

Introduction to Set Theory (§1.6)

- A *set* is a new type of structure, representing an *unordered* collection (group, plurality) of zero or more *distinct* (different) objects.
- Set theory deals with operations between, relations among, and statements about sets.
- Sets are ubiquitous in computer software systems.
- *All* of mathematics can be defined in terms of some form of set theory (using predicate logic).

Naïve set theory

- Basic premise: Any collection or class of objects (*elements*) that we can describe (by any means whatsoever) constitutes a set.
- But, the resulting theory turns out to be *logically inconsistent*!
 - This means, there exist naïve set theory propositions p such that you can prove that both p and $\neg p$ follow logically from the postulates of the theory!
 - ∴ The conjunction of the postulates is a contradiction!
 - This theory is fundamentally uninteresting, because any possible statement in it can be (very trivially) "proved" by contradiction!
- More sophisticated set theories fix this problem.

Module #3 - Sets

Basic notations for sets

- For sets, we'll use variables *S*, *T*, *U*, ...
- We can denote a set *S* in writing by listing all of its elements in curly braces:
 - {a, b, c} is the set of whatever 3 objects are denoted by a, b, c.
- Set builder notation: For any proposition P(x) over any universe of discourse, {x|P(x)} is the set of all x such that P(x).

Basic properties of sets

- Sets are inherently *unordered*:
 - No matter what objects a, b, and c denote,
 {a, b, c} = {a, c, b} = {b, a, c} =
 {b, c, a} = {c, a, b} = {c, b, a}.
- All elements are *distinct* (unequal); multiple listings make no difference!
 - If a=b, then $\{a, b, c\} = \{a, c\} = \{b, c\} = \{a, a, b, a, b, c, c, c, c\}.$

- This set contains at most 2 elements!

Definition of Set Equality

- Two sets are declared to be equal *if and only if* they contain <u>exactly the same</u> elements.
- In particular, it does not matter *how the set is defined or denoted*.
- For example: The set {1, 2, 3, 4} =
 {x | x is an integer where x>0 and x<5} =
 {x | x is a positive integer whose square
 is >0 and <25}

Infinite Sets

- Conceptually, sets may be *infinite* (*i.e.*, not *finite*, without end, unending).
- Symbols for some special infinite sets:
 N = {0, 1, 2, ...} The Natural numbers.
 Z = {..., -2, -1, 0, 1, 2, ...} The Zntegers.
 - **R** = The "**R**eal" numbers, such as 374.1828471929498181917281943125...
- Infinite sets come in different sizes! More on this after module #4 (functions).

Module #3 - Sets

Basic Set Relations: Member of

- $x \in S$ ("x is in S") is the proposition that object x is an *element* or *member* of set S.
 - $-e.g. \ 3 \in \mathbb{N}$, "a" $\in \{x \mid x \text{ is a letter of the alphabet}\}$
 - Can define set equality in terms of \in relation: $\forall S,T: S=T \leftrightarrow (\forall x: x \in S \leftrightarrow x \in T)$

"Two sets are equal iff they have all the same members."

• $x \notin S := \neg(x \in S)$ "*x* is not in *S*"

(c)2001-2003, Michael P. Frank

The Empty Set

- Ø ("null", "the empty set") is the unique set that contains no elements whatsoever.
- $\emptyset \{\} \{x/False\}$
- No matter the domain of discourse, we have the axiom $\neg \exists x: x \in \emptyset$.

Module #3 - Sets

Subset and Superset Relations

- $S \subseteq T$ ("*S* is a subset of *T*") means that every element of *S* is also an element of *T*.
- $S \subseteq T \Leftrightarrow \forall x \ (x \in S \rightarrow x \in T)$
- $\varnothing \subseteq S, S \subseteq S.$
- $S \supseteq T$ ("*S* is a superset of *T*") means $T \subseteq S$.
- Note $S = T \Leftrightarrow S \subseteq T \land S \supseteq T$.
- $S \not\subseteq T$ means $\neg(S \subseteq T)$, *i.e.* $\exists x (x \in S \land x \notin T)$

Sets Are Objects, Too!

- The objects that are elements of a set may *themselves* be sets.
- *E.g.* let $S \{x \mid x \subseteq \{1,2,3\}\}$ then $S = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$
- Note that $1 \neq \{1\} \neq \{\{1\}\} !!!!!$

2008-08-09

(c)2001-2003, Michael P. Frank

lerv

nrtant

Cardinality and Finiteness

- |*S*| (read "the *cardinality* of *S*") is a measure of how many different elements *S* has.
- *E.g.*, $|\emptyset| = 0$, $|\{1,2,3\}| = 3$, $|\{a,b\}| = 2$, $|\{\{1,2,3\},\{4,5\}\}| = 2$
- If $|S| \in \mathbb{N}$, then we say *S* is *finite*. Otherwise, we say *S* is *infinite*.
- What are some infinite sets we've seen?
 NJZR

The Power Set Operation

- The *power set* P(S) of a set S is the set of all subsets of S. $P(S) = \{x \mid x \subseteq S\}.$
- *E.g.* $P(\{a,b\}) = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}.$
- Sometimes P(S) is written 2^{S} . Note that for finite *S*, $|P(S)| = 2^{|S|}$.
- It turns out that |P(N)| > |N|.
 There are different sizes of infinite sets!

Review: Set Notations So Far

- Variable objects x, y, z; sets S, T, U.
- Literal set {a, b, c} and set-builder $\{x|P(x)\}$.
- \in relational operator, and the empty set \emptyset .
- Set relations =, \subseteq , \supseteq , \subset , \supset , $\not\subset$, etc.
- Venn diagrams.
- Cardinality |S| and infinite sets N, Z, R.
- Power sets P(S).

Naïve Set Theory is Inconsistent

- There are some naïve set *descriptions* that lead pathologically to structures that are not *well-defined*. (That do not have consistent properties.)
- These "sets" mathematically *cannot* exist.
- *E.g.* let $S = \{x \mid x \notin x\}$. Is $S \in S$?
- Therefore, consistent set theories must restrict the language that can be used to describe sets.
- For purposes of this class, don't worry about it!

Ordered *n*-tuples

- These are like sets, except that duplicates matter, and the order makes a difference.
- For $n \in \mathbb{N}$, an ordered *n*-tuple or a sequence of length *n* is written $(a_1, a_2, ..., a_n)$. The first element is a_1 , etc.
- Note $(1, 2) \neq (2, 1) \neq (2, 1, 1)$.
- Empty sequence, singlets, pairs, triples, quadruples, quin<u>tuples</u>, ..., *n*-tuples.

Cartesian Products of Sets

- For sets *A*, *B*, their *Cartesian product* $A \times B := \{(a, b) \mid a \in A \land b \in B \}.$
- *E.g.* $\{a,b\} \times \{1,2\} = \{(a,1),(a,2),(b,1),(b,2)\}$
- Note that for finite A, B, $|A \times B| = |A||B|$.
- Note that the Cartesian product is *not* commutative: $\neg \forall AB: A \times B = B \times A$.
- Extends to $A_1 \times A_2 \times \ldots \times A_n \ldots$

René Descartes (1596-1650)

(c)2001-2003, Michael P. Frank

Review of §1.6

- Sets S, T, U... Special sets N, Z, R.
- Set notations $\{a, b, ...\}, \{x | P(x)\}...$
- Set relation operators $x \in S$, $S \subseteq T$, $S \supseteq T$, S = T, $S \subset T$, $S \supset T$. (These form propositions.)
- Finite vs. infinite sets.
- Set operations |S|, P(S), $S \times T$.
- Next up: §1.5: More set ops: \cup , \cap , -.

Start §1.7: The Union Operator

- For sets A, B, their ∪ nion A∪B is the set containing all elements that are either in A, or ("√") in B (or, of course, in both).
- Formally, $\forall A, B: A \cup B = \{x \mid x \in A \lor x \in B\}$.
- Note that $A \cup B$ contains all the elements of *A* and it contains all the elements of *B*: $\forall A, B: (A \cup B \supseteq A) \land (A \cup B \supseteq B)$

Union Examples

• $\{a,b,c\} \cup \{2,3\} = \{a,b,c,2,3\}$ • $\{2,3,5\} \cup \{3,5,7\} = \{2,3,5,3,5,7\} = \{2,3,5,7\}$

Think "The <u>Uni</u>ted States of America includes every person who worked in <u>any</u> U.S. state last year." (This is how the IRS sees it...)

Module #3 - Sets

(c)2001-2003, Michael P. Frank

The Intersection Operator

- For sets *A*, *B*, their *intersection* $A \cap B$ is the set containing all elements that are simultaneously in *A* and (" \wedge ") in *B*.
- Formally, $\forall A, B: A \cap B \equiv \{x \mid x \in A \land x \in B\}$.
- Note that $A \cap B$ is a subset of A and it is a subset of B: $\forall A, B: (A \cap B \subseteq A) \land (A \cap B \subseteq B)$

Intersection Examples

- $\{a,b,c\} \cap \{2,3\} = \emptyset$
- $\{2,4,6\} \cap \{3,4,5\} = \{4\}$

Think "The <u>intersection</u> of University Ave. and W 13th St. is just that part of the road surface that lies on *both* streets."

Disjointedness

- Two sets *A*, *B* are called *disjoint* (*i.e.*, unjoined) iff their intersection is empty. $(A \cap B = \emptyset)$
- Example: the set of even integers is disjoint with the set of odd integers.

Help, I've been disjointed!

Module #3 - Sets

(c)2001-2003, Michael P. Frank

Set Difference

- For sets *A*, *B*, the *difference of A and B*, written *A*–*B*, is the set of all elements that are in *A* but not *B*.
- $A B := \{x \mid x \in A \land x \notin B\}$ = $\{x \mid \neg(x \in A \rightarrow x \in B)\}$
- Also called: The *complement of B with respect to A*.

Module #3 - Sets

Set Difference Examples

- $\{1,2,3,4,5,6\} \{2,3,5,7,9,11\} =$
- $\mathbf{Z} \mathbf{N} = \{\dots, -1, 0, 1, 2, \dots\} \{0, 1, \dots\}$ = $\{x \mid x \text{ is an integer but not a nat. } \#\}$ = $\{x \mid x \text{ is a negative integer}\}$ = $\{\dots, -3, -2, -1\}$

Set Complements

- The *universe of discourse* can itself be considered a set, call it *U*.
- When the context clearly defines *U*, we say that for any set *A*⊆*U*, the *complement* of *A*, written *A*, is the complement of *A* w.r.t. *U*, *i.e.*, it is *U*–*A*.

• *E.g.*, If *U*=**N**, $\{3,5\} = \{0,1,2,4,6,7,...\}$

Set Identities

- Identity: $A \cup \emptyset = A \quad A \cap U = A$
- Domination: $A \cup U = U$ $A \cap \emptyset = \emptyset$
- Idempotent: $A \cup A = A = A \cap A$
- Double complement: $\overline{(\overline{A})} = A$
- Commutative: $A \cup B = B \cup A$ $A \cap B = B \cap A$
- Associative: $A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$

Module #3 - Sets

DeMorgan's Law for Sets

• Exactly analogous to (and derivable from) DeMorgan's Law for propositions.

 $A \cup B = A \cap B$

 $\overline{A \cap B} = \overline{A} \cup \overline{B}$

2008-08-09

(c)2001-2003, Michael P. Frank

Proving Set Identities

To prove statements about sets, of the form $E_1 = E_2$ (where *E*s are set expressions), here are three useful techniques:

- Prove $E_1 \subseteq E_2$ and $E_2 \subseteq E_1$ separately.
- Use set builder notation & logical equivalences.
- Use a membership table.

Method 1: Mutual subsets

Example: Show $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

- Show $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.
 - Assume $x \in A \cap (B \cup C)$, & show $x \in (A \cap B) \cup (A \cap C)$.
 - We know that $x \in A$, and either $x \in B$ or $x \in C$.
 - Case 1: $x \in B$. Then $x \in A \cap B$, so $x \in (A \cap B) \cup (A \cap C)$.
 - Case 2: $x \in C$. Then $x \in A \cap C$, so $x \in (A \cap B) \cup (A \cap C)$.
 - − Therefore, $x \in (A \cap B) \cup (A \cap C)$.
 - Therefore, $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.
- Show $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$

Method 3: Membership Tables

- Just like truth tables for propositional logic.
- Columns for different set expressions.
- Rows for all combinations of memberships in constituent sets.
- Use "1" to indicate membership in the derived set, "0" for non-membership.
- Prove equivalence with identical columns.

Membership Table Exercise

Prove $(A \cup B) - C = (A - C) \cup (B - C)$.

Review of §1.6-1.7

- Sets S, T, U... Special sets N, Z, R.
- Set notations $\{a,b,...\}, \{x|P(x)\}...$
- Relations $x \in S$, $S \subseteq T$, $S \supseteq T$, S = T, $S \subset T$, $S \supset T$.
- Operations |S|, P(S), \times , \cup , \cap , -, \overline{S}
- Set equality proof techniques:
 - Mutual subsets.
 - Derivation using logical equivalences.

Generalized Unions & Intersections

Since union & intersection are commutative and associative, we can extend them from operating on *ordered pairs* of sets (*A*,*B*) to operating on sequences of sets (*A*₁,...,*A_n*), or even unordered *sets* of sets, X={*A* / *P*(*A*)}.

Generalized Union

- Binary union operator: $A \cup B$
- *n*-ary union:
 - $A \cup A_2 \cup \ldots \cup A_n :\equiv ((\ldots((A_1 \cup A_2) \cup \ldots) \cup A_n))$ (grouping & order is irrelevant)

• "Big U" notation:

• Or for infinite sets of sets:

A

 $A \in X$

Generalized Intersection

- Binary intersection operator: $A \cap B$
- *n*-ary intersection:
 - $A \cap A_2 \cap \ldots \cap A_n \equiv ((\ldots((A_1 \cap A_2) \cap \ldots) \cap A_n))$ (grouping & order is irrelevant)

• "Big Arch" notation: $\bigcap_{i=1}^{n} A_{i}$

• Or for infinite sets of sets:

 $A \in X$

Representations

- A frequent theme of this course will be methods of *representing* one discrete structure using another discrete structure of a different type.
- E.g., one can represent natural numbers as
 - Sets: $0:=\emptyset$, $1:=\{0\}$, $2:=\{0,1\}$, $3:=\{0,1,2\}$, ...
 - Bit strings: 0:=0, 1:=1, 2:=10, 3:=11, 4:=100, ...

Representing Sets with Bit Strings

For an enumerable u.d. *U* with ordering $\{x_1, x_2, ...\}$, represent a finite set $S \subseteq U$ as the finite bit string $B=b_1b_2...b_n$ where $\forall i: x_i \in S \leftrightarrow (i < n \land b_i = 1).$

E.g. U=N, $S=\{2,3,5,7,11\}$, B=001101010001.

In this representation, the set operators " \cup ", " \cap ", " $\stackrel{-}{}$ " are implemented directly by bitwise OR, AND, NOT!