Probability and Stochastic Processes

A Friendly Introduction for Electrical and Computer Engineers SECOND EDITION

Roy D. Yates

David J. Goodman

Definitions, Theorems, Proofs, Examples, Quizzes, Problems, Solutions

Chapter 5

Section 5.1

Probability Models of N Random Variables

Definition 5.1 Multivariate Joint CDF

The joint CDF of X_1, \ldots, X_n is

$$F_{X_1,...,X_n}(x_1,...,x_n) = P[X_1 \le x_1,...,X_n \le x_n].$$

Definition 5.2 Multivariate Joint PMF

The joint PMF of the discrete random variables X_1, \ldots, X_n is

$$P_{X_1,...,X_n}(x_1,...,x_n) = P[X_1 = x_1,...,X_n = x_n].$$

Definition 5.3 Multivariate Joint PDF

The joint PDF of the continuous random variables X_1, \dots, X_n is the function

$$f_{X_1,\dots,X_n}\left(x_1,\dots,x_n\right) = \frac{\partial^n F_{X_1,\dots,X_n}\left(x_1,\dots,x_n\right)}{\partial x_1 \dots \partial x_n}.$$

If X_1, \ldots, X_n are discrete random variables with joint PMF $P_{X_1, \ldots, X_n}(x_1, \ldots, x_n)$,

(a)
$$P_{X_1,...,X_n}(x_1,...,x_n) \ge 0$$
,

(b)
$$\sum_{x_1 \in S_{X_1}} \cdots \sum_{x_n \in S_{X_n}} P_{X_1, \dots, X_n}(x_1, \dots, x_n) = 1.$$

If X_1, \ldots, X_n are continuous random variables with joint PDF $f_{X_1, \ldots, X_n}(x_1, \ldots, x_n)$,

(a)
$$f_{X_1,...,X_n}(x_1,...,x_n) \geq 0$$
,

(b)
$$F_{X_1,...,X_n}(x_1,...,x_n) = \int_{-\infty}^{x_1} \cdots \int_{-\infty}^{x_n} f_{X_1,...,X_n}(u_1,...,u_n) du_1 \cdots du_n,$$

(c)
$$\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{X_1,\dots,X_n}(x_1,\dots,x_n) dx_1 \cdots dx_n = 1.$$

The probability of an event A expressed in terms of the random variables X_1, \ldots, X_n is

Discrete:
$$P[A] = \sum_{(x_1,...,x_n)\in A} P_{X_1,...,X_n}(x_1,...,x_n)$$

Continuous:
$$P[A] = \int \cdots \int_A f_{X_1,...,X_n}(x_1,...,x_n) dx_1 dx_2...dx_n.$$

Example 5.1 Problem

Consider a set of n independent trials in which there are r possible outcomes s_1, \ldots, s_r for each trial. In each trial, $P[s_i] = p_i$. Let N_i equal the number of times that outcome s_i occurs over n trials. What is the joint PMF

of
$$N_1, \ldots, N_r$$
?
$$S = \{S_1, S_2, \ldots, S_r\}$$

$$N_1 + N_2 + \cdots + N_r = N$$

$$= \left(n_1, n_2, \ldots, n_r \right) P_1^{N_1} P_2^{N_2} \cdots P_r^{N_r}$$

$$= \left(n_1, n_2, \ldots, n_r \right) P_1^{N_1} P_2^{N_2} \cdots P_r^{N_r}$$

$$= \left(n_1, n_2, \ldots, n_r \right) P_1^{N_2} P_2^{N_2} \cdots P_r^{N_r}$$

$$= \left(n_1, n_2, \ldots, n_r \right) P_1^{N_1} P_2^{N_2} \cdots P_r^{N_r}$$

$$= \left(n_1, n_2, \ldots, n_r \right) P_1^{N_2} P_2^{N_2} \cdots P_r^{N_r}$$

$$= \left(n_1, n_2, \ldots, n_r \right) P_1^{N_1} P_2^{N_2} \cdots P_r^{N_r}$$

$$= \left(n_1, n_2, \ldots, n_r \right) P_1^{N_2} P_2^{N_2} \cdots P_r^{N_r}$$

$$= \left(n_1, n_2, \ldots, n_r \right) P_1^{N_2} P_2^{N_2} \cdots P_r^{N_r}$$

$$= \left(n_1, n_2, \ldots, n_r \right) P_1^{N_2} P_2^{N_2} \cdots P_r^{N_r}$$

$$= \left(n_1, n_2, \ldots, n_r \right) P_1^{N_2} P_2^{N_2} \cdots P_r^{N_r}$$

$$= \left(n_1, n_2, \ldots, n_r \right) P_1^{N_2} P_2^{N_2} \cdots P_r^{N_r}$$

$$= \left(n_1, n_2, \ldots, n_r \right) P_1^{N_2} P_2^{N_2} \cdots P_r^{N_r}$$

$$= \left(n_1, n_2, \ldots, n_r \right) P_1^{N_2} P_2^{N_2} \cdots P_r^{N_r}$$

$$= \left(n_1, n_2, \ldots, n_r \right) P_1^{N_2} P_2^{N_2} \cdots P_r^{N_r}$$

$$= \left(n_1, n_2, \ldots, n_r \right) P_1^{N_2} P_2^{N_2} \cdots P_r^{N_r}$$

$$= \left(n_1, n_2, \ldots, n_r \right) P_1^{N_2} P_2^{N_2} \cdots P_r^{N_r}$$

$$= \left(n_1, n_2, \ldots, n_r \right) P_1^{N_2} P_2^{N_2} \cdots P_r^{N_r}$$

$$= \left(n_1, n_1, \ldots, n_r \right) P_1^{N_2} P_2^{N_2} \cdots P_r^{N_r}$$

$$= \left(n_1, n_1, \ldots, n_r \right) P_1^{N_2} P_2^{N_2} \cdots P_r^{N_r}$$

$$= \left(n_1, n_1, \ldots, n_r \right) P_1^{N_2} P_2^{N_2} \cdots P_r^{N_r}$$

$$= \left(n_1, n_1, \ldots, n_r \right) P_1^{N_2} P_2^{N_2} \cdots P_r^{N_r}$$

$$= \left(n_1, n_1, \ldots, n_r \right) P_1^{N_2} P_2^{N_2} \cdots P_r^{N_r}$$

$$= \left(n_1, n_1, \ldots, n_r \right) P_1^{N_2} P_2^{N_2} \cdots P_r^{N_r}$$

$$= \left(n_1, n_1, \ldots, n_r \right) P_1^{N_2} P_2^{N_2} \cdots P_r^{N_r}$$

$$= \left(n_1, n_1, \ldots, n_r \right) P_1^{N_2} P_2^{N_2} \cdots P_r^{N_r}$$

$$= \left(n_1, n_1, \ldots, n_r \right) P_1^{N_2} P_2^{N_2} \cdots P_r^{N_r}$$

$$= \left(n_1, n_1, \ldots, n_r \right) P_1^{N_2} P_2^{N_2} \cdots P_r^{N_r}$$

$$= \left(n_1, n_1, \ldots, n_r \right) P_1^{N_2} P_2^{N_2} \cdots P_r^{N_r}$$

$$= \left(n_1, n_1, \ldots, n_r \right) P_1^{N_2} P_2^{N_2} \cdots P_r^{N_r}$$

$$= \left(n_1, n_1, \ldots, n_r \right) P_1^{N_2} P_2^{N_2} \cdots P_r^{N_r}$$

$$= \left(n_1, n_1, \ldots, n_r \right) P_1^{N_2} P_2^{N_2} \cdots P_r^{N_r}$$

$$= \left(n_1, n_1, \ldots, n_r \right) P_1^{N_2} P_2^{N_2} \cdots P_r^{N_r}$$

$$= \left(n_1, n_1, \ldots, n_r \right) P_1^{N_2} P_2^{N_2} \cdots P_r^{N_r}$$

$$= \left(n_1, n_1, \ldots, n_r \right) P_1$$

Example 5.1 Solution

The solution to this problem appears in Theorem 1.19 and is repeated here:

$$P_{N_1,...,N_r}(n_1,...,n_r) = \binom{n}{n_1,...,n_r} p_1^{n_1} p_2^{n_2} \cdots p_r^{n_r}.$$

$$\binom{n}{n_1,...,n_r} = \frac{n!}{n!! \cdots n_r!}$$

$$\binom{n}{n_1+\cdots+n_r} = n$$

Example 5.2 Problem

In response to requests for information, a company sends faxes that can be 1, 2, or 3 pages in length, depending on the information requested. The PMF of L, the length of one fax is

$$P_L(l) = \begin{cases} 1/3 & l = 1, \\ 1/2 & l = 2, \\ 1/6 & l = 3, \\ 0 & \text{otherwise.} \end{cases}$$

For a set of four independent information requests:

- (a) What is the joint PMF of the random variables, X, Y, and Z, the number of 1-page, 2-page, and 3-page faxes, respectively?
- (b) What is P[A] = P[total length of four faxes is 8 pages]?
- (c) What is P[B] = P[at least half of the four faxes has more than 1 page]?

Example 5.2 Solution

Each fax sent is an independent trial with three possible outcomes: L=1, L=2, and L=3. Hence, the number of faxes of each length out of four faxes is described by the multinomial PMF of Example 5.1:

$$P_{X,Y,Z}(x,y,z) = {4 \choose x,y,z} \left(\frac{1}{3}\right)^x \left(\frac{1}{2}\right)^y \left(\frac{1}{6}\right)^z.$$

The PMF is displayed numerically in Table 5.1. The final column of the table indicates that there are three outcomes in event A and 12 outcomes in event B. Adding the probabilities in the two events, we have P[A] = 107/432 and P[B] = 8/9.

Table 5.1

<i>X</i>	y	\overline{z}	$P_{X,Y,Z}(x, y, z)$	total	events
(1 page)	(2 pages)	(3 pages)		pages	
0	0	4	1/1296	12	B
0	1	3	1/108	11	B
0	2	2	1/24	10	B
0	3	1	1/12	9	B
0	4	0	1/16	8	AB
1	0	3	1/162	10	B
1	1	2	1/18	9	B
1	2	1	1/6	8	AB
1	3	0	1/6	7	B
2	0	2	1/54	8	AB
2	1	1	1/9	7	B
2	2	0	1/6	6	B
3	0	1	2/81	6	
3	1	0	2/27	5	
4	0	0	1/81	4	

The PMF $P_{X,Y,Z}(x, y, z)$ and the events A and B for Example 5.2.

Example 5.3 Problem

The random variables X_1, \ldots, X_n have the joint PDF

$$f_{X_1,...,X_n}(x_1,...,x_n) = \begin{cases} 1 & 0 \le x_i \le 1, i = 1,...,n, \\ 0 & \text{otherwise.} \end{cases}$$

Let A denote the event that $\max_i X_i \leq 1/2$. Find P[A].

Example 5.3 Solution

$$P[A] = P\left[\max_{i} X_{i} \le 1/2\right] = P[X_{1} \le 1/2, \dots, X_{n} \le 1/2]$$
$$= \int_{0}^{1/2} \dots \int_{0}^{1/2} 1 \, dx_{1} \dots dx_{n} = \frac{1}{2^{n}}.$$

Here we have n independent uniform (0, 1) random variables. As n grows, the probability that the maximum is less than 1/2 rapidly goes to 0.

Section 5.2

Vector Notation

Definition 5.4 Random Vector

A random vector is a column vector $\mathbf{X} = \begin{bmatrix} X_1 & \cdots & X_n \end{bmatrix}'$. Each X_i is a random variable.

Definition 5.5 Vector Sample Value

A sample value of a random vector is a column vector $\mathbf{x} = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix}'$. The *i*th component, x_i , of the vector \mathbf{x} is a sample value of a random variable, X_i .

Random Vector Probability

Definition 5.6 Functions

- (a) The CDF of a random vector **X** is $F_{\mathbf{X}}(\mathbf{x}) = F_{X_1,...,X_n}(x_1,...,x_n)$.
- (b) The PMF of a discrete random vector **X** is $P_{\mathbf{X}}(\mathbf{x}) = P_{X_1,...,X_n}(x_1,...,x_n)$.
- (c) The PDF of a continuous random vector **X** is $f_{\mathbf{X}}(\mathbf{x}) = f_{X_1,...,X_n}(x_1,...,x_n)$.

Probability Functions of a Pair of

Definition 5.7 Random Vectors

For random vectors \mathbf{X} with n components and \mathbf{Y} with m components:

(a) The joint CDF of X and Y is

$$F_{\mathbf{X},\mathbf{Y}}(\mathbf{x},\mathbf{y}) = F_{X_1,...,X_n,Y_1,...,Y_m}(x_1,...,x_n,y_1,...,y_m);$$

(b) The joint PMF of discrete random vectors **X** and **Y** is

$$P_{\mathbf{X},\mathbf{Y}}(\mathbf{x},\mathbf{y}) = P_{X_1,...,X_n,Y_1,...,Y_m}(x_1,...,x_n,y_1,...,y_m);$$

(c) The joint PDF of continuous random vectors X and Y is

$$f_{\mathbf{X},\mathbf{Y}}(\mathbf{x},\mathbf{y}) = f_{X_1,...,X_n,Y_1,...,Y_m}(x_1,...,x_n,y_1,...,y_m).$$

Example 5.4 Problem

Random vector X has PDF

$$f_{\mathbf{X}}(\mathbf{x}) = \begin{cases} 6e^{-\mathbf{a}'\mathbf{x}} & \mathbf{x} \ge 0\\ 0 & \text{otherwise} \end{cases}$$

where $\mathbf{a} = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}'$. What is the CDF of X?

Example 5.4 Solution

Because \mathbf{a} has three components, we infer that \mathbf{X} is a 3-dimensional random vector. Expanding $\mathbf{a}'\mathbf{x}$, we write the PDF as a function of the vector components,

$$f_{\mathbf{X}}(\mathbf{x}) = \begin{cases} 6e^{-x_1 - 2x_2 - 3x_3} & x_i \ge 0\\ 0 & \text{otherwise} \end{cases}$$

Applying Definition 5.7, we integrate the PDF with respect to the three variables to obtain

$$F_{\mathbf{X}}(\mathbf{x}) = \begin{cases} (1 - e^{-x_1})(1 - e^{-2x_2})(1 - e^{-3x_3}) & x_i \ge 0\\ 0 & \text{otherwise} \end{cases}$$

Quiz 5.2

Discrete random vectors $\mathbf{X} = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}'$ and $\mathbf{Y} = \begin{bmatrix} y_1 & y_2 & y_3 \end{bmatrix}'$ are related by $\mathbf{Y} = \mathbf{A}\mathbf{X}$. Find the joint PMF $P_{\mathbf{Y}}(\mathbf{y})$ if \mathbf{X} has joint PMF

$$P_{\mathbf{X}}(\mathbf{x}) = \begin{cases} (1-p)p^{x_3} & x_1 < x_2 < x_3; \\ & x_1, x_2, x_3 \in \{1, 2, \ldots\}, \ \mathbf{A} \\ 0 & \text{otherwise,} \end{cases} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}.$$

Section 5.3

Marginal Probability Functions

For a joint PMF $P_{W,X,Y,Z}(w,x,y,z)$ of discrete random variables W,X,Y,Z, some marginal PMFs are

$$P_{X,Y,Z}(x, y, z) = \sum_{w \in S_W} P_{W,X,Y,Z}(w, x, y, z),$$

$$P_{W,Z}(w, z) = \sum_{x \in S_X} \sum_{y \in S_Y} P_{W,X,Y,Z}(w, x, y, z),$$

$$P_{X}(x) = \sum_{w \in S_W} \sum_{y \in S_Y} \sum_{z \in S_Z} P_{W,X,Y,Z}(w, x, y, z).$$

For a joint PDF $f_{W,X,Y,Z}(w,x,y,z)$ of continuous random variables W,X,Y,Z, some marginal PDFs are

$$f_{X,Y,Z}(x,y,z) = \int_{-\infty}^{\infty} f_{W,X,Y,Z}(w,x,y,z) dw,$$

$$f_{W,Z}(w,z) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{W,X,Y,Z}(w,x,y,z) dx dy,$$

$$f_{X}(x) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{W,X,Y,Z}(w,x,y,z) dw dy dz.$$

Example 5.5 Problem

As in Quiz 5.1, the random variables Y_1, \ldots, Y_4 have the joint PDF

$$f_{Y_1,...,Y_4}(y_1,...,y_4) = \begin{cases} 4 & 0 \le y_1 \le y_2 \le 1, 0 \le y_3 \le y_4 \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

Find the marginal PDFs $f_{Y_1,Y_4}(y_1, y_4)$, $f_{Y_2,Y_3}(y_2, y_3)$, and $f_{Y_3}(y_3)$.

Example 5.5 Solution

$$f_{Y_1,Y_4}(y_1,y_4) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{Y_1,...,Y_4}(y_1,...,y_4) dy_2 dy_3.$$

In the foregoing integral, the hard part is identifying the correct limits. These limits will depend on y_1 and y_4 . For $0 \le y_1 \le 1$ and $0 \le y_4 \le 1$,

$$f_{Y_1,Y_4}(y_1, y_4) = \int_{y_1}^1 \int_0^{y_4} 4 \, dy_3 \, dy_2 = 4(1 - y_1)y_4.$$

The complete expression for $f_{Y_1,Y_4}(y_1, y_4)$ is

$$f_{Y_1,Y_4}(y_1,y_4) = \begin{cases} 4(1-y_1)y_4 & 0 \le y_1 \le 1, 0 \le y_4 \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

Similarly, for $0 \le y_2 \le 1$ and $0 \le y_3 \le 1$,

$$f_{Y_2,Y_3}(y_2,y_3) = \int_0^{y_2} \int_{y_3}^1 4 \, dy_4 \, dy_1 = 4y_2(1-y_3).$$

[Continued]

Example 5.5 Solution (continued)

The complete expression for $f_{Y_2,Y_3}(y_2,y_3)$ is

$$f_{Y_2,Y_3}(y_2,y_3) = \begin{cases} 4y_2(1-y_3) & 0 \le y_2 \le 1, 0 \le y_3 \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

Lastly, for $0 \le y_3 \le 1$,

$$f_{Y_3}(y_3) = \int_{-\infty}^{\infty} f_{Y_2,Y_3}(y_2,y_3) dy_2 = \int_{0}^{1} 4y_2(1-y_3) dy_2 = 2(1-y_3).$$

The complete expression is

$$f_{Y_3}(y_3) = \begin{cases} 2(1-y_3) & 0 \le y_3 \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

Section 5.4

Independence of Random Variables and Random Vectors

Definition 5.8 N Independent Random Variables

Random variables X_1, \ldots, X_n are independent if for all x_1, \ldots, x_n ,

Discrete: $P_{X_1,...,X_n}(x_1,...,x_n) = P_{X_1}(x_1)P_{X_2}(x_2)\cdots P_{X_N}(x_n)$

Continuous: $f_{X_1,...,X_n}(x_1,...,x_n) = f_{X_1}(x_1) f_{X_2}(x_2) \cdots f_{X_n}(x_n)$.

Example 5.6 Problem

As in Example 5.5, random variables Y_1, \ldots, Y_4 have the joint PDF

$$f_{Y_1,...,Y_4}(y_1,...,y_4) = \begin{cases} 4 & 0 \le y_1 \le y_2 \le 1, 0 \le y_3 \le y_4 \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

Are Y_1, \ldots, Y_4 independent random variables?

Example 5.6 Solution

In Equation (5.15) of Example 5.5, we found the marginal PDF $f_{Y_1,Y_4}(y_1, y_4)$. We can use this result to show that

$$f_{Y_1}(y_1) = \int_0^1 f_{Y_1, Y_4}(y_1, y_4) \ dy_4 = 2(1 - y_1), \qquad 0 \le y_1 \le 1,$$

$$f_{Y_4}(y_4) = \int_0^1 f_{Y_1, Y_4}(y_1, y_4) \ dy_1 = 2y_4, \qquad 0 \le y_4 \le 1.$$

The full expressions for the marginal PDFs are

$$f_{Y_1}(y_1) = \begin{cases} 2(1 - y_1) & 0 \le y_1 \le 1, \\ 0 & \text{otherwise}, \end{cases}$$

$$f_{Y_4}(y_4) = \begin{cases} 2y_4 & 0 \le y_4 \le 1, \\ 0 & \text{otherwise}. \end{cases}$$

Similarly, the marginal PDF $f_{Y_2,Y_3}(y_2, y_3)$ found in Equation (5.17) of Example 5.5 implies that for $0 \le y_2 \le 1$,

$$f_{Y_2}(y_2) = \int_{-\infty}^{\infty} f_{Y_2,Y_3}(y_2, y_3) \ dy_3 = \int_{0}^{1} 4y_2(1 - y_3) \ dy_3 = 2y_2$$

[Continued]

Example 5.6 Solution (continued)

It follows that the marginal PDF of Y_2 is

$$f_{Y_2}(y_2) = \begin{cases} 2y_2 & 0 \le y_2 \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

From Equation (5.19) for the PDF $f_{Y_3}(y_3)$ derived in Example 5.5, we have

$$f_{Y_1}(y_1)f_{Y_2}(y_2)f_{Y_3}(y_3)f_{Y_4}(y_4)$$

$$= \begin{cases} 16(1-y_1)y_2(1-y_3)y_4 & 0 \le y_1, y_2, y_3, y_4 \le 1, \\ 0 & \text{otherwise}, \end{cases}$$
(1)
$$\neq f_{Y_1,...,Y_4}(y_1,...,y_4).$$

Therefore Y_1, \ldots, Y_4 are not independent random variables.

Independent and Identically

Definition 5.9 Distributed (iid)

Random variables X_1, \ldots, X_n are independent and identically distributed (iid) if

Discrete:
$$P_{X_1,...,X_n}(x_1,...,x_n) = P_X(x_1)P_X(x_2)\cdots P_X(x_n)$$

Continuous:
$$f_{X_1,...,X_n}(x_1,...,x_n) = f_X(x_1) f_X(x_2) \cdots f_X(x_n)$$
.

Definition 5.10 Independent Random Vectors

Random vectors X and Y are independent if

Discrete: $P_{\mathbf{X},\mathbf{Y}}(\mathbf{x},\mathbf{y}) = P_{\mathbf{X}}(\mathbf{x})P_{\mathbf{Y}}(\mathbf{y})$

Continuous: $f_{\mathbf{X},\mathbf{Y}}(\mathbf{x},\mathbf{y}) = f_{\mathbf{X}}(\mathbf{x}) f_{\mathbf{Y}}(\mathbf{y})$.

Example 5.7 Problem

As in Example 5.5, random variables Y_1, \ldots, Y_4 have the joint PDF

$$f_{Y_1,...,Y_4}(y_1,...,y_4) = \begin{cases} 4 & 0 \le y_1 \le y_2 \le 1, 0 \le y_3 \le y_4 \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

Let $V = \begin{bmatrix} Y_1 & Y_4 \end{bmatrix}'$ and $W = \begin{bmatrix} Y_2 & Y_3 \end{bmatrix}'$. Are V and W independent random vectors?

Example 5.7 Solution

We first note that the components of **V** are $V_1 = Y_1$, and $V_2 = Y_4$. Also, $W_1 = Y_2$, and $W_2 = Y_3$. Therefore,

$$f_{\mathbf{V},\mathbf{W}}(\mathbf{v},\mathbf{w}) = f_{Y_1,...,Y_4}(v_1, w_1, w_2, v_2) = \begin{cases} 4 & 0 \le v_1 \le w_1 \le 1; \\ 0 \le w_2 \le v_2 \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

Since $\mathbf{V} = \begin{bmatrix} Y_1 & Y_4 \end{bmatrix}'$ and $\mathbf{W} = \begin{bmatrix} Y_2 & Y_3 \end{bmatrix}'$,

$$f_{\mathbf{V}}(\mathbf{v}) = f_{Y_1,Y_4}(v_1, v_2)$$
 $f_{\mathbf{W}}(\mathbf{w}) = f_{Y_2,Y_3}(w_1, w_2)$

In Example 5.5. we found $f_{Y_1,Y_4}(y_1, y_4)$ and $f_{Y_2,Y_3}(y_2, y_3)$ in Equations (5.15) and (5.17). From these marginal PDFs, we have

$$f_{\mathbf{V}}(\mathbf{v}) = \begin{cases} 4(1 - v_1)v_2 & 0 \le v_1, v_2 \le 1, \\ 0 & \text{otherwise}, \end{cases}$$

$$f_{\mathbf{W}}(\mathbf{w}) = \begin{cases} 4w_1(1 - w_2) & 0 \le w_1, w_2 \le 1, \\ 0 & \text{otherwise}. \end{cases}$$

Therefore,

$$f_{\mathbf{V}}(\mathbf{v}) f_{\mathbf{W}}(\mathbf{w}) = \begin{cases} 16(1 - v_1)v_2w_1(1 - w_2) & 0 \le v_1, v_2, w_1, w_2 \le 1, \\ 0 & \text{otherwise,} \end{cases}$$

which is not equal to $f_{\mathbf{V},\mathbf{W}}(\mathbf{v},\mathbf{w})$. Therefore \mathbf{V} and \mathbf{W} are not independent. 98_1 Yates Chapter 5

Quiz 5.4

Use the components of $\mathbf{Y} = [Y_1, \dots, Y_4]'$ in Example 5.7 to construct two independent random vectors \mathbf{V} and \mathbf{W} . Prove that \mathbf{V} and \mathbf{W} are independent.

Section 5.5

Functions of Random Vectors

For random variable $W = g(\mathbf{X})$,

Discrete:
$$P_W(w) = P[W = w] = \sum_{\mathbf{x}: g(\mathbf{x}) = w} P_{\mathbf{X}}(\mathbf{x})$$

Continuous:
$$F_W(w) = P[W \le w] = \int \cdots \int_{g(\mathbf{x}) \le w} f_{\mathbf{X}}(\mathbf{x}) dx_1 \cdots dx_n$$
.

Example 5.8 Problem

Consider an experiment that consists of spinning the pointer on the wheel of circumference 1 meter in Example 3.1 n times and observing Y_n meters, the maximum position of the pointer in the n spins. Find the CDF and PDF of Y_n .

Example 5.8 Solution

If X_i is the position of the pointer on the *i*th spin, then $Y_n = \max\{X_1, X_2, \dots, X_n\}$. As a result, $Y_n \leq y$ if and only if each $X_i \leq y$. This implies

$$P[Y_n \le y] = P[X_1 \le y, X_2 \le y, \dots X_n \le y].$$

If we assume the spins to be independent, the events $\{X_1 \leq y\}$, $\{X_2 \leq y\}$, ..., $\{X_n \leq y\}$ are independent events. Thus

$$P[Y_n \le y] = P[X_1 \le y] \cdots P[X_n \le y] = (P[X \le y])^n = (F_X(y))^n.$$

Example 3.2 derives that $F_X(x) = x$ for $0 \le x < 1$. Furthermore, $F_X(x) = 0$ for x < 0 and $F_X(x) = 1$ for $x \ge 1$ since $0 \le X \le 1$. Therefore, since the CDF of Y_n is $F_{Y_n}(y) = (F_X(y))^n$, we can write the CDF and corresponding PDF as

$$F_{Y_n}(y) = \begin{cases} 0 & y < 0, \\ y^n & 0 \le y \le 1, \\ 1 & y > 1, \end{cases} \qquad f_{Y_n}(y) = \begin{cases} ny^{n-1} & 0 \le y \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

08_1

Let **X** be a vector of n iid random variables each with CDF $F_X(x)$ and PDF $f_X(x)$.

(a) The CDF and the PDF of $Y = \max\{X_1, \dots, X_n\}$ are

$$F_Y(y) = (F_X(y))^n, \qquad f_Y(y) = n(F_X(y))^{n-1} f_X(y).$$

(b) The CDF and the PDF of $W = \min\{X_1, \dots, X_n\}$ are

$$F_W(w) = 1 - (1 - F_X(w))^n$$
, $f_W(w) = n(1 - F_X(w))^{n-1} f_X(w)$.

Proof: Theorem 5.7

By definition, $f_Y(y) = P[Y \le y]$. Because Y is the maximum value of $\{X_1, \ldots, X_n\}$, the event $\{Y \le y\} = \{X_1 \le y, X_2 \le y, \ldots, X_n \le y\}$. Because all the random variables X_i are iid, $\{Y \leq y\}$ is the intersection of n independent events. Each of the events $\{X_i \leq y\}$ has probability $F_X(y)$. The probability of the intersection is the product of the individual probabilities, which implies the first part of the theorem: $F_Y(y) = (F_X(y))^n$. The second part is the result of differentiating $F_Y(y)$ with respect to y. The derivations of $F_W(w)$ and $f_W(w)$ are similar. They begin with the observations that $F_W(w) = 1 - P[W > w]$ and that the event $\{W > w\} = 0$ $\{X_1 > w, X_2 > w, \dots X_n > w\}$, which is the intersection of *n* independent events, each with probability $1 - F_X(w)$.

For a random vector X, the random variable g(X) has expected value

Discrete:
$$E[g(\mathbf{X})] = \sum_{x_1 \in S_{X_1}} \cdots \sum_{x_n \in S_{X_n}} g(\mathbf{x}) P_{\mathbf{X}}(\mathbf{x})$$

Continuous:
$$E[g(\mathbf{X})] = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} g(\mathbf{x}) f_{\mathbf{X}}(\mathbf{x}) dx_1 \cdots dx_n$$
.

When the components of X are independent random variables,

$$E[g_1(X_1)g_2(X_2)\cdots g_n(X_n)] = E[g_1(X_1)]E[g_2(X_2)]\cdots E[g_n(X_n)].$$

Proof: Theorem 5.9

When **X** is discrete, independence implies $P_{\mathbf{X}}(\mathbf{x}) = P_{X_1}(x_1) \cdots P_{X_n}(x_n)$. This implies

$$E[g_{1}(X_{1})\cdots g_{n}(X_{n})] = \sum_{x_{1} \in S_{X_{1}}} \cdots \sum_{x_{n} \in S_{X_{n}}} g_{1}(x_{1})\cdots g_{n}(x_{n}) P_{\mathbf{X}}(\mathbf{x})$$

$$= \left(\sum_{x_{1} \in S_{X_{1}}} g_{1}(x_{1}) P_{X_{1}}(x_{1})\right) \cdots \left(\sum_{x_{n} \in S_{X_{n}}} g_{n}(x_{n}) P_{X_{n}}(x_{n})\right)$$

$$= E[g_{1}(X_{1})] E[g_{2}(X_{2})] \cdots E[g_{n}(X_{n})].$$

The derivation is similar for independent continuous random variables.

Given the continuous random vector \mathbf{X} , define the derived random vector \mathbf{Y} such that $Y_k = aX_k + b$ for constants a > 0 and b. The CDF and PDF of \mathbf{Y} are

$$F_{\mathbf{Y}}(\mathbf{y}) = F_{\mathbf{X}}\left(\frac{y_1 - b}{a}, \dots, \frac{y_n - b}{a}\right), f_{\mathbf{Y}}(\mathbf{y}) = \frac{1}{a^n} f_{\mathbf{X}}\left(\frac{y_1 - b}{a}, \dots, \frac{y_n - b}{a}\right).$$

Proof: Theorem 5.10

We observe **Y** has CDF $F_{\mathbf{Y}}(\mathbf{y}) = P[aX_1 + b \le y_1, \dots, aX_n + b \le y_n]$. Since a > 0,

$$F_{\mathbf{Y}}(\mathbf{y}) = P\left[X_1 \leq \frac{y_1 - b}{a}, \dots, X_n \leq \frac{y_n - b}{a}\right] = F_{\mathbf{X}}\left(\frac{y_1 - b}{a}, \dots, \frac{y_n - b}{a}\right).$$

From Theorem 5.2(b), the joint PDF of Y is

$$f_{\mathbf{Y}}(\mathbf{y}) = \frac{\partial^n F_{Y_1, \dots, Y_n}(y_1, \dots, y_n)}{\partial y_1 \cdots \partial y_n} = \frac{1}{a^n} f_{\mathbf{X}}\left(\frac{y_1 - b}{a}, \dots, \frac{y_n - b}{a}\right).$$

If X is a continuous random vector and A is an invertible matrix, then Y = AX + b has PDF

$$f_{\mathbf{Y}}(\mathbf{y}) = \frac{1}{|\det{(\mathbf{A})}|} f_{\mathbf{X}} \left(\mathbf{A}^{-1} (\mathbf{y} - \mathbf{b}) \right)$$

Proof: Theorem 5.11

Let $B = \{\mathbf{y} | \mathbf{y} \leq \tilde{\mathbf{y}}\}$ so that $F_{\mathbf{Y}}(\tilde{\mathbf{y}}) = \int_B f_{\mathbf{Y}}(\mathbf{y}) \, d\mathbf{y}$. Define the vector transformation $\mathbf{x} = T(\mathbf{y}) = \mathbf{A}^{-1}(\mathbf{y} - \mathbf{b})$. It follows that $\mathbf{Y} \in B$ if and only if $\mathbf{X} \in T(B)$, where $T(B) = \{\mathbf{x} | \mathbf{A}\mathbf{x} + \mathbf{b} \leq \tilde{\mathbf{y}}\}$ is the image of B under transformation T. This implies

$$F_{\mathbf{Y}}(\tilde{\mathbf{y}}) = P[\mathbf{X} \in T(B)] = \int_{T(B)} f_{\mathbf{X}}(\mathbf{x}) d\mathbf{x}$$

By the change-of-variable theorem (Math Fact B.13),

$$F_{\mathbf{Y}}(\tilde{\mathbf{y}}) = \int_{B} f_{\mathbf{X}}(\mathbf{A}^{-1}(\mathbf{y} - \mathbf{b})) \left| \det(\mathbf{A}^{-1}) \right| d\mathbf{y}$$

where $|\det(\mathbf{A}^{-1})|$ is the absolute value of the determinant of \mathbf{A}^{-1} . Definition 5.6 for the CDF and PDF of a random vector combined with Theorem 5.2(b) imply that $f_{\mathbf{Y}}(\mathbf{y}) = f_{\mathbf{X}}(\mathbf{A}^{-1}(\mathbf{y} - \mathbf{b}))|\det(\mathbf{A}^{-1})|$. The theorem follows since $|\det(\mathbf{A}^{-1})| = 1/|\det(\mathbf{A})|$.

Quiz 5.5(A)

A test of light bulbs produced by a machine has three possible outcomes: L, long life; A, average life; and R, reject. The results of different tests are independent. All tests have the following probability model: P[L] = 0.3, P[A] = 0.6, and P[R] = 0.1. Let X_1 , X_2 , and X_3 be the number of light bulbs that are L, A, and R respectively in five tests. Find the PMF $P_{\mathbf{X}}(\mathbf{x})$; the marginal PMFs $P_{X_1}(x_1)$, $P_{X_2}(x_2)$, and $P_{X_3}(x_3)$; and the PMF of $W = \max(X_1, X_2, X_3)$.

Quiz 5.5(B)

The random vector X has PDF

$$f_{\mathbf{X}}(\mathbf{x}) = \begin{cases} e^{-x_3} & 0 \le x_1 \le x_2 \le x_3, \\ 0 & \text{otherwise.} \end{cases}$$

Find the PDF of $\mathbf{Y} = \mathbf{AX} + \mathbf{b}$. where $\mathbf{A} = \text{diag}[2, 2, 2]$ and $\mathbf{b} = \begin{bmatrix} 4 & 4 & 4 \end{bmatrix}'$.

Expected Value Vector and Correlation Matrix

Definition 5.11 Expected Value Vector

The expected value of a random vector **X** is a column vector

$$E[\mathbf{X}] = \boldsymbol{\mu}_{\mathbf{X}} = \begin{bmatrix} E[X_1] & E[X_2] & \cdots & E[X_n] \end{bmatrix}'.$$

Expected Value of a Random

Definition 5.12 Matrix

For a random matrix A with the random variable A_{ij} as its i, jth element, E[A] is a matrix with i, jth element $E[A_{ij}]$.

Definition 5.13 Vector Correlation

The correlation of a random vector \mathbf{X} is an $n \times n$ matrix $\mathbf{R}_{\mathbf{X}}$ with i, jth element $R_X(i, j) = E[X_i X_j]$. In vector noation,

$$\mathbf{R}_{\mathbf{X}} = E\left[\mathbf{X}\mathbf{X}'\right].$$

Example 5.10

If $\mathbf{X} = \begin{bmatrix} X_1 & X_2 & X_3 \end{bmatrix}'$, the correlation matrix of \mathbf{X} is

$$\mathbf{R_X} = \begin{bmatrix} E \begin{bmatrix} X_1^2 \end{bmatrix} & E [X_1 X_2] & E [X_1 X_3] \\ E [X_2 X_1] & E \begin{bmatrix} X_2^2 \end{bmatrix} & E [X_2 X_3] \\ E [X_3 X_1] & E [X_3 X_2] & E \begin{bmatrix} X_2^2 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} E \begin{bmatrix} X_1^2 \end{bmatrix} & r_{X_1, X_2} & r_{X_1, X_3} \\ r_{X_2, X_1} & E \begin{bmatrix} X_2^2 \end{bmatrix} & r_{X_2, X_3} \\ r_{X_3, X_1} & r_{X_3, X_2} & E \begin{bmatrix} X_3^2 \end{bmatrix} \end{bmatrix}.$$

Definition 5.14 Vector Covariance

The covariance of a random vector \mathbf{X} is an $n \times n$ matrix $\mathbf{C}_{\mathbf{X}}$ with components $C_X(i, j) = \text{Cov}[X_i, X_j]$. In vector notation,

$$\mathbf{C}_{\mathbf{X}} = E\left[(\mathbf{X} - \boldsymbol{\mu}_{\mathbf{X}})(\mathbf{X} - \boldsymbol{\mu}_{\mathbf{X}})' \right]$$

Example 5.11

If $\mathbf{X} = \begin{bmatrix} X_1 & X_2 & X_3 \end{bmatrix}'$, the covariance matrix of \mathbf{X} is

$$\mathbf{C_X} = \begin{bmatrix} \operatorname{Var}[X_1] & \operatorname{Cov}[X_1, X_2] & \operatorname{Cov}[X_1, X_3] \\ \operatorname{Cov}[X_2, X_1] & \operatorname{Var}[X_2] & \operatorname{Cov}[X_2, X_3] \\ \operatorname{Cov}[X_3, X_1] & \operatorname{Cov}[X_3, X_2] & \operatorname{Var}[X_3] \end{bmatrix}$$

For a random vector \mathbf{X} with correlation matrix $\mathbf{R}_{\mathbf{X}}$, covariance matrix $\mathbf{C}_{\mathbf{X}}$, and vector expected value $\mu_{\mathbf{X}}$,

$$\mathbf{C}_{\mathbf{X}} = \mathbf{R}_{\mathbf{X}} - \boldsymbol{\mu}_{\mathbf{X}} \boldsymbol{\mu}_{\mathbf{X}}'.$$

Proof: Theorem 5.12

The proof is essentially the same as the proof of Theorem 4.16(a) with vectors replacing scalars. Cross multiplying inside the expectation of Definition 5.14 yields

$$\mathbf{C}_{\mathbf{X}} = E \left[\mathbf{X} \mathbf{X}' - \mathbf{X} \boldsymbol{\mu}_{\mathbf{X}}' - \boldsymbol{\mu}_{\mathbf{X}} \mathbf{X}' + \boldsymbol{\mu}_{\mathbf{X}} \boldsymbol{\mu}_{\mathbf{X}}' \right]$$

$$= E \left[\mathbf{X} \mathbf{X}' \right] - E \left[\mathbf{X} \boldsymbol{\mu}_{\mathbf{X}}' \right] - E \left[\boldsymbol{\mu}_{\mathbf{X}} \mathbf{X}' \right] + E \left[\boldsymbol{\mu}_{\mathbf{X}} \boldsymbol{\mu}_{\mathbf{X}}' \right].$$

Since $E[X] = \mu_X$ is a constant vector,

$$\mathbf{C}_{\mathbf{X}} = \mathbf{R}_{\mathbf{X}} - E\left[\mathbf{X}\right] \boldsymbol{\mu}_{\mathbf{X}}' - \boldsymbol{\mu}_{\mathbf{X}} E\left[\mathbf{X}'\right] + \boldsymbol{\mu}_{\mathbf{X}} \boldsymbol{\mu}_{\mathbf{X}}' = \mathbf{R}_{\mathbf{X}} - \boldsymbol{\mu}_{\mathbf{X}} \boldsymbol{\mu}_{\mathbf{X}}'.$$

Example 5.12 Problem

Find the expected value E[X], the correlation matrix R_X , and the covariance matrix C_X of the 2-dimensional random vector X with PDF

$$f_{\mathbf{X}}(\mathbf{x}) = \begin{cases} 2 & 0 \le x_1 \le x_2 \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

Example 5.12 Solution

The elements of the expected value vector are

$$E[X_i] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_i f_{\mathbf{X}}(\mathbf{x}) \ dx_1 dx_2 = \int_{0}^{1} \int_{0}^{x_2} 2x_i \ dx_1 dx_2, \quad i = 1, 2.$$

The integrals are $E[X_1] = 1/3$ and $E[X_2] = 2/3$, so that $\mu_{\mathbf{X}} = E[\mathbf{X}] = [1/3 \ 2/3]'$. The elements of the correlation matrix are

$$E\left[X_{1}^{2}\right] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_{1}^{2} f_{\mathbf{X}}\left(\mathbf{x}\right) dx_{1} dx_{2} = \int_{0}^{1} \int_{0}^{x_{2}} 2x_{1}^{2} dx_{1} dx_{2},$$

$$E\left[X_{2}^{2}\right] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_{2}^{2} f_{\mathbf{X}}\left(\mathbf{x}\right) dx_{1} dx_{2} = \int_{0}^{1} \int_{0}^{x_{2}} 2x_{2}^{2} dx_{1} dx_{2},$$

$$E\left[X_{1}X_{2}\right] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_{1}x_{2} f_{\mathbf{X}}\left(\mathbf{x}\right) dx_{1} dx_{2} = \int_{0}^{1} \int_{0}^{x_{2}} 2x_{1}x_{2} dx_{1} dx_{2}.$$

[Continued]

Example 5.12 Solution (continued)

These integrals are $E[X_1^2] = 1/6$, $E[X_2^2] = 1/2$, and $E[X_1X_2] = 1/4$.

Therefore,

$$\mathbf{R}_{\mathbf{X}} = \begin{bmatrix} 1/6 & 1/4 \\ 1/4 & 1/2 \end{bmatrix}.$$

We use Theorem 5.12 to find the elements of the covariance matrix.

$$\mathbf{C}_{\mathbf{X}} = \mathbf{R}_{\mathbf{X}} - \boldsymbol{\mu}_{\mathbf{X}} \boldsymbol{\mu}_{\mathbf{X}}' = \begin{bmatrix} 1/6 & 1/4 \\ 1/4 & 1/2 \end{bmatrix} - \begin{bmatrix} 1/9 & 2/9 \\ 2/9 & 4/9 \end{bmatrix} = \begin{bmatrix} 1/18 & 1/36 \\ 1/36 & 1/18 \end{bmatrix}.$$

Definition 5.15 Vector Cross-Correlation

The cross-correlation of random vectors, \mathbf{X} with n components and \mathbf{Y} with m components, is an $n \times m$ matrix $\mathbf{R}_{\mathbf{X}\mathbf{Y}}$ with i, j th element $R_{XY}(i,j) = E[X_iY_j]$, or, in vector notation,

$$\mathbf{R}_{\mathbf{X}\mathbf{Y}} = E\left[\mathbf{X}\mathbf{Y}'\right].$$

Definition 5.16 Vector Cross-Covariance

The cross-covariance of a pair of random vectors \mathbf{X} with n components and \mathbf{Y} with m components is an $n \times m$ matrix $\mathbf{C}_{\mathbf{XY}}$ with i, j th element $C_{\mathbf{XY}}(i, j) = \mathrm{Cov}[X_i, Y_j]$, or, in vector notation,

$$\mathbf{C}_{\mathbf{X}\mathbf{Y}} = E\left[(\mathbf{X} - \boldsymbol{\mu}_{\mathbf{X}})(\mathbf{Y} - \boldsymbol{\mu}_{\mathbf{Y}})' \right].$$

 \mathbf{X} is an n-dimensional random vector with expected value $\mu_{\mathbf{X}}$, correlation $\mathbf{R}_{\mathbf{X}}$, and covariance $\mathbf{C}_{\mathbf{X}}$. The m-dimensional random vector $\mathbf{Y} = \mathbf{A}\mathbf{X} + \mathbf{b}$, where \mathbf{A} is an $m \times n$ matrix and \mathbf{b} is an m-dimensional vector, has expected value $\mu_{\mathbf{Y}}$, correlation matrix $\mathbf{R}_{\mathbf{Y}}$, and covariance matrix $\mathbf{C}_{\mathbf{Y}}$ given by

$$\begin{split} &\mu_Y = A\mu_X + b, \\ &R_Y = AR_XA' + (A\mu_X)b' + b(A\mu_X)' + bb', \\ &C_Y = AC_XA'. \end{split}$$

Proof: Theorem 5.13

We derive the formulas for the expected value and covariance of Y. The derivation for the correlation is similar. First, the expected value of Y is

$$\mu_{\mathbf{Y}} = E[\mathbf{AX} + \mathbf{b}] = \mathbf{A}E[\mathbf{X}] + E[\mathbf{b}] = \mathbf{A}\mu_{\mathbf{X}} + \mathbf{b}.$$

It follows that $Y - \mu_Y = A(X - \mu_X)$. This implies

$$\mathbf{C}_{\mathbf{Y}} = E\left[(\mathbf{A}(\mathbf{X} - \boldsymbol{\mu}_{\mathbf{X}}))(\mathbf{A}(\mathbf{X} - \boldsymbol{\mu}_{\mathbf{X}}))' \right]$$

$$= E\left[\mathbf{A}(\mathbf{X} - \boldsymbol{\mu}_{\mathbf{X}}))(\mathbf{X} - \boldsymbol{\mu}_{\mathbf{X}})'\mathbf{A}' \right] = \mathbf{A}E\left[(\mathbf{X} - \boldsymbol{\mu}_{\mathbf{X}})(\mathbf{X} - \boldsymbol{\mu}_{\mathbf{X}})' \right] \mathbf{A}' = \mathbf{A}\mathbf{C}_{\mathbf{X}}\mathbf{A}'.$$

Example 5.13 Problem

Given random vector \mathbf{X} defined in Example 5.12, let $\mathbf{Y} = \mathbf{AX} + \mathbf{b}$, where

$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 6 & 3 \\ 3 & 6 \end{bmatrix} \quad \text{and} \quad \mathbf{b} = \begin{bmatrix} 0 \\ -2 \\ -2 \end{bmatrix}.$$

Find the expected value μ_Y , the correlation R_Y , and the covariance C_Y .

Example 5.13 Solution

From the matrix operations of Theorem 5.13, we obtain $\mu_{\mathbf{Y}} = \begin{bmatrix} 1/3 & 2 & 3 \end{bmatrix}'$ and

$$\mathbf{R_Y} = \begin{bmatrix} 1/6 & 13/12 & 4/3 \\ 13/12 & 7.5 & 9.25 \\ 4/3 & 9.25 & 12.5 \end{bmatrix}; \qquad \mathbf{C_Y} = \begin{bmatrix} 1/18 & 5/12 & 1/3 \\ 5/12 & 3.5 & 3.25 \\ 1/3 & 3.25 & 3.5 \end{bmatrix}.$$

The vectors X and Y = AX + b have cross-correlation R_{XY} and cross-covariance C_{XY} given by

$$\mathbf{R}_{\mathbf{X}\mathbf{Y}} = \mathbf{R}_{\mathbf{X}}\mathbf{A}' + \boldsymbol{\mu}_{\mathbf{X}}\mathbf{b}', \qquad \qquad \mathbf{C}_{\mathbf{X}\mathbf{Y}} = \mathbf{C}_{\mathbf{X}}\mathbf{A}'.$$

Example 5.14 Problem

Continuing Example 5.13 for random vectors \mathbf{X} and $\mathbf{Y} = \mathbf{AX} + \mathbf{b}$, calculate

- (a) The cross-correlation matrix $\mathbf{R}_{\mathbf{XY}}$ and the cross-covariance matrix $\mathbf{C}_{\mathbf{XY}}$.
- (b) The correlation coefficients ρ_{Y_1,Y_3} and ρ_{X_2,Y_1} .

Example 5.14 Solution

(a) Direct matrix calculation using Theorem 5.14 yields

$$\mathbf{R_{XY}} = \begin{bmatrix} 1/6 & 13/12 & 4/3 \\ 1/4 & 5/3 & 29/12 \end{bmatrix}; \qquad \mathbf{C_{XY}} = \begin{bmatrix} 1/18 & 5/12 & 1/3 \\ 1/36 & 1/3 & 5/12 \end{bmatrix}.$$

(b) Referring to Definition 4.8 and recognizing that $Var[Y_i] = C_{\mathbf{Y}}(i, i)$, we have

$$\rho_{Y_1, Y_3} = \frac{\text{Cov}[Y_1, Y_3]}{\sqrt{\text{Var}[Y_1] \text{Var}[Y_3]}} = \frac{C_Y(1, 3)}{\sqrt{C_Y(1, 1)C_Y(3, 3)}} = 0.756$$

Similarly,

$$\rho_{X_2,Y_1} = \frac{\text{Cov}\left[X_2, Y_1\right]}{\sqrt{\text{Var}[X_2] \text{Var}[Y_1]}} = \frac{C_{\mathbf{XY}}(2, 1)}{\sqrt{C_{\mathbf{X}}(2, 2)C_{\mathbf{Y}}(1, 1)}} = 1/2.$$

Section 5.7

Gaussian Random Vectors

Definition 5.17 Gaussian Random Vector

X is the Gaussian (μ_X, C_X) random vector with expected value μ_X and covariance C_X if and only if

$$f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{(2\pi)^{n/2} [\det(\mathbf{C}_{\mathbf{X}})]^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_{\mathbf{X}})' \mathbf{C}_{\mathbf{X}}^{-1} (\mathbf{x} - \boldsymbol{\mu}_{\mathbf{X}})\right)$$

where $det(C_X)$, the determinant of C_X , satisfies $det(C_X) > 0$.

A Gaussian random vector \mathbf{X} has independent components if and only if $\mathbf{C}_{\mathbf{X}}$ is a diagonal matrix.

First, if the components of **X** are independent, then for $i \neq j$, X_i and X_j are independent. By Theorem 4.27(c), $Cov[X_i, X_j] = 0$. Hence the off-diagonal terms of C_X are all zero. If C_X is diagonal, then

$$\mathbf{C}_{\mathbf{X}} = \begin{bmatrix} \sigma_1^2 & & & \\ & \ddots & & \\ & & \sigma_n^2 \end{bmatrix} \quad \text{and} \quad \mathbf{C}_{\mathbf{X}}^{-1} = \begin{bmatrix} 1/\sigma_1^2 & & & \\ & & \ddots & \\ & & 1/\sigma_n^2 \end{bmatrix}.$$

It follows that C_X has determinant $\det(C_X) = \prod_{i=1}^n \sigma_i^2$ and that

$$(\mathbf{x} - \boldsymbol{\mu}_{\mathbf{X}})' \mathbf{C}_{\mathbf{X}}^{-1} (\mathbf{x} - \boldsymbol{\mu}_{\mathbf{X}}) = \sum_{i=1}^{n} \frac{(X_i - \mu_i)^2}{\sigma_i^2}.$$

From Definition 5.17, we see that

$$f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{(2\pi)^{n/2} \prod_{i=1}^{n} \sigma_i^2} \exp\left(-\sum_{i=1}^{n} (x_i - \mu_i)/2\sigma_i^2\right)$$
$$= \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma_i^2}} \exp\left(-(x_i - \mu_i)^2/2\sigma_i^2\right).$$

Thus $f_{\mathbf{X}}(\mathbf{x}) = \prod_{i=1}^{n} f_{X_i}(x_i)$, implying X_1, \dots, X_n are independent. 08_1 Yates Chapter 5

Example 5.15 Problem

Consider the outdoor temperature at a certain weather station. On May 5, the temperature measurements in units of degrees Fahrenheit taken at 6 AM, 12 noon, and 6 PM are all Gaussian random variables, X_1, X_2, X_3 with variance 16 degrees². The expected values are 50 degrees, 62 degrees, and 58 degrees respectively. The covariance matrix of the three measurements is

$$\mathbf{C_X} = \begin{bmatrix} 16.0 & 12.8 & 11.2 \\ 12.8 & 16.0 & 12.8 \\ 11.2 & 12.8 & 16.0 \end{bmatrix}.$$

- (a) Write the joint PDF of X_1 , X_2 using the algebraic notation of Definition 4.17.
- (b) Write the joint PDF of X_1 , X_2 using vector notation.
- (c) Write the joint PDF of $\mathbf{X} = \begin{bmatrix} X_1 & X_2 & X_3 \end{bmatrix}'$ using vector notation.

Example 5.15 Solution

(a) First we note that X_1 and X_2 have expected values $\mu_1 = 50$ and $\mu_2 = 62$, variances $\sigma_1^2 = \sigma_2^2 = 16$, and covariance $Cov[X_1, X_2] = 12.8$. It follows from Definition 4.8 that the correlation coefficient is

$$\rho_{X_1, X_2} = \frac{\text{Cov}[X_1, X_2]}{\sigma_1 \sigma_2} = \frac{12.8}{16} = 0.8.$$

From Definition 4.17, the joint PDF is

$$f_{X_1, X_2}(x_1, x_2) = \frac{\exp\left(-\frac{(x_1 - 50)^2 - 1.6(x_1 - 50)(x_2 - 62) + (x_2 - 62)^2}{19.2}\right)}{60.3}.$$

(b) Let $\mathbf{W} = \begin{bmatrix} X_1 & X_2 \end{bmatrix}'$ denote a vector representation for random variables X_1 and X_2 . From the covariance matrix $\mathbf{C}_{\mathbf{X}}$, we observe that the 2×2 submatrix in the upper left corner is the covariance matrix of the random vector \mathbf{W} . Thus [Continued]

Example 5.15 Solution (continued)

$$\mu_{\mathbf{W}} = \begin{bmatrix} 50 \\ 62 \end{bmatrix}, \qquad \mathbf{C}_{\mathbf{W}} = \begin{bmatrix} 16.0 & 12.8 \\ 12.8 & 16.0 \end{bmatrix}.$$

We observe that $det(\mathbf{C_W}) = 92.16$ and $det(\mathbf{C_W})^{1/2} = 9.6$. From Definition 5.17, the joint PDF of **W** is

$$f_{\mathbf{W}}(\mathbf{w}) = \frac{1}{60.3} \exp\left(-\frac{1}{2}(\mathbf{w} - \boldsymbol{\mu}_{\mathbf{W}})^T \mathbf{C}_{\mathbf{W}}^{-1}(\mathbf{w} - \boldsymbol{\mu}_{\mathbf{W}})\right).$$

(c) For the joint PDF of \mathbf{X} , we note that \mathbf{X} has expected value $\mu_{\mathbf{X}} = \begin{bmatrix} 50 & 62 & 58 \end{bmatrix}'$ and that $\det(\mathbf{C}_{\mathbf{X}})^{1/2} = 22.717$. Thus

$$f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{357.8} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_{\mathbf{X}})^T \mathbf{C}_{\mathbf{X}}^{-1}(\mathbf{x} - \boldsymbol{\mu}_{\mathbf{X}})\right).$$

Given an n-dimensional Gaussian random vector \mathbf{X} with expected value $\mu_{\mathbf{X}}$ and covariance $\mathbf{C}_{\mathbf{X}}$, and an $m \times n$ matrix \mathbf{A} with rank(\mathbf{A}) = m,

$$Y = AX + b$$

is an m-dimensional Gaussian random vector with expected value $\mu_{\mathbf{Y}} = \mathbf{A}\mu_{\mathbf{X}} + \mathbf{b}$ and covariance $\mathbf{C}_{\mathbf{Y}} = \mathbf{A}\mathbf{C}_{\mathbf{X}}\mathbf{A}'$.

The proof of Theorem 5.13 contains the derivations of $\mu_{\mathbf{Y}}$ and $\mathbf{C}_{\mathbf{Y}}$. Our proof that \mathbf{Y} has a Gaussian PDF is confined to the special case when m=n and \mathbf{A} is an invertible matrix. The case of m< n is addressed in Problem 5.7.9. When m=n, we use Theorem 5.11 to write

$$f_{\mathbf{Y}}(\mathbf{y}) = \frac{1}{|\det(\mathbf{A})|} f_{\mathbf{X}} \left(\mathbf{A}^{-1} (\mathbf{y} - \mathbf{b}) \right)$$

$$= \frac{\exp\left(-\frac{1}{2} [\mathbf{A}^{-1} (\mathbf{y} - \mathbf{b}) - \boldsymbol{\mu}_{\mathbf{X}}]' \mathbf{C}_{\mathbf{X}}^{-1} [\mathbf{A}^{-1} (\mathbf{y} - \mathbf{b}) - \boldsymbol{\mu}_{\mathbf{X}}] \right)}{(2\pi)^{n/2} |\det(\mathbf{A})| |\det(\mathbf{C}_{\mathbf{X}})|^{1/2}}.$$

In the exponent of $f_{\mathbf{Y}}(\mathbf{y})$, we observe that

$$\mathbf{A}^{-1}(\mathbf{y}-\mathbf{b})-\mu_{\mathbf{X}}=\mathbf{A}^{-1}[\mathbf{y}-(\mathbf{A}\mu_{\mathbf{X}}+\mathbf{b})]=\mathbf{A}^{-1}(\mathbf{y}-\mu_{\mathbf{Y}}),$$
 since $\mu_{\mathbf{Y}}=\mathbf{A}\mu_{\mathbf{X}}+\mathbf{b}.$ [Continued]

Proof: Theorem 5.16 (continued)

Applying (5.79) to (5.78) yields

$$f_{\mathbf{Y}}(\mathbf{y}) = \frac{\exp\left(-\frac{1}{2}[\mathbf{A}^{-1}(\mathbf{y} - \boldsymbol{\mu}_{\mathbf{Y}})]'\mathbf{C}_{\mathbf{X}}^{-1}[\mathbf{A}^{-1}(\mathbf{y} - \boldsymbol{\mu}_{\mathbf{Y}})]\right)}{(2\pi)^{n/2} \left|\det\left(\mathbf{A}\right)\right| \left|\det\left(\mathbf{C}_{\mathbf{X}}\right)\right|^{1/2}}.$$

Using the identities $|\det(\mathbf{A})| |\det(\mathbf{C_X})|^{1/2} = |\det(\mathbf{AC_XA'})|^{1/2}$ and $(\mathbf{A}^{-1})' = (\mathbf{A'})^{-1}$, we can write

$$f_{\mathbf{Y}}(\mathbf{y}) = \frac{\exp\left(-\frac{1}{2}(\mathbf{y} - \boldsymbol{\mu}_{\mathbf{Y}})'(\mathbf{A}')^{-1}\mathbf{C}_{\mathbf{X}}^{-1}\mathbf{A}^{-1}(\mathbf{y} - \boldsymbol{\mu}_{\mathbf{Y}})\right)}{(2\pi)^{n/2} \left|\det\left(\mathbf{A}\mathbf{C}_{\mathbf{X}}\mathbf{A}'\right)\right|^{1/2}}.$$

Since $(A')^{-1}C_X^{-1}A^{-1} = (AC_XA')^{-1}$, we see from Equation (5.81) that Y is a Gaussian vector with expected value μ_Y and covariance matrix $C_Y = AC_XA'$.

Example 5.16 Problem

Continuing Example 5.15, use the formula $Y_i = (5/9)(X_i - 32)$ to convert the three temperature measurements to degrees Celsius.

- (a) What is $\mu_{\mathbf{Y}}$, the expected value of random vector \mathbf{Y} ?
- (b) What is C_Y , the covariance of random vector Y?
- (c) Write the joint PDF of $\mathbf{Y} = \begin{bmatrix} Y_1 & Y_2 & Y_3 \end{bmatrix}'$ using vector notation.

Example 5.16 Solution

(a) In terms of matrices, we observe that Y = AX + b where

$$\mathbf{A} = \begin{bmatrix} 5/9 & 0 & 0 \\ 0 & 5/9 & 0 \\ 0 & 0 & 5/9 \end{bmatrix}, \qquad \mathbf{b} = -\frac{160}{9} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$$

(b) Since $\mu_{\mathbf{X}} = \begin{bmatrix} 50 & 62 & 58 \end{bmatrix}'$, from Theorem 5.16,

$$\mu_{\mathbf{Y}} = \mathbf{A}\mu_{\mathbf{X}} + \mathbf{b} = \begin{bmatrix} 10 \\ 50/3 \\ 130/9 \end{bmatrix}.$$

(c) The covariance of Y is $C_Y = AC_XA'$. We note that A = A' = (5/9)I where I is the 3×3 identity matrix. Thus $C_Y = (5/9)^2C_X$ and $C_Y^{-1} = (9/5)^2C_X^{-1}$. The PDF of Y is

$$f_{\mathbf{Y}}(\mathbf{y}) = \frac{1}{24.47} \exp\left(-\frac{81}{50}(\mathbf{y} - \boldsymbol{\mu}_{\mathbf{Y}})^T \mathbf{C}_{\mathbf{X}}^{-1}(\mathbf{y} - \boldsymbol{\mu}_{\mathbf{Y}})\right).$$

Standard Normal Random

Definition 5.18 Vector

The *n*-dimensional standard normal random vector \mathbf{Z} is the *n*-dimensional Gaussian random vector with $E[\mathbf{Z}] = \mathbf{0}$ and $\mathbf{C}_{\mathbf{Z}} = \mathbf{I}$.

For a Gaussian (μ_X, C_X) random vector, let A be an $n \times n$ matrix with the property $AA' = C_X$. The random vector

$$\mathbf{Z} = \mathbf{A}^{-1}(\mathbf{X} - \boldsymbol{\mu}_{\mathbf{X}})$$

is a standard normal random vector.

Applying Theorem 5.16 with $\bf A$ replaced by $\bf A^{-1}$, and $\bf b = \bf A^{-1} \mu_{\bf X}$, we have that $\bf Z$ is a Gaussian random vector with expected value

$$E\left[\mathbf{Z}\right] = E\left[\mathbf{A}^{-1}(\mathbf{X} - \boldsymbol{\mu}_{\mathbf{X}})\right] = \mathbf{A}^{-1}E\left[\mathbf{X} - \boldsymbol{\mu}_{\mathbf{X}}\right] = \mathbf{0},$$

and covariance

$$\mathbf{C}_{\mathbf{Z}} = \mathbf{A}^{-1}\mathbf{C}_{\mathbf{X}}(\mathbf{A}^{-1})' = \mathbf{A}^{-1}\mathbf{A}\mathbf{A}'(\mathbf{A}')^{-1} = \mathbf{I}.$$

Given the n-dimensional standard normal random vector \mathbb{Z} , an invertible $n \times n$ matrix \mathbb{A} , and an n-dimensional vector \mathbb{b} ,

$$X = AZ + b$$

is an n-dimensional Gaussian random vector with expected value $\mu_{\mathbf{X}} = \mathbf{b}$ and covariance matrix $\mathbf{C}_{\mathbf{X}} = \mathbf{A}\mathbf{A}'$.

By Theorem 5.16, X is a Gaussian random vector with expected value

$$\mu_{\mathbf{X}} = E[\mathbf{X}] = E[\mathbf{AZ} + \mu_{\mathbf{X}}] = \mathbf{A}E[\mathbf{Z}] + \mathbf{b} = \mathbf{b}.$$

The covariance of X is

$$\mathbf{C}_{\mathbf{X}} = \mathbf{A}\mathbf{C}_{\mathbf{Z}}\mathbf{A}' = \mathbf{A}\mathbf{I}\mathbf{A}' = \mathbf{A}\mathbf{A}'.$$

For a Gaussian vector X with covariance C_X , there always exists a matrix A such that $C_X = AA'$.

To verify this fact, we connect some simple facts:

- In Problem 5.6.9, we ask the reader to show that every random vector \mathbf{X} has a positive semidefinite covariance matrix $\mathbf{C}_{\mathbf{X}}$. By Math Fact B.17, every eigenvalue of $\mathbf{C}_{\mathbf{X}}$ is nonnegative.
- The definition of the Gaussian vector PDF requires the existence of $\mathbf{C}_{\mathbf{X}}^{-1}$. Hence, for a Gaussian vector \mathbf{X} , all eigenvalues of $\mathbf{C}_{\mathbf{X}}$ are nonzero. From the previous step, we observe that all eigenvalues of $\mathbf{C}_{\mathbf{X}}$ must be positive.
- Since C_X is a real symmetric matrix, Math Fact B.15 says it has a singular value decomposition (SVD) $C_X = UDU'$ where $D = \text{diag}[d_1, \ldots, d_n]$ is the diagonal matrix of eigenvalues of C_X . Since each d_i is positive, we can define $D^{1/2} = \text{diag}[\sqrt{d_1}, \ldots, \sqrt{d_n}]$, and we can write

$$\mathbf{C}_{\mathbf{X}} = \mathbf{U}\mathbf{D}^{1/2}\mathbf{D}^{1/2}\mathbf{U}' = \left(\mathbf{U}\mathbf{D}^{1/2}\right)\left(\mathbf{U}\mathbf{D}^{1/2}\right)'.$$

We see that $A = UD^{1/2}$.