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Melting and Crystallization are Thermodynamic Transitions

Chapter 1 Introduction of Solidification

4 Fold Anisotropic Surface Energy/2 Fold Kinetics, Many Seeds

Solidification:      Liquid Solid
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Thermodynamic Transitions: Δ G	=	0

1)	GL versus	GS

2)	Interfacial	free	energy
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1) Homogeneous Nucleation
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for spherical nuclei (isotropic) of radius : r



5

1) Homogeneous Nucleation

Fig. 4.2 The free energy change associated with 
homogeneous nucleation of a sphere of radius r.

r < r* : unstable (lower free E by reduce size)
r > r* : stable (lower free E by increase size)
r* : critical nucleus size

Why r* is not defined by Gr = 0?

r* dG=0

Unstable equilibrium
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mT
TLG 
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L : ΔH = HL – HS

(Latent heat)
T = Tm - ΔT

GL  =  HL – TSL

GS  =  HS – TSS

ΔG = Δ H -T ΔS ΔG =0= Δ H-TmΔS

ΔS=Δ H/Tm=L/Tm

ΔG =L-T(L/Tm)≈(LΔT)/Tm

(eq. 1.17)

2) Driving force for solidification

= Equilibrium between Solid and Liquid

1.8 Themodynamic Criteria for Equilibrium (at Tm)
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2) Driving force for solidification



Liquid Undercooled Liquid Solid

<Thermodynamic>

Solidification:    Liquid Solid

• Interfacial energy ΔTN

Tm 

Melting and Crystallization are Thermodynamic Transitions
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Although  nucleation  during  solidification  usually requires  
some  undercooling,  melting  invariably occurs at the equilibrium 
melting temperature even at  relatively  high  rates  of  heating.

Why?

SVLVSL  

In general, wetting angle = 0          No superheating required!

3) Nucleation of melting

(commonly)



Liquid Undercooled Liquid Solid

<Thermodynamic>

Solidification:    Liquid Solid

• Interfacial energy ΔTN

Melting:      Liquid Solid

• Interfacial energy

SVLVSL  

No superheating required! 

No ΔTN

Tm 

vapor

Melting and Crystallization are Thermodynamic Transitions

Incentive Homework 1: 
Example of Superheating (PPT 3 pages)
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2)	Change	of	interfacial	free	energy	→	Heterogeneous	Nucleation
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• Nucleation in Pure Metals
• Homogeneous Nucleation

• Heterogeneous Nucleation

• Nucleation of melting

* *
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Solidification:      Liquid Solid
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• Interfacial energy
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What is the meaning for the ΔT	(undercooling)

during solidification?
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How to obtain large undercooling during cooling?

By	dispersing	a	liquid	into	a	large	number	of	small	droplets	within	a	suitable	
medium,	the	catalytic	effects	of	active	nucleants may	be	restricted	to	a	small	
fraction	of	the	droplets	so	that	many	droplets	will	exhibit	extensive	undercooling.

John	H.	PEREPEZKO,	MSE,	65	(1984)	125‐135



15NANO STRUCTURED MATERIALS LAB.
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Trg 1/4 1/2 2/3

Rc =	1010 K/s

Rc =	106 K/s
Rc =	3x103 K/s
Rc =	3.5x101 K/s

TTT versus CCT
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How to classify thermodynamic transition?
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The First-Order Transitions 
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The Second Order Transition
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How to obtain kinetic transition?
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Cyclic	Cooling	Curves	of	Zr41.2Ti13.8Cu12.5Ni10Be22.5 (VIT	1)	



Glass	Formation	is	Controlled	by	Kinetics
• Glass-forming liquids are those that 

are able to “by-pass” the melting 
point, Tm

• Liquid may have a “high viscosity” 
that makes it difficult for atoms of 
the liquid to diffuse (rearrange) into 
the crystalline structure

• Liquid maybe cooled so fast that it 
does not have enough time to 
crystallize

• Two time scales are present
– (1)“Internal” time scale controlled 

by the viscosity (bonding) of the 
liquid for atom/molecule 
arrangement

– (2) “External” timescale controlled 
by the cooling rate of the liquid
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glass

Glass transition
(1) ≈ (2)
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Schematic of the glass transition showing the effects of 
temperature on the entropy, viscosity, specific heat, and 
free energy. Tx is the crystallization onset temperature.
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Melting and Crystallization are Thermodynamic Transitions

Chapter 1 Introduction of Solidification

Glass transition     is      kinetic Transitions



26

Endo.

Exo.
heating

Glass SCL crystal Liquid

Glass Supercooled
liquid

liquid

coolingTmTg

Tx

Tp

Ts TL

Glass transition
: Endo.

Crystallization
: Exo.

melting
: Endo.

C+L

< Thermal map >


