Probability and Stochastic Processes

A Friendly Introduction for Electrical and Computer Engineers SECOND EDITION

Roy D. Yates

David J. Goodman

Definitions, Theorems, Proofs, Examples, Quizzes, Problems, Solutions

Chapter 7

Section 7.1

Sample Mean: Expected Value and Variance

Definition 7.1 Sample Mean

For iid random variables X_1, \ldots, X_n with PDF $f_X(x)$, the sample mean of X is the random variable

$$M_n(X) = \frac{X_1 + \dots + X_n}{n}.$$

Theorem 7.1

The sample mean $M_n(X)$ has expected value and variance

$$E[M_n(X)] = E[X], \quad Var[M_n(X)] = \frac{Var[X]}{n}.$$

Proof: Theorem 7.1

From Definition 7.1, Theorem 6.1 and the fact that $E[X_i] = E[X]$ for all i,

$$E[M_n(X)] = \frac{1}{n} (E[X_1] + \dots + E[X_n]) = \frac{1}{n} (E[X] + \dots + E[X]) = E[X].$$

Because $Var[aY] = a^2 Var[Y]$ for any random variable Y (Theorem 2.14), $Var[M_n(X)] = Var[X_1 + \cdots + X_n]/n^2$. Since the X_i are iid, we can use Theorem 6.3 to show

$$Var[X_1 + \cdots + X_n] = Var[X_1] + \cdots + Var[X_n] = n Var[X].$$

Thus $Var[M_n(X)] = n Var[X]/n^2 = Var[X]/n$.

Section 7.2

Deviation of a Random Variable from the Expected Value

Theorem 7.2 Markov Inequality

For a random variable X such that P[X < 0] = 0 and a constant c,

$$P\left[X \ge c^2\right] \le \frac{E\left[X\right]}{c^2}.$$

Proof: Theorem 7.2

Since *X* is nonnegative, $f_X(x) = 0$ for x < 0 and

$$E[X] = \int_0^{c^2} x f_X(x) \ dx + \int_{c^2}^{\infty} x f_X(x) \ dx \ge \int_{c^2}^{\infty} x f_X(x) \ dx.$$

Since $x \ge c^2$ in the remaining integral,

$$E[X] \ge c^2 \int_{c^2}^{\infty} f_X(x) \ dx = c^2 P\left[X \ge c^2\right].$$

Revisit

Example 6.18 Problem

If the height X, measured in feet, of a randomly chosen adult is a Gaussian (5.5, 1) random variable, use the Chernoff bound to find an upper bound on $P[X \ge 11]$.

Theorem 6.15 Chernoff Bound

For an arbitrary random variable X and a constant c,

$$P[X \ge c] \le \min_{s \ge 0} e^{-sc} \phi_X(s).$$

Example 6.18 Solution

In Table 6.1 the MGF of *X* is

(is
$$e^{5\mu + s^2\sigma^2/2}$$
)
 $\phi_X(s) = e^{(11s+s^2)/2}$.

$$\phi_X(s) = e^{(11s+s^2)/2}$$

Thus the Chernoff bound is

$$P[X \ge 11] \le \min_{s \ge 0} e^{-11s} e^{(11s+s^2)/2} = \min_{s \ge 0} e^{(s^2-11s)/2}.$$

To find the minimizing s, it is sufficient to choose s to minimize h(s) = $s^2 - 11s$. Setting the derivative dh(s)/ds = 2s - 11 = 0 yields s = 5.5. Applying s = 5.5 to the bound yields

$$P[X \ge 11] \le e^{(s^2 - 11s)/2} \Big|_{s=5.5} = e^{-(5.5)^2/2} = 2.7 \times 10^{-7}.$$

Based on our model for adult heights, the actual probability (not shown in Table 3.2) is $Q(11-5.5) = 1.90 \times 10^{-8}$.

08 1

Example 7.1

Let X represent the height (in feet) of a randomly chosen adult. If the expected height is E[X] = 5.5, then the Markov inequality states that the probability an adult is at least 11 feet tall satisfies

$$P[X \ge 11] \le 5.5/11 = 1/2.$$

Theorem 7.3 Chebyshev Inequality

For an arbitrary random variable Y and constant c > 0,

$$P\left[|Y - \mu_Y| \ge c\right] \le \frac{\operatorname{Var}[Y]}{c^2}.$$

Proof: Theorem 7.3

In the Markov inequality, Theorem 7.2, let $X = (Y - \mu_Y)^2$. The inequality states

$$P\left[X \ge c^2\right] = P\left[(Y - \mu_Y)^2 \ge c^2\right] \le \frac{E\left[(Y - \mu_Y)^2\right]}{c^2} = \frac{\operatorname{Var}[Y]}{c^2}.$$

The theorem follows from the fact that $\{(Y - \mu_Y)^2 \ge c^2\} = \{|Y - \mu_Y| \ge c\}.$

Example 7.3 Problem

If the height X of a randomly chosen adult has expected value E[X] = 5.5 feet and standard deviation $\sigma_X = 1$ foot, use the Chebyshev inequality to to find an upper bound on $P[X \ge 11]$.

Example 7.3 Solution

Since a height X is nonnegative, the probability that $X \ge 11$ can be written as

$$P[X \ge 11] = P[X - \mu_X \ge 11 - \mu_X] = P[|X - \mu_X| \ge 5.5].$$

Now we use the Chebyshev inequality to obtain

$$P[X \ge 11] = P[|X - \mu_X| \ge 5.5] \le \text{Var}[X]/(5.5)^2 = 0.033 \approx 1/30.$$

Although this bound is better than the Markov bound, it is also loose. In fact, $P[X \ge 11]$ is orders of magnitude lower than 1/30. Otherwise, we would expect often to see a person over 11 feet tall in a group of 30 or more people!

Point Estimates of Model Parameters

Definition 7.2 Consistent Estimator

The sequence of estimates $\hat{R}_1, \hat{R}_2, \dots$ of the parameter r is consistent if for any $\epsilon > 0$,

$$\lim_{n\to\infty} P\left[\left|\hat{R}_n - r\right| \ge \epsilon\right] = 0.$$

Definition 7.3 Unbiased Estimator

An estimate, \hat{R} , of parameter r is unbiased if $E[\hat{R}] = r$; otherwise, \hat{R} is biased.

Asymptotically Unbiased

Definition 7.4 Estimator

The sequence of estimators \hat{R}_n of parameter r is asymptotically unbiased if

$$\lim_{n\to\infty} E[\hat{R}_n] = r.$$

Definition 7.5 Mean Square Error

The mean square error of estimator \hat{R} of parameter r is

$$e = E\left[(\hat{R} - r)^2\right].$$

Theorem 7.4

If a sequence of unbiased estimates $\hat{R}_1, \hat{R}_2, \ldots$ of parameter r has mean square error $e_n = \operatorname{Var}[\hat{R}_n]$ satisfying $\lim_{n \to \infty} e_n = 0$, then the sequence \hat{R}_n is consistent.

Proof: Theorem 7.4

Since $E[\hat{R}_n] = r$, we can apply the Chebyshev inequality to \hat{R}_n . For any constant $\epsilon > 0$,

$$P\left[\left|\hat{R}_n - r\right| \ge \epsilon\right] \le \frac{\operatorname{Var}[\hat{R}_n]}{\epsilon^2}.$$

In the limit of large n, we have

$$\lim_{n \to \infty} P\left[\left| \hat{R}_n - r \right| \ge \epsilon \right] \le \lim_{n \to \infty} \frac{\operatorname{Var}[\hat{R}_n]}{\epsilon^2} = 0.$$

Example 7.4 Problem

In any interval of k seconds, the number N_k of packets passing through an Internet router is a Poisson random variable with expected value $E[N_k] = kr$ packets. Let $\hat{R}_k = N_k/k$ denote an estimate of r. Is each estimate \hat{R}_k an unbiased estimate of r? What is the mean square error e_k of the estimate \hat{R}_k ? Is the sequence of estimates $\hat{R}_1, \hat{R}_2, \ldots$ consistent?

Example 7.4 Solution

First, we observe that \hat{R}_k is an unbiased estimator since

$$E[\hat{R}_k] = E[N_k/k] = E[N_k]/k = r.$$

Next, we recall that since N_k is Poisson, $Var[N_k] = kr$. This implies

$$\operatorname{Var}[\hat{R}_k] = \operatorname{Var}\left[\frac{N_k}{k}\right] = \frac{\operatorname{Var}[N_k]}{k^2} = \frac{r}{k}.$$

Because \hat{R}_k is unbiased, the mean square error of the estimate is the same as its variance: $e_k = r/k$. In addition, since $\lim_{k\to\infty} \operatorname{Var}[\hat{R}_k] = 0$, the sequence of estimators \hat{R}_k is consistent by Theorem 7.4.

Theorem 7.5

The sample mean $M_n(X)$ is an unbiased estimate of E[X].

Theorem 7.6

The sample mean estimator $M_n(X)$ has mean square error

$$e_n = E\left[(M_n(X) - E[X])^2 \right] = \operatorname{Var}[M_n(X)] = \frac{\operatorname{Var}[X]}{n}.$$

Example 7.5 Problem

How many independent trials n are needed to guarantee that $\hat{P}_n(A)$, the relative frequency estimate of P[A], has standard error less than 0.1?

Example 7.5 Solution

Since the indicator X_A has variance $Var[X_A] = P[A](1 - P[A])$, Theorem 7.6 implies that the mean square error of $M_n(X_A)$ is

$$e_n = \frac{\text{Var}[X]}{n} = \frac{P[A](1 - P[A])}{n}.$$

We need to choose n large enough to guarantee $\sqrt{e_n} \le 0.1$ or $e_n \le 0.01$, even though we don't know P[A]. We use the fact that $p(1-p) \le 0.25$ for all $0 \le p \le 1$. Thus $e_n \le 0.25/n$. To guarantee $e_n \le 0.01$, we choose n = 25 trials.

Theorem 7.7

If X has finite variance, then the sample mean $M_n(X)$ is a sequence of consistent estimates of E[X].

Proof: Theorem 7.7

By Theorem 7.6, the mean square error of $M_n(X)$ satisfies

$$\lim_{n\to\infty} \operatorname{Var}[M_n(X)] = \lim_{n\to\infty} \frac{\operatorname{Var}[X]}{n} = 0.$$

By Theorem 7.4, the sequence $M_n(X)$ is consistent.

Theorem 7.8 Weak Law of Large Numbers

If X has finite variance, then for any constant c > 0,

(a)
$$\lim_{n \to \infty} P[|M_n(X) - \mu_X| \ge c] = 0$$
,

(b)
$$\lim_{n \to \infty} P[|M_n(X) - \mu_X| < c] = 1.$$

Theorem 7.9

As $n \to \infty$, the relative frequency $\hat{P}_n(A)$ converges to P[A]; for any constant c > 0,

$$\lim_{n\to\infty} P\left[\left|\hat{P}_n(A) - P\left[A\right]\right| \ge c\right] = 0.$$

Proof: Theorem 7.9

The proof follows from Theorem 7.4 since $\hat{P}_n(A) = M_n(X_A)$ is the sample mean of the indicator X_A , which has mean $E[X_A] = P[A]$ and finite variance $Var[X_A] = P[A](1 - P[A])$.

Definition 7.6 Convergence in Probability

The random sequence Y_n converges in probability to a constant y if for any $\epsilon > 0$,

$$\lim_{n\to\infty} P\left[|Y_n - y| \ge \epsilon\right] = 0.$$

Definition 7.7 Sample Variance

The sample variance of a set of n independent observations of random variable X is

$$V_n(X) = \frac{1}{n} \sum_{i=1}^n (X_i - M_n(X))^2.$$

Theorem 7.10

$$E[V_n(X)] = \frac{n-1}{n} Var[X].$$

Proof: Theorem 7.10

Substituting Definition 7.1 of the sample mean $M_n(X)$ into Definition 7.7 of sample variance and expanding the sums, we derive

$$V_n = \frac{1}{n} \sum_{i=1}^n X_i^2 - \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n X_i X_j.$$

Because the X_i are iid, $E[X_i^2] = E[X^2]$ for all i, and $E[X_i]E[X_j] = \mu_X^2$. By Theorem 4.16(a), $E[X_iX_j] = \text{Cov}[X_i, X_j] + E[X_i]E[X_j]$. Thus, $E[X_iX_j] = \text{Cov}[X_i, X_j] + \mu_X^2$. Combining these facts, the expected value of V_n in Equation (7.22) is

$$E[V_n] = E[X^2] - \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n (\text{Cov}[X_i, X_j] + \mu_X^2)$$
$$= \text{Var}[X] - \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n \text{Cov}[X_i, X_j]$$

Note that since the double sum has n^2 terms, $\sum_{i=1}^n \sum_{j=1}^n \mu_X^2 = n^2 \mu_X^2$. Of the n^2 covariance terms, there are n terms of the form $\text{Cov}[X_i, X_i] = \text{Var}[X]$, while the remaining covariance terms are all 0 because X_i and X_j are independent for $i \neq j$. This implies

$$E[V_n] = \text{Var}[X] - \frac{1}{n^2} (n \text{ Var}[X]) = \frac{n-1}{n} \text{Var}[X].$$
Yates Chap. 7

Theorem 7.11

The estimate

$$V'_n(X) = \frac{1}{n-1} \sum_{i=1}^n (X_i - M_n(X))^2$$

is an unbiased estimate of Var[X].

Proof: Theorem 7.11

Using Definition 7.7, we have

$$V_n'(X) = \frac{n}{n-1} V_n(X),$$

and

$$E\left[V_n'(X)\right] = \frac{n}{n-1}E\left[V_n(X)\right] = \text{Var}[X].$$

Quiz 7.3

X is a uniform random variable between -1 and 1 with PDF

$$f_X(x) = \begin{cases} 0.5 & -1 \le x \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

What is the mean square error of $V_{100}(X)$, the estimate of Var[X] based on 100 independent observations of X?

Quiz 7.3 Solution

Define the random variable $W = (X - \mu_X)^2$. Observe that $V_{100}(X) = M_{100}(W)$. By Theorem 7.6, the mean square error is

$$E\left[(M_{100}(W) - \mu_W)^2\right] = \frac{\text{Var}[W]}{100}$$

Observe that $\mu_X = 0$ so that $W = X^2$. Thus,

$$\mu_W = E\left[X^2\right] = \int_{-1}^1 x^2 f_X(x) \, dx = 1/3$$

$$E\left[W^2\right] = E\left[X^4\right] = \int_{-1}^1 x^4 f_X(x) \, dx = 1/5$$

Therefore $Var[W] = E[W^2] - \mu_W^2 = 1/5 - (1/3)^2 = 4/45$ and the mean square error is 4/4500 = 0.000889.