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16.1 Unification16.1 Unification

l Assumptions
¨ Universal quantifications for all variables.
¨ Clause form.
¨

l If two clauses have matching but complementary literals, it is 
possible to resolve them
¨ Example:                                  ,
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16.1 Unification (Cont’d)16.1 Unification (Cont’d)

l Unification: A process that computes the appropriate 
substitution 

l Substitution instance of an expression is obtained by 
substituting terms for variables in that expression.
¨ Four substitution instances of                         are   

¨ The first instance is called an alphabetic variant.
¨ The last of the four different variables is called a ground instance (A 

ground term is a term that contains no variables).
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16.1 Unification (Cont’d)16.1 Unification (Cont’d)
l Any substitution can be represented by a set of ordered pairs

¨ The pair          means  that term       is substituted for every occurrence of 
the variable       throughout the scope of the substitution.

¨ No variables can be replaced by a term containing that same variable.
¨ The substitutions used earlier in obtaining the four instances of 

¨ ws denotes a substitution instance of an expression w, using  a 
substitution s. Thus,

¨ The composition s1 and s2 is denoted by s1s2, which is that substitution 
obtained by first applying s2 to the terms of s1 and then adding any pairs 
of s2 having variables not occurring among the variables of s1. Thus, 
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16.1 Unification (Cont’d)16.1 Unification (Cont’d)
l

¨ Let w be  P(x,y), s1 be {f(y)/x}, and s2 be {A/y} then, 
and 

¨ Substitutions are not, in general, commutative

l Unifiable:  a set of         expressions  is unifiable if there exists a 
substitution s such that
¨ unifies , to yield   
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16.1 Unification (Cont’d)16.1 Unification (Cont’d)
l MGU (Most General (or simplest) Unifier) g has the property that 

if s is any unifier of         yielding           , then there exists a 
substitution     such that . Furthermore, the common 
instance produced by a most general unifier is unique except for 
alphabetic variants.

l UNIFY 
¨ Can find the most general unifier of a finite set of unifiable expressions and 

that report failure when the set cannot be unified.
¨ Works on a set of list-structured expressions in which each literal and each 

term is written as a list.
¨ Basic to UNIFY is the idea of a disagreement set. The disagreement set of a 

nonempty set W of expressions is obtained by locating the first symbol at 
which not all the expressions in W have exactly the same symbol, and then 
extracting from each expression in W the subexpression that begins with the 
symbol occupying that position.
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16.2 Predicate16.2 Predicate--Calculus ResolutionCalculus Resolution

l are two clauses. Atom     in       and a literal          in     
such that      and     have a most general unifier,     , then these 
two clauses have a resolvent,     . The resolvent is obtained by 
applying the substitution      to the union of       and      , leaving 
out the complementary literals.

l Examples:
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16.3 Completeness and Soundness16.3 Completeness and Soundness

l Predicate-calculus resolution is sound
¨ If  r is the resolvent of two clauses f and  y, then {f, y}|= r

l Completeness of resolution
¨ It is impossible to infer by resolution alone all the formulas that are 

logically entailed by a given set.
¨ As in propositional resolution, this difficulty is surmounted by 

using resolution refutation. 
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16.4  Converting Arbitrary wffs to 16.4  Converting Arbitrary wffs to 
Clause FormClause Form
1. Eliminate implication signs.
2. Reduce scopes of negation signs.
3. Standardize variables

¨ Since variables within the scopes of quantifiers are like “dummy 
variables”, they can be renamed so that each quantifier has its own 
variable symbol.
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16.4  Converting Arbitrary wffs to 16.4  Converting Arbitrary wffs to 
Clause Form (Cont’d)Clause Form (Cont’d)
4. Eliminate existential quantifiers.

¨ Skolem function, Skolemization:

¨ Replace each occurrence of its existentially quantified variable 
by a Skolem function whose arguments are those universally 
quantified variables 

¨ Function symbols used in Skolem functions must be “new”.
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16.4  Converting Arbitrary wffs to 16.4  Converting Arbitrary wffs to 
Clause Form (Cont’d)Clause Form (Cont’d)
¨ Skolem function of no arguments

¨ Skolem form: To eliminate all of the existentially quantified variables 
from a wff, the proceding procedure on each subformula  is used in turn. 
Eliminating the existential quantifiers from a set of wffs produces what is 
called the Skolem form of the set of formulas.

¨ The skolem form of a wff is not equivalent to the original wff.
. What is true  is that a 

set of formulas, r is satisfiable if and only if the Skolem form of r is. 
Or more usefully for purpose of resolution refutations, r is unsatisfiable 
if and only if the Skolem form of r is unsatifiable.
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16.4  Converting Arbitrary wffs to 16.4  Converting Arbitrary wffs to 
Clause Form (Cont’d)Clause Form (Cont’d)

5. Convert to prenex form
¨ At this stage, there are no remaining existential quantifiers, and each 

universal quantifier has its own variable symbol. 
¨ A wff in prenex form consists of a string of quantifiers called a prefix 

followed by a quantifier-free formula called a matrix. The prenex form 
fof the example wff marked with an * earlier is 

6. Put the matrix in conjunctive normal form
¨ When the matrix of the preceding example wff is put in conjunctive 

normal form, it became 
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16.4  Converting Arbitrary wffs to 16.4  Converting Arbitrary wffs to 
Clause Form (Cont’d)Clause Form (Cont’d)

7. Eliminate universal quantifiers
¨ Assume that all variables in the matrix   are universally quantified.

8. Eliminate Ù symbols
¨ The explicit occurrence of Ù symbols may be eliminated by replacing 

expressions of the form               with the set of wffs . 
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16.4  Converting Arbitrary wffs to 16.4  Converting Arbitrary wffs to 
Clause Form (Cont’d)Clause Form (Cont’d)
9. Rename variables

¨ Variable symbols may be renamed so that no variable symbol 
appears in more than one clause . 
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l To prove wff w from D, proceed just as in the propositional 
calculus.

1. Negate w, 
2. Convert this negation to clause form, and 
3. Add it to the clause form of D. 

4. Then apply resolution until the empty clause is deduced. 

16.5 Using Resolution to Prove 16.5 Using Resolution to Prove 
TheoremTheorem
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16.5 Using Resolution to Prove 16.5 Using Resolution to Prove 
Theorem (Cont’d)Theorem (Cont’d)
l Problem: the package delivery robot. Suppose this 

robot knows that all of the packages in room 27 
are smaller than any of the ones in room 28.
1. 
2.
¨ Suppose that the robot knows the following: 
3. P(A)
4. P(B)
5. I(A,27)ÚI(A,28)   // package A is either in room 27 or in room 28 

(but not which)
6. I(B,27)     // package B is in room 27 
7. ØS(B,A)   // package B is not smaller than package A.
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Figure 16.1 A Resolution Refutation



16.6 Answer Extraction16.6 Answer Extraction
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16.7 The Equality Predicate16.7 The Equality Predicate
l The relation constants used in the formulas in a knowledge base 

usually have intended meanings, but these relations are 
circumscribed only by the set of models of the knowledge base 
and not at all by the particular symbols used for relation 
constants. The result of resolution refutations will be consistent 
with intended meanings only if the knowledge base suitably 
constrains the actual relations.

l Equality relation: Equals(A,B) or A=B
¨ Reflexive ("x)Equals(x,x)
¨ Symmetric ("x, y)[Equals(x, y)ÉEquals(y, x)]
¨ Transitive (" x, y, z)[Equals(x, y) Ù Equals(y, z) É Equals(x, z)]
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16.7 The Equality Predicate16.7 The Equality Predicate
l Paramodulation

¨ Equality-specific inference rule to be used in combination with resolution 
in cases where the knowledge base contains the equality predicate .

¨ g1, g2 are two clauses. If and , where t, 
a, b are terms, where g1` are clauses, and where  l(t) is a literal 
containing the term t, and if t and a have a most general unifier s, then 
infer the binary paramodulant of g1 and g2: where 
ls[(bs)] denotes the result of replacing a single occurrence of ts in ls by 
bs.

¨ Prove P(B) from P(A) and (A=B) 
< For a refutation-style proof, we must deduce the empty clause from the 

clauses ØP(B), P(A), and (A=B).
< Using paramodulation on the last two clauses, l(t) is P(A), t is A, a is A, and 
b is B. Since A (in the role of t) and A (in the role of a) unify trivially without 
a substitution, the binary paramodulation is P(B), which is the result of 
replacing an occurrence of t (that is A) with b (that is B). Resolving this 
paramodulant with ØP(B) yields the empty clause.
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¨ With a slight extension to the kinds of paramodulants allowed, it can be 
shown that paramodulation combined with resolution  refutation is 
complete for knowledge bases containing the equality predicate.

¨ For problem that do not require substituting equals for equals, the power 
of paramodulation is not needed. 

¨ If an external process is able to return a truth value for an equality 
predicate, we can replace that predicate by T or F as appropriate.  In 
resolution reputation, clauses containing the literal T can then be 
eliminated. The literal F in any clause can be eliminated.

¨ The problem of proving that if a package, say , A, is in a particular room, 
say, R1, then it cannot be in a different room, say, R2.
< Statements in knowledge base. 

("x, y, u, v)[In(x, u) Ù(u¹v)]ÉØIn(x, v), In(A, R1)
< In attempting to prove ØIn(A, R2). Converting the first formula into clause 

form yields  ØIn(x, u)Ú(u=v) Ú ØIn(x, v)
< The strategy postpones dealing with equality predicates until they contain only 

ground terms. Resolving the clause with the negation of the wff to be proved 
yields (R2=V) Ú ØIn(A, v).

< Resolving the result with the given wff In(A,R1) yields (R2=R1).
< If the knowledge base actually contains the wff Ø(R2=R1), then it produces 

the empty clause, completing the refutation.
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16.7 The Equality Predicate (Cont’d)16.7 The Equality Predicate (Cont’d)
l If the reasoning involves numbers, it might need an 

unmanageably large set of wffs. Instead of having all wffs 
explicitly in the knowledge base, it would be better to provide a 
routine that would be able to evaluate expressions of the form 
(a=b) for all (ground) a and b.

l Several other relations (greater than, less than…) and functions 
(plus, times, divides,…) could be evaluated directly rather than 
reasoned about with formulas.

l Evaluation of expressions is thus a powerful , efficiency-
enhancing tool in automated reasoning systems.
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Additional Readings and DiscussionAdditional Readings and Discussion

l Some people find the resolution inference rule nonintuitive 
and prefer so-called natural-deduction methods. These are 
called “natural” because inference is performed on 
sentences more or less “as is” without transformations into 
canonical forms.

l Predicate evaluation is an instance of a more general 
process called semantic attachment in which data structure 
and programs are associated with elements of the 
predicate-calculus language. Attached structures and 
procedures can then be used to evaluate expressions in the 
language in a way that corresponds to their intended 
interpretations.
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