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Introduction to Set Theory (§1.6)

•• A A setset is a new type of structure, representing an is a new type of structure, representing an 
d dd d ll i ( l li ) fll i ( l li ) funordered unordered collection (group, plurality) of zero or collection (group, plurality) of zero or 

more more distinct distinct (different) objects.(different) objects.
•• Set theory deals with operations between, relations Set theory deals with operations between, relations 

among, and statements about sets.among, and statements about sets.
•• Sets are ubiquitous in computer software systems.Sets are ubiquitous in computer software systems.
•• AllAll of mathematics can be defined in terms ofof mathematics can be defined in terms ofAllAll of mathematics can be defined in terms of of mathematics can be defined in terms of 

some form of set theory (using predicate logic).some form of set theory (using predicate logic).
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Naïve set theory
•• Basic premise: Any collection or class of objects Basic premise: Any collection or class of objects 

((elementselements) that we can describe (by any means whatsoever)) that we can describe (by any means whatsoever)((elementselements) that we can describe (by any means whatsoever) ) that we can describe (by any means whatsoever) 
constitutes a set.constitutes a set.

•• But, the resulting theory turns out to be But, the resulting theory turns out to be logically logically 
inconsistentinconsistent! ! 
–– This means, there exist naïve set theory propositions This means, there exist naïve set theory propositions pp such that such that 

you can prove that bothyou can prove that both pp andand ¬¬pp follow logically from thefollow logically from theyou can prove that both you can prove that both pp and and ¬¬pp follow logically from the follow logically from the 
postulates of the theory!postulates of the theory!

–– ∴∴ The conjunction of the postulates is a contradiction!The conjunction of the postulates is a contradiction!
This theory is fundamentally uninteresting because any possibleThis theory is fundamentally uninteresting because any possible–– This theory is fundamentally uninteresting, because any possible This theory is fundamentally uninteresting, because any possible 
statement in it can be (very trivially) “proved” by contradiction!statement in it can be (very trivially) “proved” by contradiction!

•• More sophisticated set theories fix this problem.More sophisticated set theories fix this problem.
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Basic notations for sets

•• For sets, we’ll use variables For sets, we’ll use variables SS, , TT, , UU, … , … 
•• We can denote a set We can denote a set SS in writing by listing in writing by listing 

all of its elements in curly braces: all of its elements in curly braces: yy
–– {a, b, c} is the set of whatever 3 objects are {a, b, c} is the set of whatever 3 objects are 

denoted by a, b, c.denoted by a, b, c.yy
•• SetSet builder notationbuilder notation: For any proposition : For any proposition 

PP((xx) over any universe of discourse,) over any universe of discourse,PP((xx) over any universe of discourse, ) over any universe of discourse, 
{{xx||PP((xx)} is )} is the set of all x such that P(x).the set of all x such that P(x).
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Basic properties of sets

•• Sets are inherently Sets are inherently unorderedunordered::
–– No matter what objects a, b, and c denote, No matter what objects a, b, and c denote, 

{a, b, c} = {a, c, b} = {b, a, c} ={a, b, c} = {a, c, b} = {b, a, c} ={ , , } { , , } { , , }{ , , } { , , } { , , }
{b, c, a} = {c, a, b} = {c, b, a}.{b, c, a} = {c, a, b} = {c, b, a}.

•• All elements areAll elements are distinctdistinct (unequal);(unequal);All elements are All elements are distinctdistinct (unequal);(unequal);
multiple listings make no difference!multiple listings make no difference!

f b h { b } { } {b }f b h { b } { } {b }–– If a=b, then {a, b, c} = {a, c} = {b, c} = If a=b, then {a, b, c} = {a, c} = {b, c} = 
{a, a, b, a, b, c, c, c, c}. {a, a, b, a, b, c, c, c, c}. 
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Definition of Set Equality

•• Two sets are declared to be equal Two sets are declared to be equal if and only ifif and only if
h ih i l hl h llthey contain they contain exactly the sameexactly the same elements.elements.

•• In particular, it does not matter In particular, it does not matter how the set is how the set is 
defined or denoted.defined or denoted.

•• For example: The set {1, 2, 3, 4} = For example: The set {1, 2, 3, 4} = p { , , , }p { , , , }
{{xx | | xx is an integer where is an integer where xx>0 and >0 and xx<5 } = <5 } = 
{{xx | | xx is a positive integer whose squareis a positive integer whose square{{ || p g qp g q

is  >0 and <25}is  >0 and <25}
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Infinite Sets

•• Conceptually, sets may be Conceptually, sets may be infiniteinfinite ((i.e., i.e., not not 
finitefinite, without end, unending)., without end, unending).

•• Symbols for some special infinite sets:Symbols for some special infinite sets:Symbols for some special infinite sets:Symbols for some special infinite sets:
NN = {0, 1, 2, …}    The = {0, 1, 2, …}    The NNatural numbers.atural numbers.
ZZ = {= { 22 1 0 1 2 } The1 0 1 2 } The ZZntegersntegersZZ = {…, = {…, --2, 2, --1, 0, 1, 2, …}  The 1, 0, 1, 2, …}  The ZZntegers.ntegers.
RR = The “= The “RReal” numbers, such as eal” numbers, such as 
374.1828471929498181917281943125…374.1828471929498181917281943125…

•• Infinite sets come in different sizes!Infinite sets come in different sizes!
2008-08-09 (c)2001-2003, Michael P. Frank 7

Infinite sets come in different sizes!Infinite sets come in different sizes!
More on this after module #4 (functions).



Module #3 - Sets

Venn Diagrams
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Basic Set Relations: Member of

•• xx∈∈S S (“(“xx is in is in SS”)”) is the proposition that is the proposition that 
object object xx is an is an ∈∈lementlement or or membermember of set of set SS..
–– e.g.e.g. 33∈∈NN,, “a”“a”∈∈{{xx || xx is a letter of the alphabet}is a letter of the alphabet}e.g.e.g. 33∈∈NN, , aa ∈∈{{x x | | xx is a letter of the alphabet}is a letter of the alphabet}
–– Can define set equality in terms of Can define set equality in terms of ∈∈ relation:relation:
∀∀SS TT:: SS==TT ↔↔ ((∀∀xx:: xx∈∈SS ↔↔ xx∈∈TT))∀∀SS,,TT: : SS==T T ↔↔ ((∀∀xx: : xx∈∈SS ↔↔ xx∈∈TT))
“Two sets are equal iff they have all the same “Two sets are equal iff they have all the same 
members ”members ”members.members.

•• xx∉∉S S ::≡≡ ¬¬((xx∈∈SS)      “)      “xx is not in is not in SS””
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The Empty Set

•• ∅∅ (“null”, “the empty set”) is the unique set (“null”, “the empty set”) is the unique set 
that contains no elements whatsoever.that contains no elements whatsoever.

•• ∅∅ = {} = {= {} = {x|x|FalseFalse}}∅∅  {}  { {}  {x|x|FalseFalse}}
•• No matter the domain of discourse,No matter the domain of discourse,

h h ih h i ∅∅we have the axiom we have the axiom ¬∃¬∃xx: : xx∈∅∈∅..
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Subset and Superset Relations

•• SS⊆⊆TT (“(“SS is a subset of is a subset of TT”) means that every ”) means that every 
element of element of SS is also an element of is also an element of TT..

•• SS⊆⊆TT ⇔⇔∀∀xx ((xx∈∈SS →→ xx∈∈TT))SS⊆⊆T T ⇔⇔∀∀x x ((xx∈∈SS →→ xx∈∈TT))
•• ∅⊆∅⊆SS, , SS⊆⊆S.S.
•• SS⊇⊇TT (“(“SS is a superset of is a superset of TT”) means ”) means TT⊆⊆SS..
•• NoteNote S=TS=T ⇔⇔ SS⊆⊆TT∧∧ SS⊇⊇TT•• Note Note S=TS=T ⇔⇔ SS⊆⊆TT∧∧ SS⊇⊇T.T.
•• means means ¬¬((SS⊆⊆TT), ), i.e.i.e. ∃∃xx((xx∈∈SS ∧∧ xx∉∉TT))TS /⊆
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Proper (Strict) Subsets & Supersets

•• SS⊂⊂T T (“(“SS is a proper subset of is a proper subset of TT”) means that ”) means that 
SS⊆⊆T T butbut .  .  Similar for Similar for SS⊃⊃T.T.ST /⊆

Example:
{1,2} ⊂
{1 2 3}

S
T

{1,2,3}

T
Venn Diagram equivalent of S⊂T
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Sets Are Objects, Too!

•• The objects that are elements of a set may The objects that are elements of a set may 
themselvesthemselves be sets.be sets.

•• E gE g letlet SS={={xx || xx ⊆⊆ {1 2 3}}{1 2 3}}E.g. E.g. let let SS {{x x | | x x ⊆⊆ {1,2,3}}{1,2,3}}
then then SS={={∅∅, , 

{1} {2} {3}{1} {2} {3}{1}, {2}, {3},{1}, {2}, {3},
{1,2}, {1,3}, {2,3},{1,2}, {1,3}, {2,3},
{1,2,3}}{1,2,3}}

•• Note that 1Note that 1 ≠≠ {1}{1} ≠≠ {{1}} !!!!{{1}} !!!!
2008-08-09 (c)2001-2003, Michael P. Frank 13
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Cardinality and Finiteness

•• ||SS| (read “the | (read “the cardinalitycardinality of of SS”) is a measure ”) is a measure 
of how many different elements of how many different elements SS has.has.

•• E gE g ||∅∅|=0 |{1 2 3}| = 3 |{a b}| = 2|=0 |{1 2 3}| = 3 |{a b}| = 2E.g.E.g., |, |∅∅| 0,    |{1,2,3}|  3,   |{a,b}|  2,| 0,    |{1,2,3}|  3,   |{a,b}|  2,
|{{1,2,3},{4,5}}| = ____|{{1,2,3},{4,5}}| = ____

f |f | || hh ii ff•• If |If |SS||∈∈NN, then we say , then we say SS is is finitefinite..
Otherwise, we say Otherwise, we say SS is is infiniteinfinite..

•• What are some infinite sets we’ve seen?What are some infinite sets we’ve seen?
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The Power Set Operation

•• The The power setpower set P(P(SS) of a set ) of a set SS is the set of all is the set of all 
subsets of subsets of SS.  P(.  P(SS) = {) = {x x | | xx⊆⊆SS}.}.

•• EE gg P({a b}) = {P({a b}) = {∅∅ {a} {b} {a b}}{a} {b} {a b}}EE..g.g. P({a,b})  {P({a,b})  {∅∅, {a}, {b}, {a,b}}., {a}, {b}, {a,b}}.
•• Sometimes P(Sometimes P(SS) is written ) is written 22SS..

h f fi ih f fi i | (| ( )|)| ||SS||Note that for finite Note that for finite SS,   |P(,   |P(SS)| = 2)| = 2||SS||..
•• It turns out that |P(It turns out that |P(NN)| > |)| > |NN|.|.It turns out that |P(It turns out that |P(NN)|  |)|  |NN|.|.

There are different sizes of infinite setsThere are different sizes of infinite sets!!
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Review: Set Notations So Far

•• VariableVariable objectsobjects xx,, yy,, zz;; setssets SS,, TT,, UU..
•• LiteralLiteral setset {a,{a, b,b, c}c} andand setset--builderbuilder {{xx||PP((xx)})}..
•• ∈∈ relationalrelational operatoroperator andand thethe emptyempty setset ∅∅•• ∈∈ relationalrelational operator,operator, andand thethe emptyempty setset ∅∅..
•• SetSet relationsrelations =,=, ⊆⊆,, ⊇⊇,, ⊂⊂,, ⊃⊃,, ⊄⊄,, etcetc..
•• Venn diagrams.Venn diagrams.

C di litC di lit ||SS|| dd i fi iti fi it tt NN ZZ RR•• CardinalityCardinality ||SS|| andand infiniteinfinite setssets NN,, ZZ,, RR..
•• PowerPower setssets P(P(SS))..
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Naïve Set Theory is Inconsistent
•• There are some naïve set There are some naïve set descriptionsdescriptions that lead that lead 

pathologically to structures that are notpathologically to structures that are not wellwell--pathologically to structures that are not pathologically to structures that are not wellwell--
defineddefined.  (That do not have consistent properties.).  (That do not have consistent properties.)

•• These “sets” mathematicallyThese “sets” mathematically cannotcannot existexist•• These “sets” mathematically These “sets” mathematically cannotcannot exist.exist.
•• E.g.E.g. let let S S = {= {x x | | xx∉∉xx }.  Is }.  Is SS∈∈SS??
•• Therefore, consistent set theories must restrict the Therefore, consistent set theories must restrict the 

language that can be used to describe sets.language that can be used to describe sets.
•• For purposes of this class, don’t worry about it!For purposes of this class, don’t worry about it!

2008-08-09 (c)2001-2003, Michael P. Frank 17

Bertrand Russell
1872-1970



Module #3 - Sets

Ordered n-tuples

•• These are like sets, except that duplicates These are like sets, except that duplicates 
matter, and the order makes a difference.matter, and the order makes a difference.

•• ForFor nn∈∈NN aann ordered nordered n--tupletuple or aor a sequencesequenceFor For nn∈∈NN, a, an n ordered nordered n tupletuple or a or a sequencesequence
ofof length nlength n is written (is written (aa11, , aa22, …, , …, aann). The ). The 
fi tfi t element iselement is ttfirstfirst element is element is aa11, , etc.etc.

•• Note (1, 2) Note (1, 2) ≠≠ (2, 1) (2, 1) ≠≠ (2, 1, 1).(2, 1, 1).
•• Empty sequence, singlets, pairs, triples, Empty sequence, singlets, pairs, triples, 

quadruples quinquadruples quintuplestuples nn tuplestuples
2008-08-09 (c)2001-2003, Michael P. Frank 18
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Cartesian Products of Sets

•• For sets For sets AA, , BB, their , their Cartesian productCartesian product
AA××B B ::≡≡ {({(aa, , bb) | ) | aa∈∈AA ∧∧ bb∈∈B B }.}.

•• E gE g {a b}{a b}××{1 2} = {(a 1) (a 2) (b 1) (b 2)}{1 2} = {(a 1) (a 2) (b 1) (b 2)}E.g.E.g. {a,b}{a,b}××{1,2}  {(a,1),(a,2),(b,1),(b,2)}{1,2}  {(a,1),(a,2),(b,1),(b,2)}
•• Note that for finite Note that for finite AA, , BB,   |,   |AA××BB|=||=|AA||||BB|.|.
•• Note that the Cartesian product is Note that the Cartesian product is notnot

commutative:commutative: ¬∀¬∀ABAB:: AA××B=BB=B××AA..commutative: commutative: ¬∀¬∀ABAB: : AA B BB B AA..
•• Extends to Extends to AA11 ×× AA22 ×× … … ×× AAnn......
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Review of §1.6

•• Sets Sets SS, , TT, , UU… Special sets … Special sets NN, , ZZ, , RR..
•• Set notations {a,b,...}, {Set notations {a,b,...}, {xx||PP((xx)}…)}…
•• Set relation operatorsSet relation operators xx∈∈SS SS⊆⊆TT SS⊇⊇TT SS==TT•• Set relation operators Set relation operators xx∈∈SS, , SS⊆⊆TT, , SS⊇⊇TT, , SS==TT, , 

SS⊂⊂TT, , SS⊃⊃TT.  (These form propositions.).  (These form propositions.)
•• Finite vs. infinite sets.Finite vs. infinite sets.
•• Set operations |Set operations |SS| P(| P(SS)) SS××TT•• Set operations |Set operations |SS|, P(|, P(SS), ), SS××T.T.
•• Next up: Next up: §§1.5: More set ops: 1.5: More set ops: ∪∪, , ∩∩, , −−..
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Start §1.7: The Union Operator

•• For sets For sets AA, , BB, their, their∪∪ nionnion AA∪∪BB is the set is the set 
containing all elements that are either in containing all elements that are either in AA, , 
oror (“(“∨∨”) ”) in in BB (or, of course, in both).(or, of course, in both).(( )) ( , , )( , , )

•• Formally, Formally, ∀∀AA,,BB:: AA∪∪BB = = {{x x | | xx∈∈AA ∨∨ xx∈∈BB}.}.
hh i ll h l fi ll h l f•• Note that Note that AA∪∪B B contains all the elements of contains all the elements of 

AA andand it contains all the elements of it contains all the elements of BB::
∀∀AA, , BB: : ((AA∪∪B B ⊇⊇ AA) ) ∧∧ ((AA∪∪B B ⊇⊇ BB))
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Union Examples

•• {a,b,c}{a,b,c}∪∪{2,3} = {a,b,c,2,3}{2,3} = {a,b,c,2,3}
•• {2,3,5}{2,3,5}∪∪{3,5,7}{3,5,7} = {= {2,3,52,3,5,,3,5,73,5,7} =} ={2,3,5,7} {2,3,5,7} 

Think “The United 
States of America 
incl des e erincludes every 
person who worked 
in any U.S. state lastin any U.S. state last 
year.” (This is how 
the IRS sees it...)
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The Intersection Operator

•• For sets For sets AA, , BB, their , their intersectionintersection AA∩∩BB is the is the 
set containing all elements that are set containing all elements that are 
simultaneously in simultaneously in A A andand (“(“∧∧”) ”) in in BB..yy (( ))

•• Formally, Formally, ∀∀AA,,BB:: AA∩∩BB≡≡{{x x | | xx∈∈AA ∧∧ xx∈∈BB}.}.
hh i b fi b f i ii i•• Note that Note that AA∩∩B B is a subset of is a subset of AA andand it is a it is a 

subset of subset of BB::
∀∀AA, , BB: : ((AA∩∩B B ⊆⊆ AA) ) ∧∧ ((AA∩∩B B ⊆⊆ BB))
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Intersection Examples

•• {a,b,c}{a,b,c}∩∩{2,3} = ___{2,3} = ___∅
•• {2,4,6}{2,4,6}∩∩{3,4,5}{3,4,5} = ______= ______{4}

Think “The 
intersection of 
Uni ersit A e andUniversity Ave. and 
W 13th St. is just 
that part of the roadthat part of the road 
surface that lies on 
both streets.”

2008-08-09 (c)2001-2003, Michael P. Frank 24



Module #3 - Sets

Disjointedness

•• Two sets Two sets AA, , BB are calledare called
Help, I’ve

been
disjointed!disjointdisjoint ((i.e.i.e., unjoined), unjoined)

iff their intersection isiff their intersection is

disjointed!

empty.  (empty.  (AA∩∩BB==∅∅))
•• Example: the set of evenExample: the set of even•• Example: the set of evenExample: the set of even

integers is disjoint withintegers is disjoint with
the set of odd integers.the set of odd integers.
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Inclusion-Exclusion Principle

•• How many elements are in How many elements are in AA∪∪BB??
||AA∪∪BB|| = |A| = |A| ++ |B| |B| −− ||AA∩∩BB||

•• Example: How many students are on ourExample: How many students are on ourExample: How many students are on our Example: How many students are on our 
class email list?  Consider set class email list?  Consider set E E == I I ∪∪ MM, , 
II {{ || turned in an information sheet}turned in an information sheet}II = {= {ss | | ss turned in an information sheet}turned in an information sheet}
MM = {= {ss | | s s sent the TAs their email address}sent the TAs their email address}

•• Some students did both!Some students did both!
||EE| =| = ||II∪∪MM|| = |I|= |I| ++ |M||M| −− ||II∩∩MM||
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Set Difference

•• For sets For sets AA, , BB, the , the differencedifference of A and Bof A and B, , 
written written AA−−BB, is the set of all elements that , is the set of all elements that 
are in are in AA but not but not BB..

•• A A −− B B ::≡≡ {{x x || xx∈∈A A ∧∧ xx∉∉BB}}
{{ || (( AA →→ BB )) }}== {{xx || ¬(¬( xx∈∈AA →→ xx∈∈BB )) }}

•• Also called: Also called: 
The The complementcomplement ofof BB with respect towith respect to AA..
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Set Difference Examples

•• {1,2,3,4,5,6} {1,2,3,4,5,6} −− {2,3,5,7,9,11} ={2,3,5,7,9,11} =
______________________

•• ZZ −− NN == {{ --1 0 1 2 }1 0 1 2 } −− {0 1 }{0 1 }
{1,4,6}

Z Z N N == {… , {… , 1, 0, 1, 2, … } 1, 0, 1, 2, … } {0, 1, … }{0, 1, … }
= {= {x x | | xx is an integer but not a nat. #}is an integer but not a nat. #}

{{ || is a negative integer}is a negative integer}= {= {xx || xx is a negative integer}is a negative integer}
= {… , = {… , --3, 3, --2, 2, --1}1}
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Set Difference - Venn Diagram

•• AA--BB is what’s left after is what’s left after BB
“takes a bite out of “takes a bite out of AA””

Chomp!
Set
A B

p

A−B

Set A Set B
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Set Complements

•• The The universe of discourseuniverse of discourse can itself be can itself be 
considered a set, call it considered a set, call it UU..

•• When the context clearly definesWhen the context clearly defines UU we saywe sayWhen the context clearly defines When the context clearly defines UU, we say , we say 
that for any set that for any set AA⊆⊆UU,, the the complementcomplement of of AA, , 
written is the complement ofwritten is the complement of AA w r tw r t UUAwritten    , is the complement of written    , is the complement of AA w.r.t. w.r.t. UU, , 
i.e.i.e.,, it is it is UU−−A.A.

A

•• E.g., E.g., If If UU==NN, , ,...}7,6,4,2,1,0{}5,3{ =
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More on Set Complements

•• An equivalent definition, when An equivalent definition, when UU is clear:is clear:

}|{ AxxA ∉=

A
A

A

U
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Set Identities

•• Identity:          Identity:          AA∪∅∪∅==AA AA∩∩UU==AA
•• Domination:   Domination:   AA∪∪U=U    AU=U    A∩∅∩∅==∅∅
•• Idempotent:Idempotent: AA∪∪AA == A =A = AA∩∩AA•• Idempotent:      Idempotent:      AA∪∪AA = = A =A = AA∩∩AA
•• Double complement: Double complement: AA =)(
•• Commutative:  Commutative:  AA∪∪B=B=BB∪∪A   A   AA∩∩B=B=BB∩∩AA

A i tiA i ti AA ((BB CC) () (AA BB)) CC

)(

•• Associative:    Associative:    AA∪∪((BB∪∪CC)=()=(AA∪∪BB))∪∪CC
AA∩∩((BB∩∩CC)=()=(AA∩∩BB))∩∩CC
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DeMorgan’s Law for Sets

•• Exactly analogous to (and derivable from) Exactly analogous to (and derivable from) 
DeMorgan’s Law for propositions.DeMorgan’s Law for propositions.

BABA ∩=∪

BABA ∪=∩
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Proving Set Identities

To prove statements about sets, of the form To prove statements about sets, of the form 
EE11 = = EE22 (where (where EEs are set expressions), here s are set expressions), here 
are three useful techniques:are three useful techniques:qq

•• Prove Prove EE11 ⊆⊆ EE22 andand EE22 ⊆⊆ EE11 separately.separately.
b ild ib ild i•• Use set builder notation & Use set builder notation & 

logical equivalences.logical equivalences.
•• Use a Use a membership tablemembership table..
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Method 1: Mutual subsets

Example: Show Example: Show AA∩∩((BB∪∪CC)=()=(AA∩∩BB))∪∪((AA∩∩CC).).
•• Show Show AA∩∩((BB∪∪CC))⊆⊆((AA∩∩BB))∪∪((AA∩∩CC).).

–– Assume Assume xx∈∈AA∩∩((BB∪∪CC), & show ), & show xx∈∈((AA∩∩BB))∪∪((AA∩∩CC).).
–– We know that We know that xx∈∈AA, and either , and either xx∈∈BB or or xx∈∈C.C.

•• Case 1: Case 1: xx∈∈BB.  Then .  Then xx∈∈AA∩∩BB, so , so xx∈∈((AA∩∩BB))∪∪((AA∩∩CC).).
•• Case 2: Case 2: xx∈∈C. C. Then Then xx∈∈AA∩∩C C , so , so xx∈∈((AA∩∩BB))∪∪((AA∩∩CC).).

–– Therefore, Therefore, xx∈∈((AA∩∩BB))∪∪((AA∩∩CC).).
–– Therefore, Therefore, AA∩∩((BB∪∪CC))⊆⊆((AA∩∩BB))∪∪((AA∩∩CC).).

•• Show (Show (AA∩∩BB))∪∪((AA∩∩CC) ) ⊆⊆ AA∩∩((BB∪∪CC). …). …
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Method 3: Membership Tables

•• Just like truth tables for propositional logic.Just like truth tables for propositional logic.
•• Columns for different set expressions.Columns for different set expressions.
•• Rows for all combinations of membershipsRows for all combinations of memberships•• Rows for all combinations of memberships Rows for all combinations of memberships 

in constituent sets.in constituent sets.
•• Use “1” to indicate membership in the Use “1” to indicate membership in the 

derived set, “0” for nonderived set, “0” for non--membership.membership.derived set, 0  for nonderived set, 0  for non membership.membership.
•• Prove equivalence with identical columns.Prove equivalence with identical columns.
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Membership Table Example

Prove (Prove (AA∪∪BB))−−B = AB = A−−BB..

AA BB AA∪∪BB ((AA∪∪BB))−−BB AA−−BB
0 0 0 0 0
0 1 1 0 00 1 1 0 0
1 0 1 1 1
1 1 1 0 0
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Membership Table Exercise

Prove (Prove (AA∪∪BB))−−CC = (= (AA−−CC))∪∪((BB−−CC).).
A B C AA∪∪BB ((AA∪∪BB))−−CC AA−−CC BB−−CC ((AA−−CC))∪∪((BB−−CC))
0 0 0
0 0 10 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 01 1 0
1 1 1
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Review of §1.6-1.7

•• Sets Sets SS, , TT, , UU… Special sets … Special sets NN, , ZZ, , RR..
•• Set notations {a,b,...}, {Set notations {a,b,...}, {xx||PP((xx)}…)}…
•• RelationsRelations xx∈∈SS SS⊆⊆TT SS⊇⊇TT SS==TT SS⊂⊂TT SS⊃⊃TT•• Relations Relations xx∈∈SS, , SS⊆⊆TT, , SS⊇⊇TT, , SS==TT, , SS⊂⊂TT, , SS⊃⊃TT.  .  
•• Operations |Operations |SS|, P(|, P(SS), ), ××, , ∪∪, , ∩∩, , −−, , S
•• Set equality proof techniques:Set equality proof techniques:

Mutual subsetsMutual subsets–– Mutual subsets.Mutual subsets.
–– Derivation using logical equivalences.Derivation using logical equivalences.
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Generalized Unions & Intersections

•• Since union & intersection are commutative Since union & intersection are commutative 
and associative, we can extend them from and associative, we can extend them from 
operating on operating on ordered pairsordered pairs of sets (of sets (AA,,BB) to ) to p gp g pp (( ,, ))
operating on sequences of sets (operating on sequences of sets (AA11,…,,…,AAnn), or ), or 
even unorderedeven unordered setssets of setsof setseven unordered even unordered setssets of sets,of sets,
XX={={A | PA | P((AA)}.)}.
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Generalized Union

•• Binary union operator: Binary union operator: AA∪∪BB
•• nn--ary union:ary union:

AA∪∪AA22∪∪ ∪∪AA ::≡≡ (( (((( ((AA11∪∪ AA22))∪∪ ))∪∪ AA ))AA∪∪AA22∪∪……∪∪AAnn ::≡≡ ((…((((…((AA11∪∪ AA22))∪∪…)…)∪∪ AAnn))
(grouping & order is irrelevant)(grouping & order is irrelevant)

i ii i n•• “Big U” notation:“Big U” notation: U
n

i
iA

1=

•• Or for infinite sets of sets:Or for infinite sets of sets:
i 1

U
XA

A
∈
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Generalized Intersection

•• Binary intersection operator: Binary intersection operator: AA∩∩BB
•• nn--ary intersection:ary intersection:

AA∩∩AA22∩∩ ∩∩AA ≡≡(( (((( ((AA11∩∩AA22))∩∩ ))∩∩AA ))AA∩∩AA22∩∩……∩∩AAnn≡≡((…((((…((AA11∩∩AA22))∩∩…)…)∩∩AAnn))
(grouping & order is irrelevant)(grouping & order is irrelevant)

i h ii h i n•• “Big Arch” notation:“Big Arch” notation: I
n

i
iA

1=

•• Or for infinite sets of sets:Or for infinite sets of sets:
i 1

I
XA

A
∈
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Representations

•• A frequent theme of this course will be A frequent theme of this course will be 
th d fth d f ii di tdi tmethods of methods of representingrepresenting one discrete one discrete 

structure using another discrete structure of structure using another discrete structure of 
diffdiffa different type.  a different type.  

•• E.g.E.g., one can represent natural numbers as, one can represent natural numbers asgg , p, p
–– Sets: Sets: 00::≡∅≡∅, , 11::≡≡{{00}, }, 22::≡≡{{00,,11}, }, 33::≡≡{{00,,11,,22}, …}, …
–– Bit strings:Bit strings:Bit strings: Bit strings: 

00::≡≡00, , 11::≡≡11, , 22::≡≡1010, , 33::≡≡1111, , 44::≡≡100100, …, …
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Representing Sets with Bit Strings

For an enumerable u.d. For an enumerable u.d. UU with ordering with ordering 
{{xx11, , xx22, …}, represent a finite set , …}, represent a finite set SS⊆⊆UU as as 
the finite bit string B=the finite bit string B=bb11bb22……bbnn wherewheregg 11 22 nn
∀∀ii:: xxii∈∈S S ↔↔ ((ii<<nn ∧∧ bbii=1).=1).

E gE g UU NN SS {2 3 5 7 11} B 001101010001{2 3 5 7 11} B 001101010001E.g. E.g. UU==NN,, S=S={2,3,5,7,11}, B=001101010001.{2,3,5,7,11}, B=001101010001.
In this representation, the set operatorsIn this representation, the set operators

““∪∪”, “”, “∩∩”, “”, “⎯⎯” are implemented directly by ” are implemented directly by 
bitwise OR, AND, NOT!bitwise OR, AND, NOT!
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