Module #4 - Functions Topic #∞ Module #4.5, Topic # ∞ : **Cardinality & Infinite Sets** Rosen 5th ed., last part of §3.2 ~10 slides, ½ lecture (c)2001-2003, Michael P. Frank 8/9/2008

Infinite Cardinalities (from §3.2)

- Using what we learned about *functions* in §1.8, it's possible to formally define cardinality for infinite sets.
- We show that infinite sets come in different *sizes* of infinite!
- This also gives us some interesting proof examples.

Cardinality: Formal Definition

- For any two (possibly infinite) sets A and B, we say that A and B have the same cardinality (written |A|=|B|) iff there exists a bijection (bijective function) from A to B.
- When A and B are finite, it is easy to see that such a function exists iff A and B have the same number of elements $n \in \mathbb{N}$.

Countable versus Uncountable

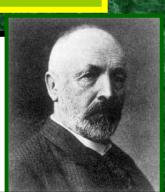
- For any set S, if S is finite or if $|S| = |\mathbf{N}|$, we say S is countable. Else, S is uncountable.
- Intuition behind "**countable**:" we can *enumerate* (generate in series) elements of *S* in such a way that *any* individual element of *S* will eventually be *counted* in the enumeration. Examples: **N**, **Z**.
- Uncountable: No series of elements of S (even an infinite series) can include all of S's elements. Examples: **R**, **R**², P(**N**)

Countable Sets: Examples

- **Theorem:** The set **Z** is countable.
 - **Proof:** Consider $f: \mathbb{Z} \to \mathbb{N}$ where f(i) = 2i for $i \ge 0$ and f(i) = -2i 1 for i < 0. Note f is bijective.
- **Theorem:** The set of all ordered pairs of natural numbers (n,m) is countable.
 - Consider listing the pairs in order by their sum s=n+m, then by n. Every pair appears once in this series; the generating function is bijective.

Uncountable Sets: Example

- **Theorem:** The open interval $[0,1) := \{r \in \mathbb{R} | 0 \le r < 1\}$ is uncountable.
- **Proof** by diagonalization: (Cantor, 1891)
 - Assume there is a series $\{r_i\} = r_1, r_2, ...$ containing *all* elements $r \in [0,1)$.
 - Consider listing the elements of $\{r_i\}$ in decimal notation (although any base will do) in order of increasing index: ... (continued on next slide)



Georg Cantor 1845-1918

Uncountability of Reals, cont'd

A postulated enumeration of the reals:

$$\begin{split} r_1 &= \ 0.d_{1,1} \, d_{1,2} \, d_{1,3} \, d_{1,4} \, d_{1,5} \, d_{1,6} \, d_{1,7} \, d_{1,8} \dots \\ r_2 &= \ 0.d_{2,1} \, d_{2,2} \, d_{2,3} \, d_{2,4} \, d_{2,5} \, d_{2,6} \, d_{2,7} \, d_{2,8} \dots \\ r_3 &= \ 0.d_{3,1} \, d_{3,2} \, d_{3,3} \, d_{3,4} \, d_{3,5} \, d_{3,6} \, d_{3,7} \, d_{3,8} \dots \\ r_4 &= \ 0.d_{4,1} \, d_{4,2} \, d_{4,3} \, d_{4,4} \, d_{4,5} \, d_{4,6} \, d_{4,7} \, d_{4,8} \dots \end{split}$$

- · Now, consider a real number generated by taking
- all digits $d_{i,i}$ that lie along the diagonal in this figure and replacing them with different digits.

That real goesn't appear in the list,

8/9/2008

)2001-2003, Michae P. La

Uncountability of Reals, fin.

• E.g., a postulated enumeration of the reals:

$$r_1 = 0.301948571...$$

$$r_2 = 0.103918481...$$

$$r_3 = 0.039194193...$$

$$r_4 = 0.918237461...$$

- OK, now let's add 1 to each of the diagonal digits (mod 10), that is changing 9's to 0.
- 0.4103... can't be on the list anywhere!

Transfinite Numbers

- The cardinalities of infinite sets are not natural numbers, but are special objects called *transfinite* cardinal numbers.
- The cardinality of the natural numbers, $\aleph_0:=|\mathbf{N}|$, is the *first transfinite cardinal* number. (There are none smaller.)
- The *continuum hypothesis* claims that $|\mathbf{R}| = \aleph_1$, the *second transfinite cardinal*

Do Uncountable Sets Really Exist?

- The set of objects that can be defined using finite-length strings of symbols ("descriptions") is only *countable*.
- Therefore, any uncountable set must consist primarily of elements which individually have *no* finite description.
- Löwenheim-Skolem theorem: No consistent theory can ever *force* an interpretation involving uncountables.
- The "constructivist school" asserts that only objects constructible from finite descriptions exist. ($e.g. \neg \exists \mathbf{R}$)
- Most mathematicians are happy to use uncountable sets anyway, because postulating their existence has not led to any demonstrated contradictions (so far).

Countable vs. Uncountable

- You should:
 - Know how to define "same cardinality" in the case of infinite sets.
 - Know the definitions of *countable* and *uncountable*.
 - Know how to prove (at least in easy cases) that sets are either countable or uncountable.