Artificial Intelligence
Chapter 9

Heuristic Search

Biointelligence Lab
School of Computer Sci. & Eng.

Seoul National University

Outline

e Using Evaluation Functions

® A General Graph-Searching Algorithm
e Algorithm A*

e [terative-Deepening A*

e Heuristic Functions and Search Efficiency

(¢)2000-2002 SNU CSE Biointelligence Lab

9.1 Using Evaluation Functions

e Best-first search (BFS) = Heuristic search

¢ proceeds preferentially using heuristics

¢ Basic idea

Heuristic evaluation function @ : based on information specific to
the problem domain

Expand next that node, n, having the smallest value of
Terminate when the node to be expanded next 1s a goal node
e Eight-puzzle

¢ The number of tiles out of places: measure of the goodness of a
state description

N

f(n) =number of tiles out of place (comapred with goal)

(¢)2000-2002 SNU CSE Biointelligence Lab

9.1 Using Evaluation Functions

To the goal

N .- :
4. To more fruitless wandering

Figure 9.1 A Possible Result of a Heuristic Search Procedure

(¢)2000-2002 SNU CSE Biointelligence Lab 4

9.1 Using Evaluation Functions
(cont’d)

¢ Preference to early path: add “depth factor” - Figure 9.2

f(n)=g(n)+h(n)
g(n) :estimate of the depth of n
: the length of the shortest path from the start to n

fz(n) : heuristic evaluation of node n

(¢)2000-2002 SNU CSE Biointelligence Lab

(¢)2000-2002 SNU CSE Biointelligence Lab

9.1 Using Evaluation Functions
(cont’d)

® Questions

¢ How to settle on evaluation functions for guiding BFS?
¢ What are some properties of BFS?
¢ Does BFS always result in finding good paths to a goal node?

(¢)2000-2002 SNU CSE Biointelligence Lab

9.2 A General Graph-Searching
Algorithm

¢ GRAPHSEARCH: general graph-searching algorithm

.

2.
. If OPEN is empty, exit with failure

Create a search tree, 77, with the start node n, = put n, on
ordered list OPEN

Create empty list CLOSED

Select the first node n on OPEN - remove it = put it on
CLOSED

. If n 1s a goal node, exit successfully: obtain solution by tracing

a path backward along the arcs from » to n,in 7r

. Expand n, generating a set M of successors + install M as

successors of n by creating arcs from z to each member of M

. Reorder the list OPEN: by arbitrary scheme or heuristic merit
. Go to step 3

(¢)2000-2002 SNU CSE Biointelligence Lab

9.2 A General Graph-Searching
Algorithm (Cont’d)

e Breadth-first search
¢ New nodes are put at the end of OPEN (FIFO)
¢ Nodes are not reordered
® Depth-first search
¢ New nodes are put at the beginning of OPEN (LIFO)

e Best-first (heuristic) search

¢ OPEN is reordered according to the heuristic merit of the nodes

(¢)2000-2002 SNU CSE Biointelligence Lab

9.2.1 Algorithm A”

e Algorithm A®
¢ Reorders the nodes on OPEN according to increasing values of

® Some additional notation

¢ h(n): the actual cost of the minimal cost path between n and a
goal node

¢ g(n): the cost of a minimal cost path from n, to n

¢ f(n) = g(n) + h(n): the cost of a minimal cost path from n, to a
goal node over all paths via node n

¢ f(n,) = h(n,): the cost of a minimal cost path from 7, to a goal
node

o BQ): estimate of h(n)
+ HB): the cost of the lowest-cost path found by A* so far to n

(¢)2000-2002 SNU CSE Biointelligence Lab 10

9.2.1 Algorithm A™ (Cont’d)

e Algorithm A®
¢ If 4= 0: uniform-cost search
¢ When the graph being searched 1s not a tree?

more than one sequence of actions that can lead to the same world
state from the starting state

¢ In 8-puzzle problem
Actions are reversible: implicit graph 1s not a tree

Ignore loops 1n creating 8-puzzle search tree: don’t include the
parent of a node among its successors
Step 6

— Expand n, generating a set M of successors that are not already
parents (ancestors) of n + install M as successors of n by creating
arcs from n to each member of M

(¢)2000-2002 SNU CSE Biointelligence Lab

Start node, ny f(ng) = cost of lowest-cost
(optimal) path to a goal

Cost of an arc

/

f(n) = g(n)+ h(n) = cost of lowest-cost
path to a goal—constrained to go
through node n

g(n) = cost of best path from ng to n
(= 8 in this example)

h(n) = cost of optimal path from » to a goal
,i‘, g, h are estimates of /. g, h, respectively
F=ii
Figure 9.3 Heuristic Search Notation

(¢)2000-2002 SNU CSE Biointelligence Lab

9.2.1 Algorithm A™ (Cont’d)

e Modification of A* to prevent duplicate search effort

¢ G

search graph generated by A*

structure of nodes and arcs generated by A*
¢ Ir

subgraph of G

tree of best (minimal cost) paths
¢ Keep the search graph

subsequent search may find shorter paths

the paths use some of the arcs in the earlier search graph, not in the
earlier search tree

(¢)2000-2002 SNU CSE Biointelligence Lab

Figure 9.4 Search Graphs and Trees Produced by a Search Procedure

(¢)2000-2002 SNU CSE Biointelligence Lab 14

9.2.1 Algorithm A™ (Cont’d)

e A* that maintains the search graph

.

Create a search graph, G, consisting solely of the start node, 7,
- put n, on a list OPEN

Create a list CLOSED: initially empty

. If OPEN is empty, exit with failure

Select the first node on OPEN - remove it from OPEN - put
it on CLOSED: node n

. If n1s a goal node, exit successfully: obtain solution by tracing

a path along the pointers from n to n,in G

. Expand node n, generating the set, M, of its successors that are

not already ancestors of n in G =>install these members of M
as successors of n in G

(¢)2000-2002 SNU CSE Biointelligence Lab

9.2.1 Algorithm A™ (Cont’d)

7. Establish a pointer to n from each of those members of M that
were not already in G = add these members of M to OPEN

—> for each member, m, redirect its pointer to # if the best path
to m found so far is through n = for each member of M
already on CLOSED, redirect the pointers of each of its
descendants in G

8. Reorder the list OPEN i1n order of increasing [l values
9. Go to step 3

¢ Redirecting pointers of descendants of nodes
Save subsequent search effort

(¢)2000-2002 SNU CSE Biointelligence Lab

9.2.2 Admissibility of A”

e Conditions that guarantee A* always finds minimal cost
paths
¢ Each node in the graph has a finite number of successors

¢ All arcs in the graph have costs greater than some positive
amount &

¢ For all nodes in the search graph, ft(n) < h(n)
® Theorem 9.1

¢ Under the conditions on graphs and on g , and providing there
1s a path with finite cost from n, to a goal node, algorithm A* 1s
guaranteed to terminate with a minimal-cost path to a goal

(¢)2000-2002 SNU CSE Biointelligence Lab

9.2.2 Admissibility of A™ (Cont’d)

® [.emma 9.1

¢ At every step before termination of A*, there 1s always a node,
n* on OPEN with the following properties

n*1s on an optimal path to a goal
A* has found an optimal path to n*

N

J(n*)< f(ny)
¢ Proof : by mathematical induction

Base case

at the beginning of search, n, 1s on OPEN and on an optimal path to
the goal

A* has found this path
f(ny) < f(ny) because f(n,) = h(ny) < f(n,)

n,: n* of the lemma at this stage

(¢)2000-2002 SNU CSE Biointelligence Lab

9.2.2 Admissibility of A™ (Cont’d)

Induction step

— assume the conclusions of the lemma at the time m nodes have been

expanded (ZZEXY)

— prove the conclusions true at the time m+1 nodes have been expanded

e Continuing the proof of the theorem
¢ A* must terminate

¢ A* terminates in an optimal path

® Admissible

¢ Algorithm that 1s guaranteed to find an optimal path to the goal
¢ With the 3 conditions of the theorem, A* 1s admissible

¢ Any Al function not overestimating % 1s admissible

(¢)2000-2002 SNU CSE Biointelligence Lab

9.2.2 Admissibility of A™ (Cont’d)

® Theorem 9.2

¢ If PZMis more informed than PN , then at the termination of
their searches on any graph having a path from n,to a goal
node every node expanded by is also expanded by

¢ expands at least as many nodes as does.
¢ 1s more efficient

o Figure 9.6
¢ : uniform-cost search
¢ HOBEYIOERE)] : breadth-first search
¢ uniform-cost/breadth-first search: admissible

(¢)2000-2002 SNU CSE Biointelligence Lab

Depth first
(LIFO ordering)

f = depth
(Breadth first)

h=0
(Uniform cost)

(Best-first search)

(Generic graph-search
algorithms)

Figure 9.6 Relationships Among Search Algorithm

(¢)2000-2002 SNU CSE Biointelligence Lab

9.2.3 The Consistency (or Monotone)
Condition

e Consistency condition
¢ n;1s a successor of n,
A h(n,)—h(n;)<cn;,n;)
¢ : cost of the arc from 7; to n,
¢ Rewriting

l;(nl.) < fz(nj)+c(ni,nj) };(nj) = };(ni)_c(ni’nj)

¢ A type of triangle inequality

h(n;) Figure 9.7

. The Consistency Condition
h(n;) < c(nj, ny) + h(ny)

(¢)2000-2002 SNU CSE Biointelligence Lab

9.2.3 The Consistency (or Monotone)
Condition (Cont’d)

¢ Implies that . values of the nodes are monotonically
nondecreasing as we move away from the start node

h(nj) = h(ni)_c(nianj)
h(n)+&(n,)=h(n)+gn,)—c(n,n,)

g\-(nj) = é(ni)_l_c(nianj)

¢ Consistency condition on J is often called the monotone
condition on [
¢ Theorem 9.3

If the consistency condition on /4 1s satisfied, then when A* expands
a node n, 1t has already found an optimal path to »

(¢)2000-2002 SNU CSE Biointelligence Lab

9.2.3 The Consistency (or Monotone)
Condition (Cont’d)

e Argument for the admissibility of A* under the consistency
condition

¢ Monotonicity of lfl : search expands outward along contours of
increasing ﬁ values

¢ The first goal node selected will be a goal node having a minimal

/(1) =(n,)
¢ The first goal node selected will be one having minimal

¢ Whenever a goal node, N, 1s selected for expansion, we have found
an optimal path to that goal node ([[{(BEF{EB])

¢ For any goal node, n

¢ The first goal node selected will be one for which the algorithm has
found an optimal path

(¢)2000-2002 SNU CSE Biointelligence Lab

9.2.4 Iterative-Deepening A°

® Breadth-first search

¢ Exponentially growing memory requirements

e [terative deepening search
¢ Memory grows linearly with the depth of the goal

¢ Parallel implementation of IDA*: further efficiencies gain

e IDA*
¢ Cost cut off in the first search: JIUNEIICOELIUCOELIUS,
¢ Depth-first search with backtracking
¢ If the search terminates at a goal node: minimal-cost path
¢ Otherwise

increase the cut-off value and start another search

The lowest gl values of the nodes visited (not expanded) in the
previous search 1s used as the new cut-off value in the next search
(¢)2000-2002 SNU CSE Biointelligence Lab 25

0.2.5 Recursive Best-First Search

e RBFS (recursive best-first search)
¢ uses slightly more memory than does IDA*

¢ generates fewer nodes than does IDA*

e Backing up value

¢ When a node 7 1s expanded, computes [j@l values of successors
of n and recomputes values of n and all of n’s ancestors

® Process of backing up
¢ Backed-up Value, , of node m with successors

S (m) =min f (m,)

(¢)2000-2002 SNU CSE Biointelligence Lab

0.2.5 Recursive Best-First Search
(Cont’d)

® Description

¢ One of successors of node 7 has the smallest over all OPEN
nodes, 1t 1s expanded 1n turn, and so on.

¢ When other OPEN node, n’, (not a successor of »n) has the lowest

value of

backtracks to the lowest common ancestor, node &

k,: successor of node k on the path to »n

RBFS removes the subtree rooted at k,, from OPEN

k, becomes an OPEN node with B8l value (its backed-up value) i
Search continues below that OPEN node with the lowest value of i

(¢)2000-2002 SNU CSE Biointelligence Lab

Start node Backed-up / values

\ A}

(a) RBFS has just expanded node n (b) / values have been backed up, the
but has not yet backed up the f values subtree below £, has been discarded,
of its successors and search continues below n’

Figure 9.9 Recursive Best-First Search

(¢)2000-2002 SNU CSE Biointelligence Lab

0.3 Heuristic Functions and Search
Efficiency

e Sclection of heuristic function
¢ Crucial for the efficiency of A*
;
assures admissibility
Uniform-cost search = inefficient

¢ = the highest possible lower bound on /
maintains admissibility

expands the fewest nodes

e Using relaxed model

¢ P} functions are always admissible

(¢)2000-2002 SNU CSE Biointelligence Lab

9.3 Heuristic Functions and Search
Efficiency (Cont’d)

® Selecting J] function
¢ must consider the amount of effort involved in calculating it
¢ Less relaxed model: better heuristic function (difficult in calculating)

¢ Trade off between the benefits gained by an accurate] and the
cost of computing it

e Using P instead of the lower bound of /

¢ increases efficiency at the expense of admissibility

. : easlier to compute

e Modifying the relative Weifhts of i and I 1n the evaluation

function
¢ Large values of w: overemphasize the heuristic component

¢ Very small values of w: give the search a predominantly breadth-first

character
(¢)2000-2002 SNU CSE Biointelligence Lab 30

9.3 Heuristic Functions and Search
Efficiency (Cont’d)

e Simultaneous searches from both the start and a goal node

¢ Breadth-first search
search frontiers meet between start and goal
guaranteed to find an optimal path
¢ Heuristic search
Two search frontiers might not meet to produce an optimal path

e Effective branching factor
¢ describes how sharply a search process 1s focused toward a goal

¢ B = the number of successors of each node in the tree having the
following properties
Nonleaf node has the same number (B) of successors
Leaf nodes are all of depth d B+B>+ +BY=N
Total number of nodes is N

(B -1)B N

(B-1)

(¢)2000-2002 SNU CSE Biointelligt

(a) Breadth-first search

(b) Heuristic search

Figure 9.10 Bidirectional Searches
(¢)2000-2002 SNU CSE Biointelligence Lab

VT T]
I/

\

(¢)2000-2002 SNU CSE Biointelligence Lab

B(Bd — 1)

1,000

Figure 9.11 B Versus N for Various Values of d

0.3 Heuristic Functions and Search
Efficiency (Cont’d)

e 3 important factors influencing the efficiency of algorithm A*
¢ The cost (or length) of the path found
¢ The number of nodes expanded 1n finding the path

¢ The computational effort required to compute

e Time complexity: O(n)
¢ Breadth-first search: O(B9)
¢ Uniform-cost search (): O(BY<)
C: cost of an optimal solution
c: cost of the least costly arc

(¢)2000-2002 SNU CSE Biointelligence Lab

9.4 Additional Readings and
Discussion

(¢)2000-2002 SNU CSE Biointelligence Lab

