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Introduction to Set Theory (§1.6)

2008-08-09

A set Is a new type of structure, representing an
unordered collection (group, plurality) of zero or
more distinct (different) objects.

Set theory deals with operations between, relations
among, and statements about sets.

Sets are ubiquitous in computer software systems.

All of mathematics can be defined in terms of
some form of set theory (using predicate logic).
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Nalve set theory

e Basic premise: Any collection or class of objects
(elements) that we can describe (by any means whatsoever)
constitutes a set.

 But, the resulting theory turns out to be logically
Inconsistent!

— This means, there exist naive set theory propositions p such that
you can prove that both p and —p follow logically from the
postulates of the theory!

— .. The conjunction of the postulates is a contradiction!

— This theory is fundamentally uninteresting, because any possible
statement in it can be (very trivially) “proved” by contradiction!

» More sophisticated set theories fix this problem.
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Basic notations for sets

e For sets, we’ll use variables S, T, U, ...

* \We can denote a set S in writing by listing
all of its elements in curly braces:

— {a, b, c} is the set of whatever 3 objects are
denoted by a, b, c.

 Set builder notation: For any proposition
P(x) over any universe of discourse,
{x|P(x)} is the set of all x such that P(x).
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Basic properties of sets

 Sets are inherently unordered:
— No matter what objects a, b, and ¢ denote,

{a,b,c}={a,c,b}={b,a c}=
{b, c,a} ={c, a, b} ={c, b, a}.

° A!I alnmnnfc are rhcfmr‘f lllnnmlnl\

I VIVITIVIIWWD UilJliilllwi \.1qu/,

multiple listings make no dlfference!

— If a=b, then {a, b, c} ={a,c} ={b, c} =
{a,a,b,a,Db,cc,c,c}

— This set contains at most 2 elements!
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Definition of Set Equality

e Two sets are declared to be equal if and only if
they contain exactly the same elements.

 |In particular, it does not matter how the set is
defined or denoted.

o Forexample: Theset {1, 2, 3,4} =
{x | x is an integer where x>0 and x<5 } =

{x | x Is a positive integer whose square
Is >0 and <25}
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Infinite Sets

e Conceptually, sets may be infinite (i.e., not
finite, without end, unending).

o Symbols for some special infinite sets:
N={0,1,2, ...} The Natural numbers.

2 1 N 1 9 1 Thnon Zn'l'annro
1.+ °4, -4, U, 4, 4, ...7 IIELI

R = The “Real” numbers, such as
374.1828471929498181917281943125...

e Infinite sets come in different sizes!

Cytlo.

More on this after module #4 (functions).
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Venn Diagrams
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Basic Set Relations: Member of

e xeS (“x 1sIn S”) Is the proposition that
object x Is an element or member of set S.
—e.g. 3eN, “a’e{x | xis a letter of the alphabet}

— Can define set equality In terms of < relation:
VS, T: S=T & (VX: xeS &> xeT)
“Two sets are equal Iff they have all the same
members.”

e XgS:=—(xeS) “xisnotinS”
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The Empty Set

o J (“null”, “the empty set”) Is the unigue set
that contains no elements whatsoever.

o U ={}={x|False}
 No matter the domain of discourse,
we have the axiom —3x; xe .

2008-08-09 = : (€)2001-2003; Michael P. Frank &



Module #3 -.Sets

Subset and Superset Relations

2008-08-09 =

ScT (“Sis asubset of T”) means that every
element of S is also an element of T.

ScT < VX (xeS — xeT)

DS, ScS.

SoT (“Sis asuperset of T”’) means TcS.
Note S=T < ScTA SoT.

S ¢ Tmeans —(ScT), 1.e. AX(xeS A xgT)
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Proper (Strict) Subsets & Supersets

o ScT (“S s a proper subset of T”’) means that
ScT but T.g58nilar for SoT.

Example:
{1,2}
{1,2,3}

Venn Diagram equivalent of ScT

2008-08-09 = ; (€)2001-2003; Michael P. Frank =




Module #3 -.Sets

Sets Are Objects, Too!

e The objects that are elements of a set may
themselves be sets.

e E.g.letS={x|x < {1,2,3}}
then S={J,
{1}, {2}, {3},
{12}, {1,3}, {2,3},
{1,2,3}}
 Notethat1 = {1} = {{1}} !l verv
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Cardinality and Finiteness

* |S| (read “the cardinality of S”’) is a measure
of how many different elements S has.

* E.9.,|9=0, {123} =3, Hab} =2
{{1,2,3}{45}} = 22

S|eN, then we say S Is finite.

nerwise, we say S Is infinite.

nat are some infinite sets we’ve seen?

NZ R
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The Power Set Operation

The power set P(S) of a set S Is the set of all
subsets of S. P(S) = {x | xcS}.

E.g. P({a,b}) = {<, {a}, {b}, {a,b}}.
Sometimes P(S) is written 25,

Note that for finite S, |P(S)| = 28!

It turns out that [P(N)| > |N].
There are different sizes of infinite sets!
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Review: Set Notations So Far

Variable objects x, y, z; sets S, T, U.

Literal set {a, b, c} and set-builder {x|P(x)}.
e relational operator, and the empty set &.
Set relations =, ¢, D, <, D, &, etc.

Venn diagrams.
Cardinality |S| and infinite sets N, Z, R.

o Power sets P(S).
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Nalve Set Theory Is Inconsistent

There are some naive set descriptions that lead
pathologically to structures that are not well-
defined. (That do not have consistent properties.)

These “sets” mathematically cannot exist.
E.g.letS={x|xgx}. IsSeS?

Therefore, consistent set theories must restrict the
language that can be used to describe sets.

For purposes of this class, don’t worry about it!

Bertrand Russell |8
. 1872-1970 |
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Ordered n-tuples

These are like sets, except that duplicates
matter, and the order makes a difference.

For neN, an ordered n-tuple or a sequence
of length n is written (a,, a,, ..., a,). The
first element is a,, etc.

Note (1,2) = (2, 1) # (2, 1, 1).

Empty sequence, singlets, pairs, triples,
quadruples, quintuples, ..., n-tuples.
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Cartesian Products of Sets

For sets A, B, their Cartesian product
AxB :={(a,b)|acA AbeB }.

E.g. {a,b}x{1,2} = {(a,1),(a,2),(b,1),(b,2)}
Note that for finite A, B, |AxB|=|A||B.

Note that the Cartesian product is not
commutative: —-VAB: AxB=BxA.

Extendsto A; x A, x ... x A,...

René Descartes
(¢)2001-2008, Michael P Frank . (1596-1650)




Module #3 -.Sets

Review of §1.6

Sets S, T, U... Special sets N, Z, R.
Set notations {a,b,...}, {X|P(X)}...

Set relation operators xeS, ScT, SoT, S=T,
ScT, SoT. (These form propositions.)

Finite vs. infinite sets.
Set operations |S|, P(S), SxT.
Next up: §1.5: More set ops: U, N, —.
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Start §1.7: The Union Operator

e For sets A, B, theircnion AUB s the set
containing all elements that are either in A,
or (*“v”) in B (or, of course, in both).

e Formally, VA,B: AUB = {x | xeA v xeB}.

e Note that AUB contains all the elements of
A and it contains all the elements of B:
VA, B: (AuUB o A) A (AUB o B)
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Union Examples

e {a,b,c}{2,3} ={ab,c2,3}

+ {2,3,5}0{3,5,7} = {2,35,3,5,7}

Think “The United
States of America
Includes every
person who worked
In any U.S. state last
year.” (This is how
the IRS sees it...)
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The Intersection Operator

e For sets A, B, their intersection AnB Is the
set containing all elements that are
simultaneously in A and (“A”) in B.

e Formally, VA,B: AnB={x | xeA A xeB}.

e Note that A~B isasubsetof Aand itis a

subset of B:
VA, B: (AnB < A) A (AnB < B)

2008-08-09 = : (€)2001-2003; Michael P. Frank &




Module #3 -.Sets

Intersection Examples

e {a,bc}{2,3}= ¢y
o {2,46}{3,4,5}=_{4}

Think “The
Intersection of
University Ave. and
W 13th St. is just
that part of the road
surface that lies on
both streets.”
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Disjointedness

Help, I’'ve
e Two sets A, B are called been

disjoint (i.e., unjoined) e
Iff their intersectionis ®/

empty. (AnB=Y)
o Example: the set of even ]

Integers is disjoint with
the set of odd integers.
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Inclusion-Exclusion Principle

. How manx element

. Exampl H Gl

C| |
¥S | s turneddins
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Set Difference

e For sets A, B, the difference of A and B,
written A—B, Is the set of all elements that
are in A but not B.

e A—B = {X|XxeA A XxegB}
={X|—=(xeA—>xeB) }
 Also called:
The complement of B with respect to A.
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Set Difference Examples

3,5,7,9,11} =

1012 .. 1-40,1,...}

= {X | x Is an integer but not a nat. #}
{x | X Is a negative integer}
{...,-3,-2,-1}
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Set Difference - Venn Diagram

e A-B Is what’s left after B
“takes a bite out of A”

Set
A-B

Set A Set B
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Set Complements

e The universe of discourse can itself be
considered a set, call it U.

e \When the context clearly defines U, we say
that for any set AcU, the complement of A,
written A, is the complement of A w.r.t. U,
l.e., It 1s U-A.

+ Eg., IfU=N, {35}={012,467,.}
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* An equivalent definition, when U is clear:

2008-08-09 (€)2001-2003; Michael Fank
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Set ldentities

Identity: A=A ANU=A
Domination: AuU=U ANG=J
Idempotent: AUA=A=ANA

Double complement: (A) = A
Commutative: AuB=BUA ANB=BNA

Associative: Au(BUC)=(AuB)uUC
AN(BNC)=(AnB)NC
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DeMorgan’s Law for Sets

o Exactly analogous to (and derivable from)
DeMorgan’s Law for propositions.

AUB=ANB
ANB=AUB
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Proving Set Identities

To prove statements about sets, of the form
E, = E, (where Es are set expressions), here
are three useful techniques:

* Prove E, c E, and E, c E, separately.

« Use set builder notation &
logical equivalences.

* Use a membership table.
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Method 1: Mutual subsets

Example: Show AN(BuUC)=(AnB)U(ANC).
e Show AN(BUC)c(ANB)U(ANC).
— Assume xe An(BUC), & show xe(ANB)U(ANC).

— We know that xeA, and either xeB or xeC.
e Case 1: xeB. Then xeAnB, so xe(AnB)U(ANC).
e Case 2: xeC. Then xeAnC , so xe(AnB)U(ANC).

— Therefore, xe (AnB)U(ANC).
— Therefore, An(BUC)c(ANB)U(ANC).

e Show (AnB)U(ANC) < An(BUC). ...
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Method 3: Membership Tables

o Just like truth tables for propositional logic.
» Columns for different set expressions.

 Rows for all combinations of memberships
In constituent sets.

e Use “1” to indicate membership in the
derived set, “0” for non-membership.

* Prove equivalence with identical columns.
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Membership Table Example

Prove (AUB)-B = A-B.

A B| AUB (AUB)-B

0 O\
0
1
1
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Membership Table Exercise

Prove (AuB)-C = (A-C)u(B-C).
AUB | (AUB)-C| A-C | B-C | (A-C)u(B—C)

>
o
O

PP FPRPOOO O

PP OOREFPL OO
R O RO OO
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Review of §1.6-1.7

Sets S, T, U... Special sets N, Z, R.

Set notations {a,b,...}, {X|P(X)}...
Relations xeS, ScT, SoT, S=T, ScT, SoT.
Operations |S|, P(S), x, U, N, —, S

Set equality proof techniques:

— Mutual subsets.
— Derivation using logical equivalences.
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Generalized Unions & Intersections

2008-08-09 =

Since union & Intersection are commutative
and assoclative, we can extend them from
operating on ordered pairs of sets (A,B) to

operating on sequences of sets (A,,...,A,), or

avan ||nnrr|nrnr| sets Nt cote
wVUOUIlD UlTiIWV1 L VUl UULU’

X={A[P(A)}.
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Generalized Union

e Binary union operator: AUB

e n-ary union:.
AUVAL. . UAL = ((. (AU A)ULLIUAY)

(grouping & order is irrelevant)
e “Big U” notation: OAi

1=1

e Or for infinite sets of sets: U A
AecX
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Generalized Intersection

« Binary intersection operator: ANB

e n-ary intersection:
ANAN...OA=((...((A;NA)N.)NAY)
(grouping & order iIs irrelevant)

e “Big Arch” notation: ﬂ A

« Or for infinite sets of sets (A
Ae X
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Representations

A frequent theme of this course will be
methods of representing one discrete

structure using another discrete structure of
a different type.

e E.g., one can represent natural numbers as

— Sets: 0:=0, 1.={0}, 2.={0,1}, 3:.={0,1,2}, ...
— Bit strings:
0:=0, 1:=1, 2:=10, 3:=11, 4:=100, ...
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Representing Sets with Bit Strings

For an enumerable u.d. U with ordering
{Xy, X5, ...}, represent a finite set ScU as
the finite bit string B=b,b,...b, where
Vi: X,€S <> (I<n A bi=1).

E.g. U=N, S={2,3,5,7,11}, B=001101010001.

In this representation, the set operators

U7, N7, are Implemented directly by
bitwise OR, AND, NOT!
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