Study to control characteristic temperature of

shape memory nanoparticles based on size dependency

Current Status of Structural Materials

2020. 04. 20

Ji Young Kim

E-mail: kzy94@snu.ac.kr

ESPark Research Group

Review : Size effect of nanoscale Shape memory alloys

Novel fabrication method of SMA nanoparticles

Mechanical behavior of fabricated SMA nanoparticles depending on size "Smaller is stronger" in crystalline materials

Brittle to ductile transition in Metallic Glasses

Sample size induced transition in deformation mode

: Shear band propagation \rightarrow homogeneous flow

Volkert et al., J. Appl. Phys. 103 (2008)

Shape Memory Alloys : Shape memory effect & Superelasticity

https://www.youtube.com/watch?v=wI-qAxKJoSU

One of important current research issues on SMA is

to change characteristic temperature and stress.

Thermally-induced phase transformation

Stress-induced phase transformation

Mf

As

0.05

0.06

0.07

0.04

Strain

D

P.K. Kumar and D.C. Lagoudas, « Introcutction of Shape Memory Alloys» (2008)

0.03

Previous approach to control the SMA properties : Alloy design

Control the phase stability (austenite)

- New approach : Abnormal behavior at the nanoscale
 - Surface area to volume ratio increases

 \therefore austenite over-stabilization : $\gamma_{auestenite} < \gamma_{martensite}$

As the sample size decreases, transformation temperatures decrease.

Austenite Martensite

W.S. Ko et al., Acta Materialia 123 (2017) 90-101

 \therefore 1. austenite over-stabilization : $\gamma_{auestenite} < \gamma_{martensite}$

2. Grain boundaries work as energy barrier

As the grain size decreases, transformation temperatures decrease.

Effect of sample size on phase transformation stress

As the sample size decreases, transformation stress increases.

Effect of grain size on phase transformation stress

As the grain size decreases, transformation stress increases.

Summary of SMA size effect

	Phase transformation temperature	Phase transformation stress
Sample size effect	Sample size 📕 PT temperature 🖊	Sample size 📕 PT stress 🕇
Grain size effect	Grain size 📕 PT temperature 🔶	Grain size 📕 PT stress 🕇

Shape memory alloy as second phase in composite materials : multiple stress

AI Matrix + Ni₄₃Co₇Mn₃₉Sn₁₁ SMA Particles

N.E. Bartam, I. Karaman, MSE A 751 (2019) 201-213.

Need to study size effect of isotropic polycrystalline SMA particles

Microstructure of Ni-Ti-Gd system

Select Ni₅₀Ti₂₅Gd₂₅ as precursor alloy

Selective dissolution from phase separated ribbon

► 0.1M nitric acid + Crushed ribbon → Ultra-sonication

Dealloyed particles have an average size distribution from 100nm to 1000nm.

Relation between grain size and particle diameter

Negligible of grain size effect

We focused only on the sample size effect of polycrystalline SMA nanoparticles.

Minglu Xia et al., Meterials Letters 211 (1018) 352-355

XRD of ribbon / dealloyed particle

 TEM diffraction pattern of dealloyed particle

- (Before dealloying) NiGd matrix + NiTi particles [B2]
- (After dealloying) NiTi particles [B2]

Compositional analysis

Tomogram of atomic configuration

STEM EDS mapping : Ni_{50.07}Ti_{49.66}Gd_{0.25}

Ni

Ti

Gd

J. Frenzel et al., Acta Materialia 58 (2010) 3444-3458.

Droplet phases with composition similar to targeted composition (Nitinol)

DSC result of dealloyed particles

Average composition of particles : $\mathrm{Ni}_{50.07}\mathrm{Ti}_{49.66}\mathrm{Gd}_{0.25}$ / B2 phase

In-situ compression test in SEM

Mechanical response of compression

Deformation stages during parallel plate compression

I : Elastic deformation of auestenite
II: Matensitic transformation
III: Elastic deformation of martensite
IV: Plastic deformation of martensite

Geometric relations in the three contact diameter models

J. W. Kim et al., submitted (2019).

Mechanical response of PS-SMA NP depending on size

Recoverable strain of PS-SMA NP depending on size

As sample size decreases > Higher recoverable strain at R.T.

MD Simulation : Mechanical behavior of PS-SMA NP depending on size

 $\epsilon = 8\%$ compression, Number of grains = 10

As sample size decreases > Higher recoverable strain

Loading : Critical stress of PS-SMA NP depending on size

Critical stress for MT (Π)

J.F. Gomez-Cortes et al., Nature nanotechnology 12 (2017) 790-796

Increase in critical stress for MT is not the cause of the difference of recoverable strain.

Smaller particles are better recovered.

Phase transformation temperature depending on size

As sample size decreases, the Af temperature decreases.

 \therefore austenite over-stabilization : $\gamma_{auestenite} < \gamma_{martensite}$

From the point where operating temperature is higher than Af, recoverable strain tends to decrease.

Summary

I. Novel Fabrication method of polycrystalline SMA nanoparticles

II. Size effect of PS-SMA nanoparticles

II. Findings of this study

- Experimental evidence of sample size effect on PT temperature for polycrystalline particles
- New approach to control the SMA properties: sample size control at the nanoscale

Thank you for your kind attention

Supplementary : Size effect of MG - Brittle to Ductile transition

Competition between deformation modes

Jang et al., Nat. Mater. 9 (2010)

For shear band formation, elastic strain energy (3D energy source) should be bigger than Surface energy (2D energy sink).

> Wang et al., Acta Mater. 60 (2012) 5370. Yabari et al., Phys. Rew. B 82 (2010) 172202.