Probability and Stochastic Processes

A Friendly Introduction for Electrical and Computer Engineers
SECOND EDITION
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Definitions, Theorems, Proofs, Examples,
Quizzes, Problems, Solutions
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Section 7.1

Sample Mean: Expected Value and
Variance
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Definition 7.1 £

X, with PDF fx(x), the sample mean of

4+ X,

For iid random variables X,
X+
n

X Is the random variable

Mp(X) =
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Theorem 7.1

The sample mean M, (X) has expected value and variance

E[M,(X)]|=E[X], Var[M,(X)]= Varn[X].
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From Definition 7.1, Theorem 6.1 and the fact that E[X;] = E[X] for all i,

1 1
E[Mn(X)]:Z(E[X1]+---+E[Xn]):;(E[X]+-..+E[X]):E[X].

Because Var[aY] = a? Var[Y] for any random variable ¥ (Theorem 2.14),
Var[M,,(X)] = Var[X{| + --- + X,]/n?. Since the X; are iid, we can use
Theorem 6.3 to show

Var[ X1+ -- -+ X,] = Var[Xq] + - - - + Var[X};] = n Var[ X].
Thus Var[M,,(X)] = n Var[X]/n? = Var[X]/n.
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Section 7.2

Deviation of a Random Variable from
the Expected Value
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Theorem 7.2

For a random variable X such that P[X < 0] = 0 and a constant c,

c

E[X]
7

=

Plx =]
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Since X is nonnegative, fx(x) = 0forx < 0 and

2

E[X]:/OC Xfyx (x) dx—l—/joxfx(x) dxzfjoxfx(x) dx.

Since x > ¢? in the remaining integral,

E[X]Zczf2 fx (x) dx:czP[XZcz].
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If the height X, measured in feet, of a randomly chosen adult is a Gaussian
(5.5, 1) random variable, use the Chernoff bound to find an upper bound

on P[X > 11].

Example 6.18
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Theorem 6.15

ohx ().

s>0
Yates Chap. 6

P[X >c]<min e

For an arbitrary random variable X and a constant c,
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InTable 6.1 the MGF of Xis o>/ T /

¢X(S)/\: e(lls—l—sz)/2.
Thus the Chernoff bound is
P[X > 11] < min e—lls€(11s+s2)/2 — min e(sz—lls)/2.
- >0 >0
To find the minimizing s, it is sufficient to choose s to minimize h(s) =
s2 — 11s. Setting the derivative dh(s)/ds = 2s — 11 = 0 yields s = 5.5.
Applying s = 5.5 to the bound yields
PIX > 11] < ' 119/2 (= e=G2 _ 2751077,
§=D.
Based on our model for adult heights, the actual probability (not shown in

Table 3.2) is Q(11 — 5.5) = 1.90 x 10~8.
08 1 Yates Chap. 6 10



Example 7.1

Let X represent the height (in feet) of a randomly chosen adult. If the
expected height is E[X] = 5.5, then the Markov inequality states that the
probability an adult is at least 11 feet tall satisfies

P[X >11]<55/11 =1/2.

08 1 Yates Chap. 7 11
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Theorem 7.3

For an arbitrary random variable Y and constant ¢ > 0,

Var[Y |

PllY —puy|=c] <

c2

12
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In the Markov inequality, Theorem 7.2, let X = (Y — /Ly)z. The inequality
states

Elo—u?| v
2] B 2 ) . ar[Y]
P[ch]_P[(Y ,uy)ZC]S > =
The theorem follows from the fact that {(¥ — uy)? > ¢?} = {|Y — uy| > c}.
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If the height X of a randomly chosen adult has expected value E[X] = 5.5
feet and standard deviation oy = 1 foot, use the Chebyshev inequality to

to find an upper bound on P[X > 11].
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Example 7.3 Solution

Since a height X is nonnegative, the probability that X > 11 can be written
as

PIX>11]=P[X —ux =211 —ux]=PI[X —pux|=5.5].
Now we use the Chebyshev inequality to obtain
P[X >11]= P[|X — ux| > 5.5] < Var[X]/(5.5)* = 0.033 ~ 1/30.

Although this bound is better than the Markov bound, it is also loose. In
fact, P[X > 11] is orders of magnitude lower than 1/30. Otherwise, we
would expect often to see a person over 11 feet tall in a group of 30 or
more people!
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Section 7.3

Point Estimates of Model
Parameters
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of the parameter r is consistent if for

The sequence of estimates Ry, Ry, . ..

any e > 0,

Tin P[

n—oo
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Def

A

' IS
otherwise, R

J

R

biased.
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inition 7.4

Defini

The sequence of estimators R, of parameter r is asymptotically unbiased

if

19

A

lim E[R,] =r.

n—oo
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The mean square error of estimator R of parameterr is

e:E[(I%—r)z].

20
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Theorem 7.4

If a sequence of unbiased estimates R;, R», ... of parameter r has mean
square error e, = Var[R,,] satisfying lim,_, », ¢, = 0, then the sequence R,
IS consistent.

08 1 Yates Chap. 7 21
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Proof:

Since E[R,] = r, we can apply the Chebyshev inequality to R,. For any
constant € > 0,

[ —r| 2 ] < Yalhal
2
In the limit of large n, we have
Var[R
lim P[ —r‘Ze]f im YAt Rl _
n— 00 n— 00 62

08 1 Yates Chap. 7 22
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Example 7.4

-

In any interval of k seconds, the number N, of packets passing through an
Internet router is a Poisson random variable with expected value E[N;] =
kr packets. Let R, = Nj/k denote an estimate of r. Is each estimate R; an
unbiased estimate of »r? What is the mean square error ¢; of the estimate
R;? Is the sequence of estimates Ry, R, ... consistent?

08 _1 Yates Chap. 7 23
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First, we observe that Ry is an unbiased estimator since

E[R] = E[Ny/kl = E [N /k =.
Next, we recall that since N is Poisson, Var[ N, ] = kr. This implies
Var [ Ny | o
K2k
Because Ry, is unbiased, the mean square error of the estimate is the same

as its variance: e; = r/k. In addition, since limy_, o, Var[Ri] = 0, the
sequence of estimators Ry, is consistent by Theorem 7.4.

Ni
Var[Rk] = Var[ P ]

08 _1 Yates Chap. 7 24



Theorem 7.5

The sample mean M, (X) is an unbiased estimate of E[X].
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Theorem 7.6

The sample mean estimator M, (X) has mean square error

en =E [(Mn(X) _ E [X])Z] — Var[M,(X)] = Var[ X]
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Example 7.5

How many independent trials n are needed to guarantee that P,(A), the
relative frequency estimate of P[A], has standard error less than 0.17?

08 1 Yates Chap. 7 27



Example 7.5 Solu

Since the indicator X 4 has variance Var[X 4] = P[A](1 — P[A]), Theo-
rem 7.6 implies that the mean square error of M, (X 4) is
Var [ X] P [A] (1 — P [A)])
no n '
We need to choose n large enough to guarantee ,/e;, < 0.1 or ¢, <= 0.01,

even though we don’t know P[A]. We use the fact that p(1 — p) < 0.25
forall0 < p < 1. Thus ¢, < 0.25/n. To guarantee ¢, < 0.01, we choose

n = 25 trials.

en:

08 _1 Yates Chap. 7 28



Theorem 7.7

If X has finite variance, then the sample mean M (X)) is a sequence of

consistent estimates of £ [X ]
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By Theorem 7.6, the mean square error of M, (X) satisfies

, . Var[X]
lim Var[M,(X)]= lim —— = 0.
n

n—0o0 n—o0

By Theorem 7.4, the sequence M, (X) is consistent.

08 _1 Yates Chap. 7
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Theorem 7.8

If X has finite variance, then for any constant ¢ > 0,

lim P[|Mp(X) — pux| =cl=0,

n—oo

(@)

Ilim P[|My(X) —ux| <c]=1.

n—oo

(b)

31
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Theorem 7.9

As n — oo, the relative frequency P, (A) converges to P[A]; for any con-
stant ¢ > 0,

Iim P

n—oo [

P.(A)— P [A]‘ > c] — 0.

08 _1 Yates Chap. 7 32
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The proof follows from Theorem 7.4 since I3n(A) = M, (X ,) is the sam-
ple mean of the indicator X 4, which has mean E[X 4] = P[A] and finite

variance Var[X 4] = P[A](1 — P[A)).
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e a

e > 0,

= 0.
€|l =
lim P[|Y, —y|>

n—oo
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Theorem 7.10
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B[V, (X)]="=ar[X]
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Proof:
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Substituting Definition 7.1 of the sample mean M, (X) into Definition 7.7 of sample vari-
ance and expanding the sums, we derive

1 n 1 n n
_ ;in —EZZX,XJ.
i=1 i=1 j=1
Because the X; are iid, E[X7] = E[X?] for all i, and E[X;]E[X,;] = u%. By Theo-
rem 4.16(a), E[X;X;] = Cov|X;, X;] + E[X;]1E[X;]. Thus, E[X;X;] = Cov[X;, X;] + u%.
Combining these facts, the expected value of V,, in Equation (7.22) is

E[V,] = E[X?] ——ZZ Cov [X:, X;] + u%)
11]1
n

= Var[X] — 1 ZCOV (X, X;]
i=1 j=1

Note that since the double sum has n* terms, Y7, >, u% = n*u%. Of the n* covariance
terms, there are n terms of the form Cov|[X;, X;] = Var[X], while the remaining covariance
terms are all 0 because X; and X; are independent for i # j. This implies

E[V,] = Var[X] — % (nVar XD = L varx1.

08 _1 Yates Chap. 7 37



Theorem 7.11

The estimate

- 3
Va(X) = — Z (Xi — Mn(X))
i=1
IS an unbiased estimate of Var[X].

08 _1 Yates Chap. 7
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Proof

Using Definition 7.7, we have

Vn(X),
E[V,(X)] = Var[X].

n—1

n

(X)
n—1

/
n

V,
(X)] =

/
n

E|V,

and

39
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Quiz 7.3

X is a uniform random variable between —1 and 1 with PDF

05 —-1<x<1,
Jx (%) = { 0 otherwise.

What is the mean square error of Vigo(X), the estimate of Var[ X] based on
100 independent observations of X?
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Define the random variable W = (X — uyx)?. Observe that Vigo(X) =
Mioo(W). By Theorem 7.6, the mean square error is
Var[ W]

100

E[(Mio0oW) = pw)?| =

Observe that uy = 0 so that W = X?2. Thus,

L 1
uw = E | X? :f X% fx (x) dx = 1/3
- ~1

L 1
E[Wz]:E x4 :/ v (0) dx = 1/5
B D

Therefore Var[W] = E[W?] — u%, = 1/5 — (1/3)* = 4/45 and the mean
square error is 4/4500 = 0.000889.
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