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13.1 Using Constraints on Feature 13.1 Using Constraints on Feature 
ValuesValues
l Description and Simulation

t Description
§ Binary-valued features on what is true about the world and 

what is not true
§ easy to communicate
§ In cases where the values of some features cannot be sensed 

directly, their values can be inferred from the values of other 
features

t Simulation
§ Iconic representation
§ more direct and more efficient
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l Difficult or impossible environment to represent iconically
t General laws, such as “all blue boxes are pushable”
t Negative information, such as “block A is not on the floor” 

(without saying where block A is)
t Uncertain information, such as “either block A is on block B or 

block A is on block C”
l Some of this difficult-to-represent information can be 

formulated as constraints on the values of features
t These constraints can be used to infer the values of features that 

cannot be sensed directly.
l Reasoning

t inferring information about an agent’s personal state

13.1 Using Constraints on Feature 13.1 Using Constraints on Feature 
Values (Cont’d)Values (Cont’d)
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l Applications involving reasoning
t Reasoning can enhance the effectiveness of agents
t To diagnose malfunction in various physical systems

§ represent the functioning of the systems by appropriate set of 
features

§ Constraints among features encode physical laws relevant to 
the organism or device.

§ features associated with “causes” can be inferred from features 
associated with “symptoms,”

§ Expert Systems
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l Motivating Example
t Consider a robot that is able to life a block, if that block is 

liftable and the robot’s battery power source is adequate
t If both are satisfied, then when the robot tries to life a 

block it is holding, its arm moves.
§ x1 (BAT_OK)
§ x2 (LIFTABLE)
§ x3 (MOVES)

t constraint in the language of the propositional calculus
BAT_OK Ù LIFTABLE É MOVES
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l Logic involves
t A language (with a syntax)
t Inference rule
t Semantics for associating elements of the language with 

elements of some subject matter
l Two logical languages

t propositional calculus
t first-order predicate calculus (FOPC)
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13.2 The Language13.2 The Language

l Elements
t Atoms

§ two distinguished atoms T and F and the countably infinite set of 
those strings of characters that begin with a capital letter, for 
example, P, Q, R, …, P1, P2, ON_A_B, and so on.

t Connectives
§ Ú, Ù, É, and Ø, called “or”, “and”, “implies”, and “not”, 

respectively.
t Syntax of well-formed formula (wff), also called sentences

§ Any atom is a wff.
§ If w1 and w2 are wffs, so are w1 Ú w2, w1 Ù w2, w1 É w2, Ø w1.
§ There are no other wffs.
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13.2 The Language (Cont’d)13.2 The Language (Cont’d)

l Literal
t atoms and a Ø sign in front of them

l Antecedent and Consequent
t In w1 É w2, w1 is called the antecedent of the implication.
t w2 is called the consequent of the implication.

l Extra-linguistic separators, ( and )
t group wffs into (sub) wffs according to the recursive 

definitions.
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13.3 Rule of Inference13.3 Rule of Inference
l Ways by which additional wffs can be produced from other ones
l Commonly used rules

t modus ponens: wff w2 can be inferred from the wffs w1 and w1
É w2

t Ù introduction: wff w1 Ù w2 can be inferred from the two wffs 
w1 and w2

t commutativity Ù: wff w2 Ù w1 can be inferred from the wff w1
Ù w2

t Ù elimination: wff w1 can be inferred from the w1 Ù w2

t Ú introduction: wff w1 Ú w2 can be inferred from either from 
the single wff w1 or from the single wff w2

t Ø elimination: wff w1 can be inferred from the wff Ø (Ø w1 ).
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13.4 Definitions of Proof13.4 Definitions of Proof

l Proof
t The sequence of wffs {w1, w2, …, wn} is called a proof of wn

from a set of wffs D iff each wi is either in D or can be 
inferred from a wff earlier in the sequence by using one of the 
rules of inference.

l Theorem
t If there is a proof of wn from D, wn is a theorem of the set D.

§ Dㅏ wn

t Denote the set of inference rules by the letter R.
§ wn can be proved from D
§ DㅏR wn
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ExampleExample
l Given a set, D, of wffs: {P, R, P É Q}, {P, P É Q, 

Q, R, Q Ù R} is a proof of Q Ù R.
l The concept of proof can be based on a partial 

order.
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Figure 13.1 A Sample 
Proof Tree



13.5 Semantics13.5 Semantics

l Semantics
t Has to do with associating elements of a logical 

language with elements of a domain of discourse.
t Meaning

§ Such association

l Interpretation
t An association of atoms with propositions
t Denotation

§ In a given interpretation, the proposition associated with an 
atom
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13.5 Semantics (Cont’d)13.5 Semantics (Cont’d)

l Under a given interpretation, atoms have values –
True or False.

l Special Atom
t T : always has value True
t F : always has value False

l An interpretation by assigning values directly to 
the atoms in a language can be specified –
regardless of which proposition about the world 
each atom denotes.
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Propositional Truth Table Propositional Truth Table 

l Given the values of atoms under some interpretation, 
use a truth table to compute a value for any wff under 
that same interpretation.

l Let w1 and w2 be wffs.
t (w1 Ù w2) has True if both w1 and w2 have value True.
t (w1 Ú w2) has True if one or both w1 or w2 have value True.
t Ø w1 has value True if w1 has value False.
t The semantics of É is defined in terms of Ú and Ø.

Specifically, (w1 É w2) is an alternative and equivalent form of 
(Ø w1 Ú w2) .
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Propositional Truth Table (Cont’d)Propositional Truth Table (Cont’d)

l If an agent describes its world using n features and these 
features are represented in the agent’s model of the 
world by a corresponding set of n atoms, then there are 
2n different ways its world can be.

l Given values for the n atoms, the agent can use the truth 
table to find the values of any wffs.

l Suppose the values of wffs in a set of wffs are given.
t Do those values induce a unique interpretation?
t Usually “No.”
t Instead, there may be many interpretations that give each wff 

in a set of wffs the value True .
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SatisfiabilitySatisfiability

l An interpretation satisfies a wff if the wff is 
assigned the value True under that interpretation.

l Model
t An interpretation that satisfies a wff
t In general, the more wffs that describe the world, the 

fewer models.
l Inconsistent or Unsatisfiable

t When no interpretation satisfies a wff, the wff is 
inconsistent or unsatisfiable.

t e.g.  F or P Ù ØP
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ValidityValidity
l A wff is said to be valid

t It has value True under all interpretations of its 
constituent atoms.

t e.g.
§ P É P
§ T
§ Ø ( P Ù ØP )
§ Q Ú T
§ [(P É Q) É P] É P
§ P É (Q É P)

t Use of the truth table to determine the validity of a wff 
takes time exponential in the number of atoms
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t It has value True under all interpretations of its 

constituent atoms.
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EquivalenceEquivalence
l Two wffs are said to be equivalent iff their truth values 

are identical under all interpretations.
l DeMorgan’s laws

Ø(w1 Ú w2) º Øw1 Ù Ø w2

Ø(w1 Ù w2) º Øw1 Ú Ø w2

l Law of the contrapositive
(w1 É w2) º (Øw2 É Ø w1)

l If w1 and w2 are equivalent, then the following formula 
is valid:
(w1 É w2) Ù (w2 É w1)
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EntailmentEntailment

l If a wff w has value True under all of interpretations 
for which each of the wffs in a set D has value True, 
D logically entails w and w logically follows from D
and w is a logical consequence of D.

l e.g.
t {P}ㅑ P
t {P, P É Q} ㅑ Q
t F ㅑ w
t P Ù Qㅑ P
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13.6 Soundness and Completeness13.6 Soundness and Completeness

l If, for any set of wffs, D, and wff, w, DㅏR w implies D
ㅑ w, the set of inference rules, R, is sound.

l If, for any set of wffs, D, and wff, w, it is the case that 
whenever Dㅑ w, there exist a proof of w from D using 
the set of inference rules, we say that R is complete.

l When inference rules are sound and complete, we can 
determine whether one wff follows from a set of wffs 
by searching for a proof.
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13.6 Soundness and Completeness 13.6 Soundness and Completeness 
(Cont’d)(Cont’d)
l When the inference rules are sound, if we can find a 

proof of w from D, w logically follows from D.
l When the inference rules are complete, we will 

eventually be able to confirm that w follows from D
by using a complete search procedure to search for a 
proof.

l To determine whether or not a wff logically follows 
from a set of wffs or can be proved from a set of 
wffs is, in general, an NP-hard problem.
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13.7 The PSAT Problem13.7 The PSAT Problem
l Propositional satisfiability (PSAT) problem: The 

problem of finding a model for a formula.
l Clause

t A disjunction of literals
l Conjunctive Normal Form (CNF)

t A formula written as a conjunction of clauses
l An exhaustive procedure for solving the CNF 

PSAT problem is to try systematically all of the 
ways to assign True and False to the atoms in the 
formula.
t If there are n atoms in the formula, there are 2n different 

assignments.
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13.7 The PSAT Problem (Cont’d)13.7 The PSAT Problem (Cont’d)

l Interesting Special Cases
t 2SAT and 3SAT
t kSAT problem

§ To find a model for a conjunction of clauses, the longest of 
which contains exactly k literals

t 2SAT
§ Polynomial complexity

t 3SAT
§ NP-complete

t Many problems take only polynomial expected time.
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13.7 The PSAT Problem (Cont’d)13.7 The PSAT Problem (Cont’d)

l GSAT
t Nonexhaustive, greedy, hill-climbing type of search procedure
t Begin by selecting a random set of values for all of the atoms 

in the formula.
§ The number of clauses having value True under this interpretation is 

noted.
t Next, go through the list of atoms and calculate, for each one, 

the increase in the number of clauses whose values would be 
True if the value of that atom were to be changed.
§ Change the value of that atom giving the largest increase
§ Terminated after some fixed number of changes
§ May terminate at a local maximum
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13.8 Other Important Topics13.8 Other Important Topics
13.8.1 Language Distinctions13.8.1 Language Distinctions

l The propositional calculus is a formal language 
that an artificial agent uses to describe its world.

l Possibility of confusing the informal languages of 
mathematics and of English with the formal 
language of the propositional calculus itself.
t ㅏ of {P, P É Q} ㅏ Q

§ Not a symbol in the language of propositional 
calculus

§ A symbol in language used to talk about the 
propositional calculus
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13.8.2 Metatheorems13.8.2 Metatheorems

l Theorems about the propositional calculus
l Important Theorems

t Deductive theorem
§ If {w1, w2, …, wn}ㅑ w, (w1 Ù w2 Ù … Ù wn) É

w is valid.
t Reductio ad absurdum

§ If the set D has a model but D È {Øw} does not, 
then  Dㅑ w.
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13.8.3 Associative Laws and Distributive Laws13.8.3 Associative Laws and Distributive Laws

l Associative Laws
(w1 Ù w2) Ù w3 º w1 Ù ( w2 Ù w3)
(w1 Ú w2) Ù w3 º w1 Ú ( w2 Ú w3)

l Distributive Laws
w1 Ù (w2 Ú w3) º (w1 Ù w2 )Ú (w1 Ù w3)
w1 Ú (w2 Ù w3) º (w1 Ù w2 )Ú (w1 Ù w3)

(c) 2000-2002 SNU CSE Biointelligence Lab 28

l Associative Laws
(w1 Ù w2) Ù w3 º w1 Ù ( w2 Ù w3)
(w1 Ú w2) Ù w3 º w1 Ú ( w2 Ú w3)

l Distributive Laws
w1 Ù (w2 Ú w3) º (w1 Ù w2 )Ú (w1 Ù w3)
w1 Ú (w2 Ù w3) º (w1 Ù w2 )Ú (w1 Ù w3)


