Development of a Microstructural Rapid Solidification Model for Additive Manufacturing Process

A.R.S.M. 03. 18. 2019

What is the Additive Manufacturing(AM)?

: a manufacturing process of making three dimensional solid objects by building up additives

Pros

- Lower costs of manufacturing (few additional process, no wastes)
- On-demand manufacturing
- A good option for making extremely complex parts
- Reliability

Cons

- Low productivity
- Limited materials (e.g. a few steels, Al, Ni, Ti alloys in the case of metal AM)
- Hard to predict mechanical properties (because of dependence of various manufacturing parameters)

 \rightarrow Solidification model is needed to predict the microstructure which directly decide the mechanical properties of the product

2

Foundry vs AM

Different morphology of the surface eroded during cavitation tests for AlSi10Mg alloy samples obtained through a) gravity casting and b) AM Item 3 of 4

3

Introduction

Characteristics of Solidification for AM

- Cooling rate : Conventional casting (~10³ K/s) vs. Rapid solidification (10³~10⁶ K/s)
- Dimension : layer thickness = 0.03 ~ 0.1 mm , particle size = 0.01 mm (avg)
- Manufacturing parameters : power, scanning rate, printing path > related to thermal history
- Key input variables for model : Alloy composition(C₀), Thermal gradient(G), Growth rate(V)
- Thermodynamic data, Diffusivity and interfacial energy are needed

<Commercial Software and databases>

1970' 1980' 1990'

6

Background

Thermodynamic database

Predictions of microstructure evolution : from solidification to annealing

- 1) Matrix composition distribution
- 2) Amount and chemistry of Secondary phases and precipitates

Key experiment & simulation code development

Various solidification models

An Integrated tool for microstructure prediction 9

As-cast microstructure

10

Some previous results

Solidification model: AZ31

Solidification model: Second phase fractions

High Temperature Thermochemistry Laboratory

13

Rapid Solidification: Departure from Equilibrium 14

VS

Slow vs Rapid or Equil'm vs Non-equil'm

Thermodynamics of solidification

Local thermodynamic equilibrium at S/L interface

Experimental evidences of non-equil'm

TABLE II. Comparison of distribution coefficients under equilibrium (k_0) and laser-annealed (k') regrowth conditions.

Dopant	(a) Tetrahedral covalent radius	(b)	k'	$\frac{k'}{k_{\rm o}}$
	(Å)	k_{o}		
As	1.18	0.3	1.0	3.3
Sb	1.36	0.023	0.7	30
Bi	1.46	0.0007	0.4	571
Ga	1.26	0.008	0.2	25
In	1.44	0.0004	0.15	375

White et al. Ion implantation followed by laser annealing of solutes in Si

Theories: Aziz's model for solute trapping

Laser melting experiments

Materials	$V_D (m/s)$
Si-As	0.46
Si-Ge	2.03
Si-Bi	32
Si-Sn	17
Si-Ge	22
Si-In	57
Si-Sb	0.64
Al-Sn	36
Al-In	38
Al-Ge	6.1
Al-Cu	6.7
Ni-Zr	26

 \mathcal{V}_d :Obtained by fitting solute profile with Aziz's model

- Chemical rate theory
- Flux balance at interface $k^{non-eqb} = \frac{k + v / v_d}{v / v_d + 1}$
 - v = solidification velocity $v_d = \frac{D}{\lambda} =$ diffusive velocity of a solute atom
 - k = equilibrium partition coefficient
 - No dependence on composition

Boettinger-Coriell-Sekerka 1984

- Turnbull's collision limited growth model
 The rate at which atoms attach on the
- The rate at which atoms attach on the solid phase is limited by the rate of collision with the solid phase

Composition

Theories: Aziz's model for solute trapping

* Some experimental evidences

TOF-SIMS analysis AA2199 alloy

Figure 6-7- TOF-SIMS depth profile revealing homogeneous solute (lithium and copper) distribution.

Phd Thesis Dave Heard, McGill 2013

Summary

Thank you for listening!

APPENDIX

Morphology

Kurz, Giovanola and Trivedi (KGT model)¹

Microsegregation

Solute balance

$$\int_{0}^{Xsi} C_{si} dx + \int_{Xsi}^{Xo} C_{li} dx = X_o C_{oi}$$

Coarsening² $X_o(t)^3 - X_o(0)^3 = \int_o^t M_i dt$

Local thermodynamic Equilib at solid/liquid interface. (TD database)

$$C_{si} = k_i C_{li}$$

¹Kurz W, Giovanola B, Trivedi R. Acta Metall. 1986:34:823

² Roosz et al. Mat. Sci. Tech. 1986:2:1149

Solidification modeling-diffusion in liquid phase

Solidification modeling-Morphology consideration

Solidification modeling-Morphology consideration

Columnar dendrite

Cellular

Length scale of the microsegregation calculation changes

Solidification model with diffusion (solid, liquid phases and morphology considerations)

Additive Manufacturing(AM)?

Equiaxed-to-columnar grain transition

Additive Manufacturing(AM)?

