Chapter 3. Closed Magnetic Confinement Systems

Reading assignments: Harms Chap. 10, Stacey Chap. 4,

1. Tokamak system

Russian: TOroidalnaya KAmera MAgnit Katushka (English: Toroidal Chamber Magnetic Coil)

A. Features

Magnetic fields:

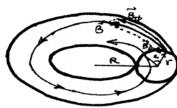
- * $Toroidal field B_{\phi}$ produced by TFC (toroidal field coils) around a torus
- * **Polodal field** B_p produced by plasma current j_{ϕ} induced by transformer $(-\frac{\partial B}{\partial t} = \nabla \times E \ \Rightarrow \ -\frac{d^{\Psi}_{trans}}{dt} = \oint E \cdot dl$ $\Rightarrow \ E_{\phi} = -\frac{1}{2\pi R} \frac{d^{\Psi}_{trans}}{dt}$

 \Rightarrow $\mathbf{j}_{\phi} = \sigma \mathbf{E} = \frac{\mathbf{E}}{n}$

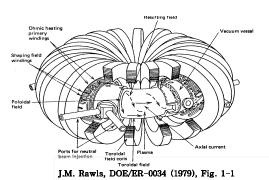
* Helical field lines B with small pitch or rotational transform (ι)

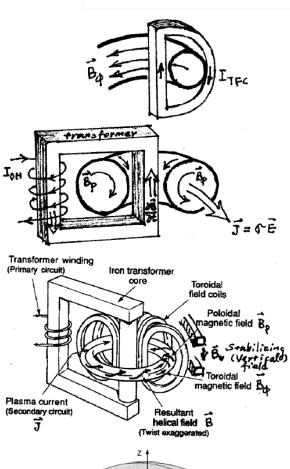
$$\frac{\iota_{r}}{2\pi R} = \frac{B_{p}}{B_{\phi}}$$

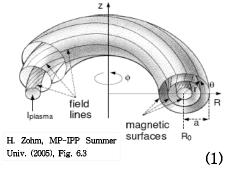
$$\Rightarrow \iota = \frac{2\pi}{(rB_{\phi}/RB_{p})} \equiv \frac{2\pi}{q}$$



Safety factor
$$q \equiv \frac{2\pi}{\iota} = \frac{r}{R} \frac{B_{\phi}}{B_{p}}$$







= # of transits around the torus when the field lines go around 2π in the poloidal angle

Magnetic shear
$$S$$
:

$$S \propto \frac{\iota'}{\iota} \propto \frac{q'}{q}$$



Magnetic surface with a constant Ψ covered with *ergodic field lines*. OHC(ohmic heating coils) produce self-consistent plasma current j_{ϕ} , and thereby poloidal magnetic field B_{ϕ} or B_{θ} , and ohmic heating power P_{OH} .

VFC(vertical field coils) or EFC(equilibrium field coils) produce *equilibrium field* B_V to prevent a toroidal plasma column from moving toward the outboard side of torus *Features*

 B_p by internal plasma current

Pulsed and complicated operation

Complex coil geometry ($B_{\phi} > B_{\phi} > B_{V}$)

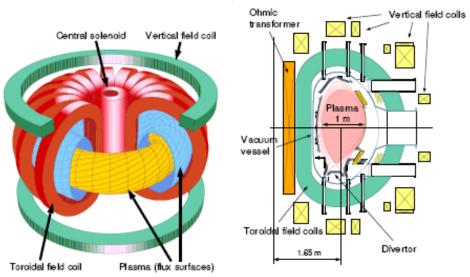
Difficult engineering design

Large minimum unit size ($n\tau_E \propto I^a \times V^b$)

High $n\tau_E$

Flexibility of heating(NBI, RFs, Compression, ...) and refueling(gas puffing, pellet, ...)

B. Main components and their functions



ASDEX-U at Garching

W. Suttrop, MP-IPP Summer Univ. (2005), Figs. 7.3-7.4

1) Toroidal vacuum vessel

- High strength & resistance material (S.S. low η) with bellows (high η , 14 in TFTR \Rightarrow ~3 $m\Omega$) sections (or ceramic breaks + insulated slit)
- · Base pressure $\sim < 10^{-7} torr$ (clean, no leaks, no gassy matter) Bake out ($\sim 150_{\circ}$ C), Gas discharge cleaning
- · Main turbopumps (2,000 l/s SNUT-79, 10,000 l/s TFTR) Auxiliary pump (Rotary 1,200 l/m SNUT-79 ,

 T_i gettering, ZrAl getter panel in TFTR $\sim 10^{-9}$ torr)

· Internal structures: Plasma facing components (PFC)

Limiters (C tile: good refractive, thermal, electrical conductor, low Z)

Diverter plates

Antennas

Protective plates (C tile): protect "shine thru" of NB Bellows covers: protect runaway electrons

· Manhole access ports for diagnostics, heating, vacuum

2) Fuel systems

Gas puffing $(\sim 10^{-3} torr)$

Pellets (frozen fuel): $2 mm \times 4 mm$, $10^3 m/s$ in TFTR

3) Toroidal field coils + power supply

For toroidally axisymmetric tokamaks,

$$B = B_{\phi}(r, \theta) \hat{\phi}$$

$$\nabla \times B = \mu_{o} \mathbf{j}$$

$$\oint B_{\phi} \cdot d\mathbf{l} = \mu_{o} I_{c}$$

$$2\pi R B_{\phi} = \mu_{o} I_{c}$$

$$B_{\phi}(R) = \frac{\mu_{o} I_{c}}{2\pi} \frac{1}{R} = \frac{B_{\phi}^{o} R_{o}}{R}$$

$$= \frac{B_{\phi}^{o} R_{o}}{R_{o} + r \cos \theta} = \frac{B_{\phi}^{o}}{1 + (r/R_{o}) \cos \theta}$$

$$= \frac{B_{\phi}^{o}}{1 + \epsilon \cos \theta} = B_{\phi}(r, \theta) \quad (2)$$

Drift motions in the simple toroidal magnetic field:

$$\boldsymbol{v_D} = \ \boldsymbol{v_c} + \ \boldsymbol{v_{\nabla B}} = \ \frac{\boldsymbol{m}}{qB^2} \bigg[\ \boldsymbol{v_1^2} \cdot \frac{\boldsymbol{R} \times \boldsymbol{B}}{R^2} + \bigg(\frac{\boldsymbol{v_\perp^2}}{2} \bigg) \! \bigg(\frac{\boldsymbol{B}}{B} \times \nabla B \bigg) \bigg] \ = \ \frac{\boldsymbol{m}}{q} \cdot \frac{1}{R_o B_\phi^o} \bigg[\ \boldsymbol{v_1^2} + \frac{\boldsymbol{v_\perp^2}}{2} \ \bigg] \ \hat{\boldsymbol{z}}$$

 \Rightarrow charge separation of $q = e \& i \Rightarrow E \Rightarrow v_{E \times B} = \frac{E \times B}{B^2} = \frac{E}{B_0^o} \frac{R}{R_o}$

Discrete structure of TF coils

 \rightarrow ripple ($\triangle B_{\phi}/B_{\phi}^{o}$ < 1%) \rightarrow $B_{\phi}(r, \Theta, \phi)$ for nonaxisymm.

D-shaped pure tension coil

4) Poloidal field coils + power supply

a. Ohmic heating coils w/ air-core or ion-core

Provides ohmic current $\rightarrow \iota$ + shear + heating

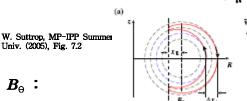
$$j_{\phi} = j_{\phi}(r, \Theta) \widehat{\Theta} \Rightarrow B_{\Theta}(r) = \frac{\mu_{o} I_{\phi}(r)}{2\pi r}$$

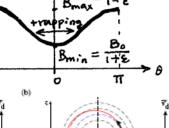
$$\nabla \times \mathbf{B} = \mu_{o} \mathbf{j}$$

or
$$\nabla \cdot \mathbf{B} = 0 \Rightarrow \frac{1}{1 + \varepsilon \cos \theta} \left[\frac{1}{r} \frac{\partial}{\partial r} (rB_r) + \frac{1}{r} \frac{\partial}{\partial \theta} ((1 + \varepsilon \cos \theta)B_{\theta}) + \frac{1}{R_o} \frac{\partial B_{\phi}}{\partial \phi} \right] = 0$$

$$\Rightarrow B_{\theta}(r, \theta) = \frac{B_{\theta}^{o}(\theta = 0)}{1 + \varepsilon \cos \theta} \qquad (3)$$

$$\boldsymbol{B}(r,\theta) = B_{\theta}(r,\theta) \; \hat{\theta} + B_{\phi}(r,\theta) \; \hat{\phi} = \frac{B_o}{1 + \epsilon \cos \theta}$$



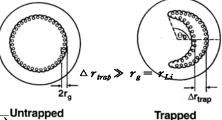


Effects of B_{ρ} or B_{θ} :

- i) Rotational transform $\iota \Rightarrow$ canceling v_D confinement
- ii) Particle trapping by magnetic mirrors Trapped particles with banana orbits Untrapped particles with circular orbits Trapped fraction:

$$f_{trap} = \sqrt{1 - 1/R_m} = \sqrt{1 - R_{\min}/R_{\max}}$$

$$= \sqrt{1 - (1 - \varepsilon)/(1 + \varepsilon)} = \sqrt{2\varepsilon/(1 + \varepsilon)}$$
Untrapped



(e.g.) For a typical tokamak, $\varepsilon \equiv a/R_o \approx 1/3 \Rightarrow f_{trap} \approx 70\%$

Collisional excursion across flux surfaces:

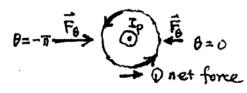
Untrapped particles = $2r_g = 2r_{Li}$

Trapped particles = $\triangle r_{trap} \gg 2r_g$ \Rightarrow Enhanced banana particle losses

 $E_{\phi} \times B_{\ominus}$ = radially inward drifts of banana ptcls \Rightarrow Ware-pinch effect

iii) Force imbalance: ① Hoop force

② Tire-tube force

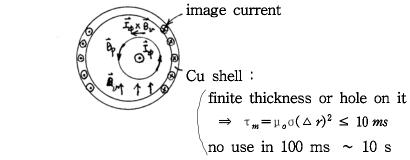


3 Cetrifugal force by rotating plasma

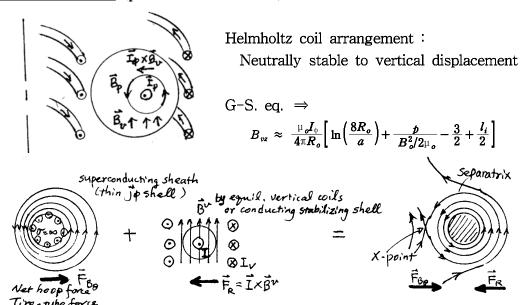
b. Vertical field (or Equilibrium field) coils

Correct the loss of equilibrium due to loop force

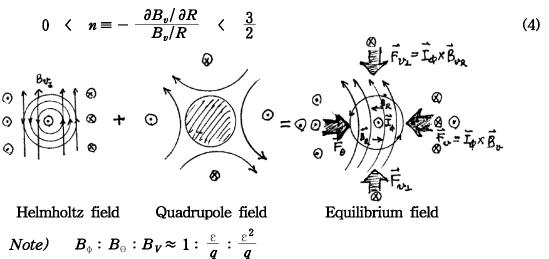
· Copper stabilizing shell (old way)



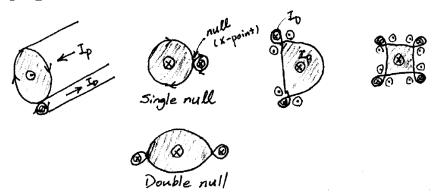
• Vertical field coils (present active control)



Stabilizing condition for vertical and horizontal displacements:



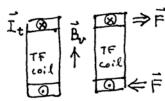
c. Shaping (Divertor) field coils



5) Mechanical structure

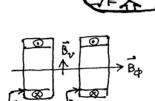
Torque frame, Coil and buswork supports High magnetic forces

Tilting force due to
$$\overrightarrow{I}_i \times \overrightarrow{B}_v$$
 $\approx 10^6 \ lbs \approx 500 \ tons$



Force on PF coils from their colleague neighbors

Buswork carrying current to coils \times **B**(e.g.) 20 kA \times 3 $T = 6 \times 10^4$ N/m = 6 ton/m



6) Basic diagnostic systems + Data acquisition & process systems

Principal plasma parameters:

$$n_{e,i}(\boldsymbol{r},t), T_{e,i}(\boldsymbol{r},t), Z_{eff}(t), Z_{i}(\boldsymbol{r},t), P_{R}(\boldsymbol{r},t)$$

Wave active instabilities : $T_e(r,t)$, B(r,t)

Fusion products : $S_n(r,t)$, $S_n(r,t)$

Not measured well yet for high powered tokamaks:

$$j(r,t), E_r(r,t) \rightarrow \phi(r,t)$$

7) Auxiliary heating systems

NBI, RF, Adiabatic compression, etc

8) Shielding

X-rays, Neutrons, Scattered v

C. Tokamak Equilibrium

1) Equilibrium equations in toroidally axisymmetric $(\frac{\partial}{\partial \Phi} = 0)$ systems

a. Magnetic fluxes

$$\nabla p = j \times B \tag{5}$$

$$\nabla \times \boldsymbol{B} = \mu_o \boldsymbol{j} \tag{6}$$

$$\nabla \cdot \boldsymbol{B} = 0 \tag{7}$$

$$\nabla \cdot \boldsymbol{j} = 0 \tag{8}$$

$$(5)_{\mathbf{I}} \Rightarrow \nabla_{\mathbf{I}} p = \mathbf{0} \qquad : p = \text{const along } B$$

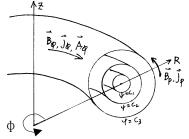
$$B \cdot (5) \Rightarrow B \cdot \nabla p = B \cdot (\mathbf{j} \times \mathbf{B}) = 0 \qquad : B \perp \nabla p \qquad (9)$$

$$Ch.2(6) \Rightarrow B \cdot \nabla \Psi = 0 \qquad : B \perp \nabla \Psi \qquad (10)$$

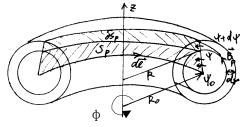
$$Ch.2(6) \Rightarrow \mathbf{B} \cdot \nabla \Psi = 0 \qquad : \mathbf{B} \perp \nabla \Psi \tag{10}$$

where
$$2\pi \Psi = \int_{S} \mathbf{B} \cdot d\mathbf{S}$$
 : magnetic flux (11)

Magnetic (flux) surface ($\psi = const.$) = Isobaric surface (p = const.)



b. Poloidal magnetic flux



 S_p = area of a ribbon obtained by revolving Ψ_o and Ψ

between Ψ and $\Psi + d\Psi$

Poloidal magnetic flux $2\pi \Psi$:

(11)
$$\Rightarrow 2\pi \Psi \equiv \int_{S_{p}} \mathbf{B}_{p} \cdot d\mathbf{S}_{p}$$
 Stoke's theorem
$$= \int_{S_{p}} \nabla \times (A_{p} \widehat{\Phi}) \cdot d\mathbf{S}_{p} = \oint A_{\Phi} \widehat{\Phi} \cdot d\mathbf{l}$$

$$= 2\pi \left(RA_{\Phi} - R_{o}A_{\Phi_{o}} \right)$$
 (12)

Differential poloidal magnetic flux $2\pi d\psi$:

$$2\pi \, d\Psi = 2\pi (\Psi + d\Psi) - 2\pi \Psi$$

$$= \int_{S_{p} + \delta S_{p}} B_{p} \cdot dS_{p} - \int_{S_{p}} B_{p} \cdot dS_{p}$$

$$= \int_{\delta S_{p}} B_{p} \cdot dS_{p} \approx B_{p} 2\pi R \, dr \qquad (13)$$

$$\Rightarrow RB_{p} = \frac{d\Psi}{dr} = |\nabla\Psi| \qquad (14)$$

$$\Rightarrow \quad \boldsymbol{B}_{\boldsymbol{p}} = -\frac{1}{R} \ \widehat{\boldsymbol{\Phi}} \times \nabla \boldsymbol{\Psi} \tag{15}$$

c. Poloidal current function $F(\Psi)$

$$\nabla \times \boldsymbol{B}_{\phi} = \mu_{o} \boldsymbol{j}_{\boldsymbol{b}} \qquad (\boldsymbol{B}_{\phi} + d\boldsymbol{B}_{\phi}) 2\pi R - \boldsymbol{B}_{\phi} 2\pi R$$

$$\int_{\delta s_{s}} \nabla \times \boldsymbol{B}_{\phi} \cdot d\boldsymbol{S}_{\boldsymbol{p}} = \oint \boldsymbol{B}_{\phi} \cdot d\boldsymbol{I} = 2\pi \ d(R\boldsymbol{B}_{\phi}) = 2\pi \ d\psi \frac{\partial (R\boldsymbol{B}_{\phi})}{\partial \psi}$$

$$\int_{\delta s_{s}} \mu_{o} \boldsymbol{j}_{\phi} \cdot d\boldsymbol{S}_{\boldsymbol{p}} = \mu_{o} \boldsymbol{j}_{\boldsymbol{p}} 2\pi R dr$$

$$\Rightarrow \frac{\partial (R\boldsymbol{B}_{\phi})}{\partial \psi} = \frac{\mu_{o} \boldsymbol{j}_{\boldsymbol{p}} R}{(d\psi/dr)}$$

$$\Rightarrow R\boldsymbol{j}_{\boldsymbol{p}} = \frac{\partial F}{\partial \psi} \frac{\partial \psi}{\partial r} = \frac{\partial F}{\partial \psi} |\nabla \psi| = \frac{\partial F}{\partial r} = |\nabla F(\psi)| \qquad (16)$$

$$\Rightarrow \boldsymbol{j}_{\boldsymbol{p}} = -\frac{1}{R} \widehat{\boldsymbol{\Phi}} \times \nabla F \qquad (17)$$

$$\text{where} \qquad \nabla \times \boldsymbol{B}_{\phi} = \mu_{o} \boldsymbol{j}_{\boldsymbol{p}} \Rightarrow 2\pi R \boldsymbol{B}_{\phi} = \mu_{o} \boldsymbol{I}_{\boldsymbol{p}}$$

$$F(\psi) \equiv \frac{R\boldsymbol{B}_{\phi}}{\mu_{o}} = \frac{\boldsymbol{I}_{\boldsymbol{p}}(\psi)}{2\pi} \qquad (18) \qquad total poloidal current$$

Note) Symmetry of **B** and **j** in $(5)(7)(8) \Rightarrow (14)(15) \leftrightarrow (16)(17)$

d. Magnetic fields and Pressure

In cylindrical coordinates for toroidally axisymmetric fields ($\partial/\partial \Phi = 0$),

$$(7)(10): \qquad \left(\frac{1}{R} \frac{\partial}{\partial R} (RB_R) + \frac{\partial B_z}{\partial z} = 0\right)$$

$$B_R \frac{\partial \Psi}{\partial R} + B_z \frac{\partial \Psi}{\partial z} = 0$$

$$\Rightarrow \left(\begin{array}{c} B_R = -\frac{1}{R} \frac{\partial \Psi}{\partial z} \\ B_z = \frac{1}{R} \frac{\partial \Psi}{\partial R} \end{array}\right)$$

$$(19)$$

(19) in (9):

$$-\frac{1}{R}\frac{\partial \Psi}{\partial z}\frac{\partial p}{\partial R} + \frac{1}{R}\frac{\partial \Psi}{\partial R}\frac{\partial p}{\partial z} = 0$$

$$\Rightarrow p = p(\Psi)$$

$$since -\frac{\partial \Psi}{\partial z}\frac{\partial p(\Psi)}{\partial \Psi}\frac{\partial \Psi}{\partial R} + \frac{\partial \Psi}{\partial R}\frac{\partial p(\Psi)}{\partial \Psi}\frac{\partial \Psi}{\partial z} = 0$$
(20)

e. Current density

(6):
$$\mathbf{j} = \frac{1}{\mu_{o}} \nabla \times \mathbf{B}$$

$$\mathbf{j}_{\phi} = \frac{1}{\mu_{o}} \left(\frac{\partial B_{R}}{\partial z} - \frac{\partial B_{z}}{\partial R} \right) = \checkmark^{(19)} - \frac{1}{\mu_{o}} \left[\frac{\partial}{\partial R} \left(\frac{1}{R} \frac{\partial \psi}{\partial R} \right) + \frac{1}{R} \frac{\partial^{2} \psi}{\partial z^{2}} \right] \equiv -\frac{1}{\mu_{o} R} \Delta^{*} \psi$$

$$\mathbf{j}_{z} = \frac{1}{\mu_{o}} \frac{1}{R} \frac{\partial}{\partial R} (RB_{\phi}) = \checkmark^{(18)} \frac{1}{R} \frac{\partial F(\psi)}{\partial R}$$

$$(22)$$

f. Grad(-Schlueter)-Shafranov equation

= force balance equation in terms of flux function

(5):
$$\nabla p = j \times B$$

$$\nabla p = (j_{\phi} + j_{p}) \times (B_{\phi} + B_{p})$$

$$= (j_{\phi} - \frac{1}{R} \widehat{\Phi} \times \nabla F) \times (B_{\phi} - \frac{1}{R} \widehat{\Phi} \times \nabla \Psi)$$

$$= -j_{\phi} \times (\frac{1}{R} \widehat{\Phi} \times \nabla \Psi) - (\frac{1}{R} \widehat{\Phi} \times \nabla F) \times B_{\phi}$$

$$A \times (B \times C) = (C \times B) \times A = (A \cdot C)B - (A \cdot B)C$$

$$= \frac{j_{\phi}}{R} \nabla \Psi - \frac{B_{\phi}}{R} \nabla F$$

$$\nabla p(\Psi) = \frac{j_{\phi}}{R} \nabla \Psi - \frac{B_{\phi}}{R} \nabla F(\Psi)$$

$$\frac{\partial p(\Psi)}{\partial \Psi} \nabla \Psi = -\frac{\Delta^{*} \Psi}{\mu_{o} R^{2}} \nabla \Psi - \frac{\mu_{o} F}{R^{2}} \nabla F$$

$$(23)$$

$$\Rightarrow \triangle^* \Psi = - \mu_o R^2 \frac{dp}{d\Psi} - \mu_o^2 F \frac{dF}{d\Psi} \qquad \text{(nonlinear elliptic PDE)} \qquad (24)$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad$$

where
$$\triangle^* \Psi \equiv \left[R \frac{\partial}{\partial R} \left(\frac{1}{R} \frac{\partial}{\partial R} \right) + \frac{\partial^2}{\partial z^2} \right] \Psi = \left(\frac{\partial^2}{\partial R^2} - \frac{1}{R} \frac{\partial}{\partial R} + \frac{\partial^2}{\partial z^2} \right) \Psi$$

or from (23) & (21)

$$\mu_o j_{\phi} = \mu_o R \frac{dp}{d\psi} + \frac{\mu_o^2}{R} F \frac{dF}{d\psi} = -\frac{1}{R} \Delta^* \psi$$
 (24)*

Notes)

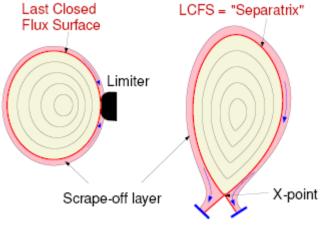
i) $p(\Psi)$: plasma load on a magnetic flux surface $F(\Psi)F'(\Psi) = \frac{1}{2}(F^2(\Psi))'$: strength of B_{Φ} \Rightarrow G-S Eq.(24) = Nonlinear elliptic PDE for Ψ describing how much plasma can be supported by B.

ii) Ideally, LHS of G–S Eq. = 0 $\Rightarrow R^2p' = \mu_o FF' = \frac{\mu_o}{2}(F^2)' = \frac{R^2}{2\mu_o}(B_{\phi}^2)'$ $\Rightarrow p = \frac{B_{\phi}^2}{2\mu_o} \Rightarrow \beta \equiv \frac{p}{B_{\phi}^2/2\mu_o} = 1 : \text{not realizable}$

In reality, $B_p(a)$ supports $\frac{a}{R_a}$ of $\langle p \rangle$

$$\Rightarrow \quad \beta_p \equiv \frac{\langle p \rangle}{B_p^2(a)/2\mu_o} \leq \frac{R_o}{a} \equiv A : \text{aspect ratio}$$
 (25)

iii) If B_p^{\uparrow} for balancing p, then $q^{\downarrow}=\frac{r}{R}\frac{B_{\downarrow}}{B_p^{\uparrow}}$ \rightarrow kink instability For reasons of stability, plasma confinement by large B_{\downarrow} for q^{\uparrow} .



Divertor target plates

Typical flux configurations of limiter and divertor tokamaks

(W. Suttrop, MP-IPP Summer Univ. (2005), Fig. 7.5)

Paramag. Diamag.

2) Pressure balance

Averaging G–S Eq. over a flux surface Ψ , i.e., $\langle (24) \rangle_{\Psi} \equiv \frac{\oint_{\Psi} (24) dl_{p}/B_{p}}{\oint dl_{p}/B_{p}}$:

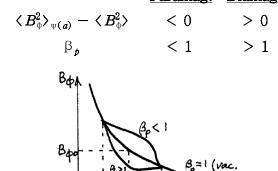
$$\langle p \rangle = p(\psi_a) + \frac{1}{2\mu_a} \left[\langle B_p^2 \rangle_{\psi(a)} + \langle B_{\phi}^2 \rangle_{\psi(a)} - \langle B_{\phi}^2 \rangle \right]$$
 (26)

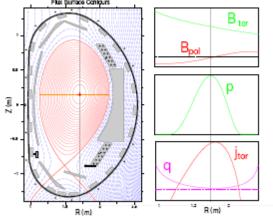
where <p> and <B $^2_{\scriptscriptstyle \oplus}$ > are volume-average values ($\left(\int_{\scriptscriptstyle \psi(0)}^{\scriptscriptstyle \psi(a)} (\)d^3r \middle/\int_{\scriptscriptstyle \psi(0)}^{\scriptscriptstyle \psi(a)} d^3r \middle/\int_{\scriptscriptstyle \psi(0)}^{\scriptscriptstyle \psi(0)} d^3r \middle/\int_{$

Poloidal beta β_p :

$$(26) / \langle B_p^2 \rangle_{\psi(a)} / 2\mu_o \implies$$

$$\beta_{p} \equiv \frac{\langle p \rangle}{\langle B_{p}^{2} \rangle_{\psi(a)} / 2\mu_{o}} \approx 1 + \frac{\langle B_{\phi}^{2} \rangle_{\psi(a)} - \langle B_{\phi}^{2} \rangle}{\langle B_{p}^{2} \rangle_{\psi(a)}}$$
(27)





Toroidal beta :
$$\beta_t \equiv \frac{\langle p \rangle}{B_{\phi}^2/2\mu_a} = \beta_p \frac{B_p^2}{B_{\phi}^2}$$
 (28)

Total beta:
$$\beta \equiv \frac{\langle p \rangle}{B^2/2\mu_o} = \beta_p \frac{B_p^2}{B_p^2 + B_\phi^2} = \frac{\beta_p}{1 + B_\phi^2/B_p^2}$$
(29)

Equilibrium characteristics

① Low pressure(low β) ② Medium pressure(typical) ③ High pressure(high β)

 $\beta_p < 1$

 $\beta_p \approx 1$

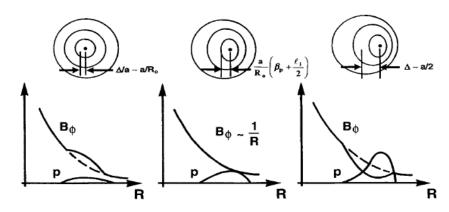
 $\beta_p > 1$

Paramagnetic $B_{\scriptscriptstyle \varphi}^{\,\uparrow}$

Almost vacuum field $B_{\scriptscriptstyle \varphi}$

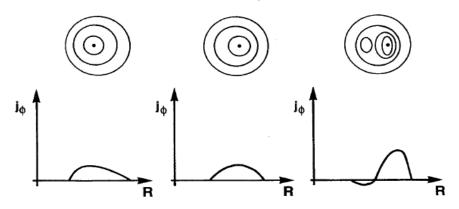
Diamagnetic $B_{\scriptscriptstyle \Phi}^{\downarrow}$

Surfaces on which p = constant



Harms, p. 170

Surfaces on which j_{ϕ} = constant



3) Low- β tokamak confinement

 $F(\psi) \propto RB_{\phi} = const = 0$, $B_{\phi} = B_{\phi o}R_o/R$ (vac. field) case : $\beta_p \equiv \frac{\langle p \rangle}{B_p^2/2\mu_o} = 1$

 \Rightarrow $\langle p \rangle$ is supported by B_p only, i.e., $j_{\phi} \times B_p$ pinching force of self-mag. field induced by plasma current.

If $B_{\scriptscriptstyle \ominus}$ is intended to increase for balancing high p, then, reduced $q(r)\downarrow \equiv (r/R_0)~(B_{\scriptscriptstyle \ominus} _o/B_{\scriptscriptstyle \ominus} \uparrow)$ result in ideal kink instab. Limited $I_{\scriptscriptstyle \ominus}$ value or large $B_{\scriptscriptstyle \ominus}$ are needed to maintain a limited q value

for stable confinement.

Stability condition for ideal kink modes:

$$q(a) = \frac{a}{R_o} \frac{B_{\phi}}{B_p(a)} > q_{\min} = \begin{cases} 1 & \text{for m = 1 mode (K-S limit)} \\ m/n \approx 2.5 & \text{for higher modes m = 2, 3,} \end{cases}$$
 (30)

$$\Rightarrow \frac{B_{p}}{B_{\phi}} < \frac{a/R_{o}}{q_{\min}} \equiv \frac{\varepsilon}{q_{\min}} \approx O(\varepsilon^{2})$$
 (31)

$$\Rightarrow \frac{\mu_o I_{\phi}/2\pi a}{B_{\phi}} < \frac{a/R_o}{q_{\min}} \Rightarrow I_{\phi} < \frac{2\pi}{\mu_o} \frac{a^2}{R_o q_{\min}} B_{\phi} : \textit{plasma current limit} \quad (32)$$

For low pressure plasmas ($\beta_p < 1$), $q_{\min} \approx 2.5$

$$(28): \beta_{t} = \beta_{p} \frac{B_{p}^{2}}{B_{\phi}^{2}} < \beta_{p} \frac{\varepsilon^{2}}{q_{\min}^{2}} < \frac{\varepsilon^{2}}{q_{\min}^{2}} \approx \frac{\varepsilon^{2}}{6.25}$$

$$(33)$$

(29):
$$\beta = \frac{\beta_{p}}{1 + B_{\phi}^{2}/B_{p}^{2}} < \frac{\beta_{p}}{1 + q_{\min}^{2}/\epsilon^{2}} < \frac{\epsilon^{2}}{q_{\min}^{2} + \epsilon^{2}} \approx \frac{\epsilon^{2}}{6.25 + \epsilon^{2}} \ll 1$$
 (34)

2) High- β tokamak confinement

Ideal confinement by toroidal field

$$\Rightarrow$$
 $p = \frac{B_{\phi}^2}{2\mu_a}$ \Rightarrow $\beta_t = 1$: not realizable and unstable

For suppressing ballooning modes, B_p supports more than a fraction a/R_0 of p:

$$\beta_p \equiv \frac{\langle p \rangle}{B_p^2(a)/2\mu_o} \le \frac{R_o}{a} \equiv \frac{1}{\epsilon} = A > 1$$
 (34)

(29) :
$$\beta = \frac{\beta_{p}}{1 + B_{\phi}^{2}/B_{p}^{2}} < \frac{\beta_{p}}{1 + q_{\min}^{2}/\epsilon^{2}} < \frac{\epsilon}{q_{\min}^{2} + \epsilon^{2}} \approx \frac{\epsilon}{6.25 + \epsilon^{2}} < 1 (35)$$

(e.g.) For R₀/a = 3, $\epsilon = 1/3$, $q_{\min} = 2.5 \Rightarrow \beta < 5\%$

4, $1/4$, $2.5 \Rightarrow \beta < 4\%$

High β for high output power & low cost \Leftrightarrow Low β for stable operation Non-circular plasma cross sections:

