x) = f f TJ Py x v z(w,x,y,2).

weSw yeSy zeSz

08 1 Yates Chapter 5 25



Theorem 5.5

Forajoint PDF fw x v z(w, x, y, z) of continuous random variables W, X, Y, Z,
some marginal PDFs are

0
fxyzx,y,2)= / fwxyzw,x,y,z) dw,
o 00
fw,z (w, z) 2/ / fwxyzw,x,y,z)dxdy,
—OQ0 J—00

0,0) 0,0) 0,9)
Jx (x) = / / / fwxyzw,x,y,z) dwdydz.
—00 J—00 J —00

08 1 Yates Chapter 5 26
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Example 5.5

As in Quiz 5.1, the random variables Yq, ..., Y4 have the joint PDF

_ 4 0=y=m=10=<y3=wm=1,
i Yg 1 y4) = { 0 otherwise.

Find the marginal PDFs le,Y4(yla y4), sz,Yg(yZa y3), and st(ny)-

08 1 Yates Chapter 5
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Example 5.5 Soli

In the foregoing integral, the hard part is identifying the correct limits.
These limits will depend on y; and y4. ForO < y; <land0 < y4 <1,

1 ryq
Jr.vs 1, y4) =/ /O ddysdyy = 4(1 — y1)y4.
Y1

The complete expression for fy, y,(y1, y4) is

40 —=ypys 0<y1 =1,0=<y4 <1,
r1.y, 015 y4) = { 0 otherwise.

Similarly, forO0 <y, <land0 < y3 <1,

2
I, 73 (02, ¥3) = /o / ddysdy; = 4yr(1 — y3).
y3

[Continued]
08 1 Yates Chapter 5 28
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Example 5.5

The complete expression for fy, y,(y2, y3) is

’

<1,0<y;<1
otherwise.

dyr(1 —y3) 0=y

0

Jvy, 75, (2, ¥3) dy

I, 75 (2, ¥3) =

Lastly, for 0 < y3 <1,

1
fo 4ya(1 = y3) dys = 2(1 — y3).

..

fry (v3)
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Section 5.4

Independence of Random
Variables and Random Vectors

08 1 Yates Chapter 5
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As in Example 5.5, random variables Yy, ..., Y4 have the joint PDF

4 0=sy1=»=10=<y3=<ys=1,
Mg O oo, 54) = { 0 otherwise.

Are Yy, ..., Y4 independent random variables?

08 1 Yates Chapter 5
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In Equation (5.15) of Example 5.5, we found the marginal PDF fy y,(yv1, y4). We can use
this result to show that

1
fr. () = / fr.v, 01, ya) dys = 2(1 — y1), 0<y =<1,
0

1
fr. a) = / fr.v. V1, ya) dy1 = 2ya, 0<ys <1
0

The full expressions for the marginal PDFs are
_ ) 2(0—y) 0=y =1,
Jro () = { 0 otherwise,
o 2y4 0 < Y4 < 17
Jr, va) = { 0  otherwise.

Similarly, the marginal PDF fy, y,(v2, y3) found in Equation (5.17) of Example 5.5 implies
that for 0 < y, < 1,

o0 1
fr, () = / vy, 2, y3) dyz = / dyr(1 — y3)dyz =2y,
—00 0

[Continued]
08 1 Yates Chapter 5 33
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Example 5.6 Solution (continued)
A 8

|t follows that the marginal PDF of Y, is

|2y, 0<ym<1,
fr, ) = { otherwise.

From Equation (5.19) for the PDF fy,(y3) derived in Example 5.5, we have

fr. D fr,(02) fr,(y3) fr.(ya)

) 161 — y)ya(1 —y3)ya 0 <y1,y2,¥3,ya <1,
10 otherwise, (1)

# fr,..r.(y1, .., Ya).
Therefore Y1, ..., Y4 are not independent random variables.

08 1 Yates Chapter 5 34
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) = Px(x1)Px(xp) -
o ..
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L, Xp) =

PX1 ...,Xn(xla = =

Discrete:

X, X1, ..
n(

' . X1,.ens

uous f

Contin

35

Yates Chapter 5

08_1



gy
o
§
§§
Z o
w\\\\%
§
Vid

\\\\\\\\\

%t

7

S

&
\ WY
A G

| @

&

.
77

&5
Ny
On §
f §

§

ti

ini

Def

PX,Y(

Discrete

)y (y).
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Example 5.7

As in Example 5.5, random variables Yi, ..., Y4 have the joint PDF

4 0=<y1=»=1,0=<y3<ys4=<1,
T¥i Yy O1s -0 y4) = { 0 otherwise.

Let V = |1 Y4]’ and W = |1, Y3]’. Are V and W independent random

vectors”?

08 1 Yates Chapter 5 37
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We first note that the components of V are V; = Yy, and V, = Y4. Also, W; = Y,, and
W, = Y3. Therefore,
4 0<vi<=w =<1
Jvw (v, W) = fy, ..y, (v1, w1, wa, v2) = 0<wy=<wv =1,
0 otherwise.
Since V=[v, Y] andW=[1r, 73],

v = fr.y, (v1, v2) fw (W) = fr, v, (w1, wa)

In Example 5.5. we found fy y,(y1, ya) and fy, y,(v2, y3) in Equations (5.15) and (5.17).
From these marginal PDFs, we have

] 40 —=vpvy O0<wvi,vp <1,
v ) = { 0 otherwise,

] 4wl —wy) O0<wi,wy <1,
Sw (W) = { 0 otherwise.

Therefore,

] 161 —vpvowi(1 —wa) 0 < vy, v2, w1, wa <1,
) fw (W) = { 0 otherwise,

which is not equal to fy w(v, w). Therefore V and W are not independent.
08 1 Yates Chapter 5 38



Quiz 5.4

Use the components of Y = |11, ..., Y4]’ in Example 5.7 to construct two
independent random vectors V and W. Prove that V and W are indepen-
dent.

08 1 Yates Chapter 5 39



Section 5.5

Functions of Random Vectors

08 1 Yates Chapter 5
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Theorem 5.6

For random variable W = g(X),

Discrete: ~ Py(w) = P[W =w]l= Y  Px(x)

X:g(X)=w

Continuous: Fy(w) = P[W < w] = / ‘o / xX)dxy - dxy.

gX)<w

08 1 Yates Chapter 5
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Example 5.8

Consider an experiment that consists of spinning the pointer on the wheel
of circumference 1 meter in Example 3.1 n times and observing Y, meters,
the maximum position of the pointer in the n spins. Find the CDF and PDF

of Y;,.

08 1 Yates Chapter 5 42



10110
n T W N G

If X; is the position of the pointer on the ith spin, then Y;, = max{X, X», ..., X}.
As aresult, ¥, < y if and only if each X; < y. This implies

PlY, <yl=P[X1=<y,Xp=<y,...Xs <yl

If we assume the spins to be independent, the events {X| < y}, {X» < y},
..., {Xn <y} are independent events. Thus

PlY,<yl=P[X1<y]---P[Xp<yl=(P[X<yD'"=(Fx ()"

Example 3.2 derives that Fy(x) = x for0 < x < 1. Furthermore, Fx(x) =0
forx <0and Fxy(x) = 1forx > 1since 0 < X < 1. Therefore, since the
CDF of Yy is Fy,(y) = (Fx(y))", we can write the CDF and corresponding
PDF as

0 y<O, .
Fy, ) =41 »" 0<y<1, fYn(y)Z{Oy
I y>1

¥

=l g<y<l,
otherwise.

08 1 Yates Chapter 5 43



Theorem 5.7

Let X be a vector of » iid random variables each with CDF Fy(x) and PDF

fx ).

(a) The CDF and the PDF of Y = max{Xy, ..., X,} are

Fy ) =Fx )",  fr)=nFx )" ().

(b) The CDF and the PDF of W = min{X, ..., X,} are

Fiy (w)=1—(1—Fx )",  fww)=n{—Fx w)" ! fx w).

08 1 Yates Chapter 5 44
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By definition, fy(y) = P[Y < y]. Because Y is the maximum value of
{X1,...,Xp},theevent{Y <y} ={X1 <y, X <y,..., X, <y}. Because
all the random variables X; are iid, {Y < y} is the intersection of n inde-
pendent events. Each of the events {X; < y} has probability Fx(y). The
probability of the intersection is the product of the individual probabili-
ties, which implies the first part of the theorem: Fy(y) = (Fx(y))". The
second part is the result of differentiating Fy(y) with respect to y. The
derivations of Fy(w) and fw(w) are similar. They begin with the ob-
servations that Fy(w) = 1 — P[W > w] and that the event {W > w} =
X1 >w,Xy,>w,...X, > w}, which is the intersection of n independent
events, each with probability 1 — Fy (w).

08 1 Yates Chapter 5 45



Theorem 5.8

For a random vector X, the random variable g(X) has expected value

Discrete:  E[g(X)]= > -+ Y  g®Px(xX)

X1€SX1 XnGSXn

o0 o0
Continuous: E[g(X)] = / . / g(X) fx(x)dxq - --dxy.
— o0 — o0

08 1 Yates Chapter 5
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Theorem 5.9

When the components of X are independent random variables,

E[g1(X1)gr(Xp)---gn(Xp)] = E[g1(XD]E[g2(X)]--- E[gn(Xn)].

08 1 Yates Chapter 5
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Proof:

When X is discrete, independence implies Px(x) = Px,(x1)--- Px,(xn).
This implies

E[gi(X) gnX)l= > - > gi(x) - gn(xn) Px (X)

X1€SX1 XnGSXn

— ( Z gl(xl)le (xl)) ( Z gn(xn)PXn (xn))

X1€SX1 XnGSXn
= E[g1(XD]E[g2(X2)]--- E[gn(Xn)].

The derivation is similar for independent continuous random variables.

08 1 Yates Chapter 5 48



Theorem 5.10

Given the continuous random vector X, define the derived random vector
Y such that Y, = aX; + b for constants ¢ > 0 and b. The CDF and PDF of
Y are

—b n—Db 1
FY()’):FX(yla y » ) fY(Y):a—an(

e o 9

y o
a a

yi—>b )’n_b)

08 1 Yates Chapter 5 49
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Proof

aX, +b <y,l. Since

We observe Y has CDF Fy(y) = PlaX;+ b < yq, ..

a > 0,

yn—Db

From Theorem 5.2(b), the joint PDF of Y is
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Theorem 5.11

If X is a continuous random vector and A is an invertible matrix, then Y =
AX + b has PDF

fy ) = fx (A7 y =)

[det (A)]

08 1 Yates Chapter 5 51
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Let B = {yly < ¥} so that Fy(§) = [ fy(y) dy. Define the vector transfor-
mation x = T(y) = A~ !(y —b). It follows that Y € B if and only if X € T(B),
where T(B) = {x|Ax+ b <y} is the image of B under transformation T.
This implies
Fy(J)) =PXeTB)]l=| fxX dx
T(B)
By the change-of-variable theorem (Math Fact B.13),

Py () = [ (Ao —b))[det(a1)| ay

where |det(A~1)| is the absolute value of the determinant of A—!. Defi-
nition 5.6 for the CDF and PDF of a random vector combined with The-
orem 5.2(b) imply that fy(y) = fx(A~1(y —b))|det(A~1)|. The theorem
follows since |det(A—1)| = 1/|det(A)|.

08 1 Yates Chapter 5 52



Quiz 5.5(A)

A test of light bulbs produced by a machine has three possible outcomes:
L, long life; A, average life; and R, reject. The results of different tests are
independent. All tests have the following probability model: P[L] = 0.3,
P[A] = 0.6, and P[R] = 0.1. Let Xy, X», and X3 be the number of light
bulbs that are L, A, and R respectively in five tests. Find the PMF Px(x);
the marginal PMFs Py, (x1), Px,(x2), and Px,(x3); and the PMF of W =
max(Xq, X, X3).

08 1 Yates Chapter 5 53



Quiz 5.5(B)

The random vector X has PDF

e 3

X X) = { 0

0<x1 <xp <x3,
otherwise.

Find the PDF of Y = AX + b. where A = diag[2,2,2]andb = [4 4 4]’

08 1 Yates Chapter 5
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Section 5.6

Expected Value Vector and
Correlation Matrix
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Example 5.10

fX =[X; X, Xz],the correlation matrix of X is

E [X%] E[X1X3] E|XX3] L [X%] X1, X2 TX1,X3
RX — | E [XZXI] E I:Xgil E [X2X3] = | X5, X4 E [X%] rX2’X3
E [X3X1] E [X3X2] E [X%] rX3,X; TX3,X5 E [X%]

08 1 Yates Chapter 5 59
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Example 5.11

fX =[X; X, Xz|,the covariance matrix of X is

Var[ X 1] Cov[X], Xp] Cov|Xy, X3]
Cx = | Cov[Xp, X1]  Var[Xp]  Cov|Xp, X3|
Cov|[X3, X1] Cov|[X3,Xp|  Var[X3j]

08 1 Yates Chapter 5
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Theorem 5.12

For a random vector X with correlation matrix Rx, covariance matrix Cx,
and vector expected value ux,

Cx = Rx — uxnx.

08 1 Yates Chapter 5 62
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The proof is essentially the same as the proof of Theorem 4.16(a) with
vectors replacing scalars. Cross multiplying inside the expectation of Defi-
nition 5.14 yields

Cx = E [XX' — Xpx — uxX' + pxpux]
= E[XX| - E[Xpy| - E [nxX]| + E [pxpx].

Since E[X] = ux is a constant vector,

Cx =Rx — E [X]px — uxE [X'| + uxpy = Rx — uxpy.

08 1 Yates Chapter 5 63
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Example 5.12

Find the expected value E[X], the correlation matrix Rx, and the covari-
ance matrix Cx of the 2-dimensional random vector X with PDF

12 0<x1=x=<1,
Jx () = { 0 otherwise.

08 1 Yates Chapter 5 64
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The elements of the expected value vector are

00 o0 1 prxo
E[X;]= / / x; fx (X) dx1dxy = / / 2x;dx1dxy, i =1,2.
—00 J—00 0 JO

The integrals are E[X] = 1/3 and E[X,] = 2/3, so that ux = E[X] =
[1/3 2/3]'. The elements of the correlation matrix are

- - o0 OO 1 prxo

E X% = / / x%fx (X) dx1dxy = / / 2x% dx1dx»,
= = —00 J —00 0 JO
- - o0 OO 1 prxo

E X% = / / x%fx (xX) dx1dxy = / / 2x§ dx1dx»,
- - —00 J —00 0 JO

o0 o0 1 rxp
E[X1Xo] = / / x1x2 fx (X) dx1dxy = / / 2x1x2dx1dx>.
—00 J —00 0 JO

[Continued]
65
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Example 5.12

These integrals are E[X %] = 1/6, E[X3%] = 1/2, and E[XX,] = 1/4.

Therefore,

1/6 1/4
1/4 12|

We use Theorem 5.12 to find the elements of the covariance matrix.

1
O 0O
o v
~ T
—
o0 \O
— N
~ T
—
| I |
I
1
AN O
~ T
AN <t
AN O
~ T
—
| I |
_
1
<t N
~ T
—
O <t
~ T
—
| I
I
%
2
w4
=
_
w4
~
I
w4
)
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The cross-covariance of a pair of random vectors X withn components and
Y withm components is ann xm matrix Cxy withi, jth element Cxy(i, j) =
Cov[X;, Y;], or, in vector notation,

Cxy =E|[X—pux)(Y —ny)].

08 1 Yates Chapter 5 68



Theorem 5.13

X is an n-dimensional random vector with expected value ux, correlation
Rx, and covariance Cx. The m-dimensional random vector Y = AX + b,
where A is an m x n matrix and b is an m-dimensional vector, has expected
value ny, correlation matrix Ry, and covariance matrix Cy given by

py = Apx +b,
Ry = ARxA’ + (Aux)b’ + b(Aux) + bb/,
Cy = ACxA'.

08 1 Yates Chapter 5 69
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We derive the formulas for the expected value and covariance of Y. The
derivation for the correlation is similar. First, the expected value of Y is

iy = E[AX +b] = AE[X] + E[b] = Aux + b.

It follows that Y — uy = A(X — ux). This implies

Cy = E[AX — px)AX — ux))]
— E[AX — ux)(X — ux)'A’] = AE [(X — ux) (X — px)'] A’ = ACxA'.

08 1 Yates Chapter 5 70
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Example 5.13 Prob
| | § N\ N

Given random vector X defined in Example 5.12, let Y = AX + b, where

1 0 0
A=1]6 3 and b=|-2
3 6 —2

Find the expected value iy, the correlation Ry, and the covariance Cy.
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From the matrix operations of Theorem 5.13, we obtain uy = [1/3 2 3]
and

1/6 13/12 4/3 1/18 5/12 1/3
Ry = [13/12 75 925|; Cy=|5/12 35 325
4/3 925 12.5 1/3 325 3.5

08 1 Yates Chapter 5 72



Theorem 5.14

The vectors X and Y = AX + b have cross-correlation Rxy and cross-
covariance Cxy given by

Rxy = RxA' + uxb’, Cxy = CxA'.

08 1 Yates Chapter 5 73
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Example 5.14

Continuing Example 5.13 for random vectors X and Y = AX + b, calculate

(a) The cross-correlation matrix Rxy and the cross-covariance matrix Cxy.

(b) The correlation coefficients py, y, and px, y,.

08 1 Yates Chapter 5 74
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(a) Direct matrix calculation using Theorem 5.14 yields

Rew — | 1/6 13/12 437 [1/18 5/12 1/3
XY= 11/4 5/3 29/12]° XY= 1136 1/3 5/12|

(b) Referring to Definition 4.8 and recognizing that Var[Y;] = Cy(i, i), we

have
Cov | Yy, Y3] Cy(1,3)
IOY1,Y3 — — = 0.756
JVarlY{] Var[Y3] /Cy(1,1)Cy(3,3)
Similarly,
Cov [ X7, Y] Cxy(2, 1)
IOX2,Y1 — 1/2

SVar X, VarlY;]  JCx2.2)Cy(L1)

08 1 Yates Chapter 5 75



Section 5.7

Gaussian Random Vectors
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Theorem 5.15

A Gaussian random vector X has independent components if and only if
Cx is a diagonal matrix.

08 1 Yates Chapter 5 78
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First, if the components of X are independent, then for i # j, X; and X; are independent.
By Theorem 4.27(c), Cov[X;, X;] = 0. Hence the off-diagonal terms of Cx are all zero. If
Cx is diagonal, then

012 1/012
Cx=| - and Cy' =

0,12 1/0?

It follows that Cx has determinant det(Cx) = []\_, o/ and that

(X — )?
(X_ILX)/C)_(l(X_ILX):Z( QM)-

O:
i=1 l

From Definition 5.17, we see that

i=1 /27O

Thus fx(x) = [\ fx,(x;), implying X1, ..., X, are independent.
08 1 Yates Chapter 5 79
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Example 5.15

Consider the outdoor temperature at a certain weather station. On May 5, the temperature
measurements in units of degrees Fahrenheit taken at 6 AM, 12 noon, and 6 PM are all

Gaussian random variables, X1, X», X3 with variance 16 degrees®. The expected values
are 50 degrees, 62 degrees, and 58 degrees respectively. The covariance matrix of the

three measurements is
16.0 12.8 11.2
Cx=|[128 16.0 12.8
11.2 12.8 16.0

(a) Write the joint PDF of X4, X, using the algebraic notation of Definition 4.17.
(b) Write the joint PDF of X, X, using vector notation.
(c) Write the joint PDF of X = [X1 X» X3] using vector notation.

08 1 Yates Chapter 5 80
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(a) First we note that X; and X, have expected values 1 = 50 and uy =

62, variances o = o5 = 16, and covariance Cov[Xj, X;] = 12.8. It
follows from Definition 4.8 that the correlation coefficient is

C X1, X 12.8
ov[Xyq, X2] _ 08

PX1 X = 01072 16

From Definition 4.17, the joint PDF is

= 2
exp (_(x1—50) —1.6(x1—158.)2(x2—62)+(xz_62) )

le,Xz (X1, X2) = 60.3
(b) Let W = [X; X;] denote a vector representation for random vari-
ables X; and X,. From the covariance matrix Cx, we observe that the
2 x 2 submatrix in the upper left corner is the covariance matrix of the
~random vector W. Thus [Continued]
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~ [50 Coo _ [16:0 12,8
W= 1621" W= 1128 16.0]"
We observe that det(Cyw) = 92.16 and det(Cw) /% = 9.6. From Defini-
tion 5.17, the joint PDF of W is

1

1 _
Jw (W) = co.3 &P (_E(W - /uw)TCW1 (W — uw)> .

(c) For the joint PDF of X, we note that X has expected value ux
[50 62 58] and that det(Cx)!/? = 22.717. Thus

1
357.8

i (%) = e Tl
X (X) = exp 2(x px) Cx (x—pux) |-

08 1 Yates Chapter 5 82



Theorem 5.16

Given an n-dimensional Gaussian random vector X with expected value
pix and covariance Cx, and an m x n matrix A with rank(A) = m,

Y =AX+Db

is an m-dimensional Gaussian random vector with expected value puy =
Aux + b and covariance Cy = ACxA'.

08 1 Yates Chapter 5 83
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The proof of Theorem 5.13 contains the derivations of uy and Cy. Our
proof that Y has a Gaussian PDF is confined to the special case when
m = n and A is an invertible matrix. The case of m < n is addressed in
Problem 5.7.9. When m = n, we use Theorem 5.11 to write

_1 B
fy ) = |dt(A)|fX( v - b)

exp (—HATI(y = b) — ux1'Cx 1A~ (v = b) — ix))
(27)"/2 |det (A)| |det (Cx)|'/?
In the exponent of fy(y), we observe that

Al y—b) —ux=A"lly— Aux + b1 =A" 1y — ny).
since uy = Aux + b. [Continued]
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Applying (5.79) to (5.78) yields
exp (—HATIy - ry) Cx AT v — ey
(2m)"/2 |det (A)] |det (Cx) '/

Using the identities |det(A)||det(Cx)|}/? = |det(ACxA")|Y/? and (A~ =
(AN~ we can write

fx (y) =

exp (—%(y — ILY)/(A/)_IC;(IA_I()’ — ﬂY))
(27r)"/2 |det (ACxA')|'/*

Y (y) =

Since (A")~'Cx'A™! = (ACxA")~!, we see from Equation (5.81) that Y
is a Gaussian vector with expected value py and covariance matrix Cy =
ACxA'.
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Example 5.16

Continuing Example 5.15, use the formula ¥; = (5/9)(X; — 32) to convert
the three temperature measurements to degrees Celsius.

(a) What is ny, the expected value of random vector Y?
(b) What is Cy, the covariance of random vector Y?

(c) Write the joint PDF of Y = [¥; Y, ¥3] using vector notation.

08 1 Yates Chapter 5 86
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(a) Interms of matrices, we observe that Y = AX + b where

59 0 0 160 |1
A=|0 59 0|, b=-"21|1
0 0 5/9 7 11

(b) Since ux =[50 62 58], from Theorem 5.16,

10
iy = Apx +b = | 50/3
130/9

(c) The covariance of Y is Cy = ACxA’. We note that A = A’ = (5/9)I where 1 is the
3 x 3 identity matrix. Thus Cy = (5/9)>Cx and Cy' = (9/5)>Cx'. The PDF of Y is

1 31
fy (¥) = 5575 exp (——(y i) Cx(y — My)>

08 1 Yates Chapter 5 87
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Theorem 5.17

For a Gaussian (ux, Cx) random vector, let A be an n x n matrix with the
property AA’ = Cx. The random vector

Z=A""X-pyx)

is a standard normal random vector.

08 1 Yates Chapter 5 89
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Applying Theorem 5.16 with A replaced by A~!, and b = A~ ux, we have
that Z is a Gaussian random vector with expected value

E[Zl=E A (X - py) | =A"'E[X - px] =0,
and covariance

Cz=A"lcx( A~ Y = A TAA/ A =L

08 1 Yates Chapter 5 90



Theorem 5.18

Given the n-dimensional standard normal random vector Z, an invertible
n x n matrix A, and an n-dimensional vector b,

X=AZ+b

is an n-dimensional Gaussian random vector with expected value ux = b
and covariance matrix Cx = AA’.
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Proof

By Theorem 5.16, X is a Gaussian random vector with expected value

= E[AZ+ px| =AE[Z]+b=D).

ux = E[X]

The covariance of X is
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Theorem 5.19

For a Gaussian vector X with covariance Cy, there always exists a matrix
A such that Cx = AA’.
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Proof:

To verify this fact, we connect some simple facts:

e In Problem 5.6.9, we ask the reader to show that every random vector
X has a positive semidefinite covariance matrix Cx. By Math Fact B.17,
every eigenvalue of Cx is nonnegative.

e The definition of the Gaussian vector PDF requires the existence of
C;(l. Hence, for a Gaussian vector X, all eigenvalues of Cx are nonzero.
From the previous step, we observe that all eigenvalues of Cx must be
positive.

e Since Cx is a real symmetric matrix, Math Fact B.15 says it has a sin-
gular value decomposition (SVD) Cx = UDU’ where D = diag[dy, ..., dx]
is the diagonal matrix of eigenvalues of Cx. Since each d; is positive,
we can define D/ = diag[v/d, ..., v/d,], and we can write

Cx = UD!/2D'/2y = (UD1/2> (UD1/2>/.

We see that A = UD!/2.
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