

신뢰도기반 교량설계기준의 기본이론 및 설계일반

1. 서론 - 신뢰도기반 설계기준 개발 배경

- ❖국제 건설시장의 개방, 설계기준의 국제표준화 가속
- ❖국내 교량기술의 국제 경쟁력 제고
- ❖국제표준체계(Global Standard)에 부합하는 설계기준의 필요
- ❖전 세계의 주요 설계기준들이 신뢰도 기반 설계기준으로 변환
 - Eurocode(1984), AISC(1986), OHBDC(1991), AASHTO(1998), ACI(1980, 2005) 등

신뢰도기반 설계기준 제정 사례

AASHTO LRFD(1994, 1998, 2004, 2008, 2012)

- ❖ 4가지 한계상태에 관한 설계방법 도입
- ❖ 신뢰도 분석을 통하여 구조물의 안전도가 균등하게 되도록 보정
- ❖ 교량공학에 축적된 새로운 기술 및 개념을 도입한 최신(State-of-the-art) 설계기준
 - ▶ 하중 및 저항 계수 개정
 - ▶ 활하중 모델 개정
 - 하중분배 계수 개정
 - ▶ 콘크리트 통합 설계
 - ▶ 피로설계 규정 개정

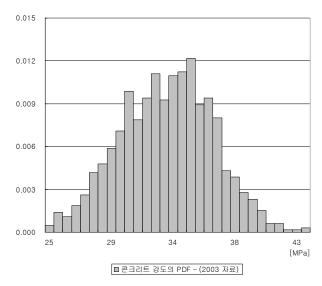
2. 신뢰도 이론

- ❖ 신뢰도이론은 확률 및 통계의 기본이론을 바탕으로 구조물의 계획, 설계, 시공 및 유지관리에 발생하는 불확실성(uncertainty)을 객관적인 방법으로 고려함으로써 합리적인 구조물의 신뢰도를 확보하고자 개발된 이론
- ❖ 신뢰도이론은 구조물의 설계뿐만 아니라 설계기준의 개발, 최적화, 기존 구조물의 평가 및 유지관리 등 다양한 분야에서 활용
- ❖ 국내에서도 교량설계핵심기술연구단의 연구결과를 중심으로 신뢰도기반 설계기준 작성(2012년)

신뢰도해석의 단계

- ❖ 1단계 : 각 변수의 불확실성을 하나의 값(특성값)으로 표현, 안전율과 유사
- ❖ 2단계 : 각 변수의 불확실성을 두 개의 값(대개 평균과 변동계수)으로 표현, 신뢰도는 신뢰도지수(β)로 표현
- ❖ 3단계 : 각 변수의 불확실성을 확률분포함수로 표현, 신뢰도는 파괴확률로 계산
- ❖ 4단계 : 각 변수들의 상호분포함수, 경제성 등을 고려, 파괴확률 계산
- ❖ 현재 가장 보편적으로 사용되는 것은 2단계 해석방법으로 한계상태를 나타내는 함수의 변수들의 평균과 변동계수(표준편차)를 이용하여 신뢰도지수를 계산

- ❖ 확률변수(Random Variable): 동일한 조건하에서 실행한 동일한 실험의 결과가 항상 동일한 값을 갖지 않고 대표 값을 중심으로 이산성을 나타내는 변수. 콘크리트압축강도, 강재의 항복강도, 차량의 차간간격 등
- ❖ 한계상태(Limit State): 구조물이 그 기능을 상실하는 파괴(failure)와 비파괴(안전)의 경계
- ❖ 신뢰도 지수(Reliability Index): 한계상태함수의 평균이 표준편차의 몇 배만큼의 거리인가를 나타내는 지수

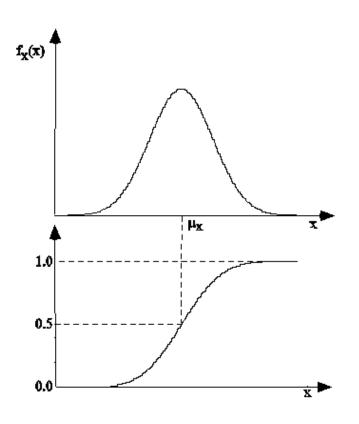


확률 변수(Random Variable)

변 수 명	공 칭 값	편심계수	변동계수		
콘크리트의 강도	27[MPa]	1.235	0.10		
유효 깊이	1920[mm]	1	0.025		
강재의 면적	3553.6[mm ²]	1	0.0125		

콘크리트 압축강도 실험용 공시체

콘크리트 압축강도(27MPa)의 PDF(N=1000)

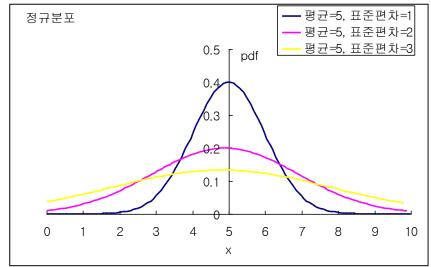


❖ 확률밀도함수

(Probability Density Function, PDF)

❖ 누적분포함수

(Cumulative Distribution Function, CDF)



❖ 평균, 표준편차

$$\mu_X = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 $\sigma_X = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \mu_X)^2}{n-1}}$

❖ 편심계수(bias factor), 변동계수(coefficient of variation)

$$\lambda = \frac{\mu_X}{X_n} \qquad V_X = \frac{\sigma_X}{\mu_X}$$

한계상태(Limit State)

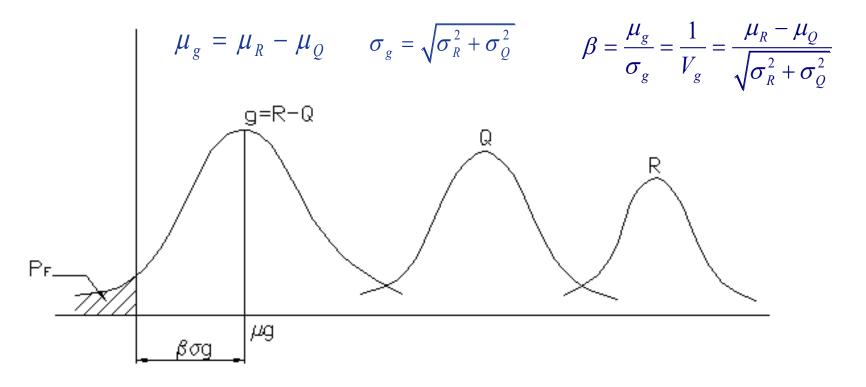
The LRFD code defines four limit states:

- Strength Limit States Ensure strength and stability, both local and global.
- Service Limit States Impose restrictions on stress, deformation, and crack opening.
- Fatigue and Fracture Limit States Limit the live load stress range under regular service conditions.
- Extreme Event Limit States Ensure the structural survival of a bridge during a major earthquake, vessel collision, scour, etc.

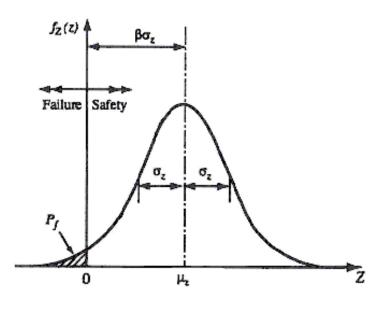
***** 한계상태함수 $g(X_1, X_2, \dots, X_n) = R - Q$

$$g > 0$$
 $R > Q$ 안전(safe)

$$g = 0$$
 $R = Q$ 한계상태(limit state)


$$g < 0$$
 $R < Q$ 파괴(failure)

$$X_{i}: D, L, W, E, b, d, f_{ck}, f_{v}, \dots$$

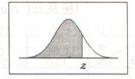

신뢰도지수의 정의

❖ 가장 간단한 경우로, 부재저항(R)과 하중(Q)가 정규분포이며, 서로 독립적인 경우 g = R - Q 이므로 g도 정규분포이다.

파괴확률과 신뢰도지수의 관계

$$P_f = \Pr[g < 0]$$

$$= \int_{-\infty}^0 f_g(x) dx = \Phi(-\beta)$$

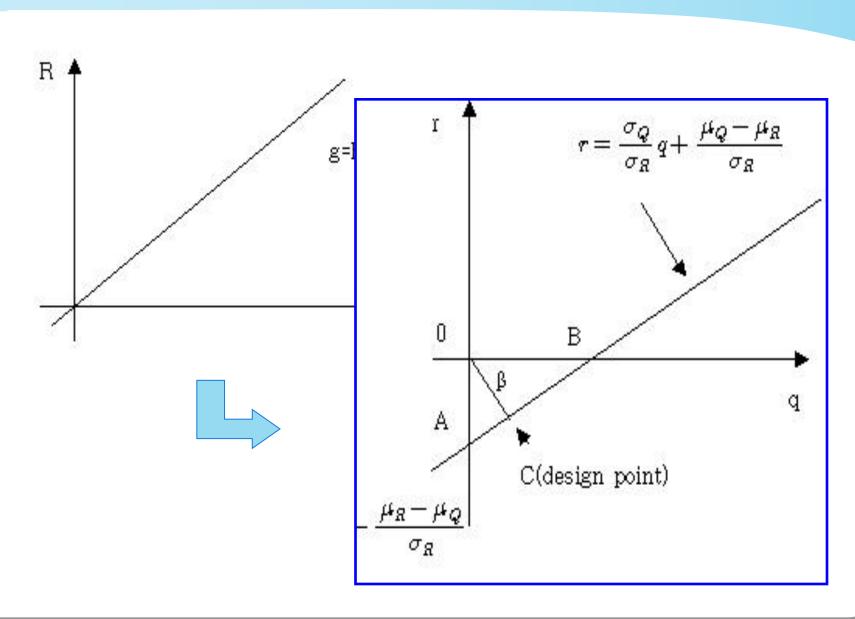

P_{F}	β
0.5	0.00
10 ⁻¹	1.28
10 ⁻²	2.33
10 -3	3.10
10-4	3.72
10 -5	4.20
10 ⁻⁶	4.75
10 ⁻⁷	5.19
10-8	5.62
10 ⁻⁹	5.99

3. 확률분포표 (Mana) = (Mana) S(X) 전 전 (Mana)

표준정규분포표

($\Pr\left(Z \leq z\right) = \Phi(z), Z \sim N(0, 1)$)

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.575
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.614
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.651
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.687
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.722
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.754
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.785
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.813
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.838
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.862
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.883
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.901
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.917
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.931
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.944
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.954
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.963
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.970
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.976
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.981
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.985
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.989
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.991
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.993
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.995
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.996
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.997
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.998
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.998
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.999



$$r = \frac{R - \mu_R}{\sigma_R} \qquad q = \frac{Q - \mu_Q}{\sigma_Q}$$

$$g = R - Q = \mu_R + r\sigma_R - \mu_Q - q\sigma_Q = 0$$

$$r = \frac{\sigma_Q}{\sigma_R} q + \frac{\mu_Q - \mu_R}{\sigma_R}$$

❖ ▲OAB와 ▲OAC의 닮은꼴 이용

AB : OB = OA : OC

$$AB = \sqrt{\left(\frac{\mu_R - \mu_Q}{\sigma_R}\right)^2 + \left(\frac{\mu_R - \mu_Q}{\sigma_Q}\right)^2}$$

$$OC = \frac{OA \cdot OB}{AB} = \frac{\mu_R - \mu_Q}{\sqrt{\sigma_R^2 + \sigma_Q^2}} = \beta$$

 $\beta = r$ 과 q의 좌표계에서 원점부터 파괴면까지의 최소거리

C = design point

❖ 위의 개념을 일반화하면 (여러 변수의 경우)

$$g(\vec{X}) = g(X_1, X_2, \dots, X_n)$$

$$X_1, X_2, \dots, X_n \stackrel{\triangle}{=} \text{ Joint PDF} = f_{X_1 X_2 \dots X_n}(x_1, x_2, \dots x_n)$$

$$g(\vec{X}) = 0:n$$
차원의 파괴경계면

$$P_F = \int_{g(\vec{X})<0} f_{\vec{X}}(\vec{x}) d\vec{x}$$

reduced variable
$$X_i' = \frac{X_i - \mu_{X_i}}{\sigma_{X_i}}$$
 $\lambda \in \mathcal{S}$

- β = 원점에서 파괴면까지의 최소거리
- 파괴면상의 임의의 점 $\vec{X}' = (X_1, X_2, \dots X_n)$

$$\beta = D = \sqrt{X_1'^2 + X_2'^2 + \dots + X_n'^2} = (\vec{X}'^T \cdot \vec{X}')^{1/2}$$

☞ 결국 문제는 다음과 같은 최적화 문제가 된다.

minimize Dsubject to $g(\vec{X}) = 0$

여기서 최소가 되는 점 $(x_1^{\prime *}, x_2^{\prime *}, \dots, x_n^{\prime *})$: design point

4. 신뢰도에 기초한 설계기준

- ❖신뢰도 또는 확률에 기초한 설계기준
 - 순수한 의미에서는 설계자가 신뢰도지수(戌) 또는 파괴확률(Pf)을 계산하여 설계기준에서 요구하는 기준에 만족하는가를 검토
- ❖이는 신뢰도에 대한 많은 지식을 요구
- ❖신뢰도해석의 1단계에 해당되는 하중저항계수 설계법을 사용

A

- ❖ 확률에 기초한 한계상태설계법
- ❖ 하중의 불확실성을 하중계수로, 저항의 불확실성을 저항계수로 표현
- ❖ 일반적인 설계식

$$\phi R_n \geq \sum \gamma_i Q_i$$

❖ 여기서, Q = D + L 이라 하면

$$\phi R_n \ge \gamma_D D_n + \gamma_L L_n$$

- ❖ 설계식이 기존의 강도설계법과 유사하고 실무자들에게 친숙한 형식
- ❖ 현재 전세계의 대부분의 설계기준이 이 방식을 따르고 있음
- ❖ 각 하중조합의 경우에 2단계 신뢰도해석에 의하여 각각 다른 하중계수를 사용함으로 LRFD설계법의 가장 중요한 장점인 균일한 안전도를 확보할 수 있다.

❖ 설계원칙 :
$$\phi R_n = Q = \sum \gamma_i Q_i$$

riangle 목표신뢰도지수를 eta_T 라 하면, 신뢰도지수식으로부터

$$\mu_R = \mu_Q + \beta_T \sqrt{\sigma_R^2 + \sigma_Q^2} = \lambda_R R_n = \frac{1}{\phi} \lambda_R \sum_i \gamma_i Q_i$$

여기서, λ_R : 저항의 편심계수(bias factor) 저항의 평균값을 저항의 공칭값으로 나눈 값

❖ 위 식에서 저항계수는 다음과 같다.

$$\phi = \frac{\lambda_R \sum \gamma_i Q_i}{\mu_Q + \beta_T \sqrt{\sigma_R^2 + \sigma_Q^2}}$$

이 식은 3개의 미지수(eta_T, γ_i, ϕ)를 포함하고 있으며 이식을 이용하여 하중계수 및 저항계수를 결정하기 위해서 먼저 목표 신뢰도지수를 결정

❖ 목표신뢰도지수

- 구조물의 안전성과 경제성을 결정하는 가장 중요한 계수
- 설계기준 제정을 담당하는 위원회에서 경제, 사회적 측면과 기존 구조물의 안전성을 고려하여 결정

❖ 하중계수가 곱해진 하중을 하중의 평균값에서 표준편차의 임의의 배수만큼 증가한 값으로 정한다. 즉,

$$\gamma_{i}Q_{i} = \mu_{Q_{i}} + n\sigma_{Q_{i}} = \mu_{Q_{i}} + nV_{Q_{i}}\mu_{Q_{i}}
= \mu_{Q_{i}}(1 + nV_{Q_{i}})$$

$$\gamma_{i} = \frac{\mu_{Q_{i}}}{Q_{i}}(1 + nV_{Q_{i}}) = \lambda_{Q_{i}}(1 + nV_{Q_{i}})$$

여기서, λ_{Qi} : 하중의 편심계수(bias factor)

주어진 하중계수들을 이용하여 저항계수를 부재별,
 하중별로 계산

A

AASHTO LRFD기준의 경우

❖ 보정절차

- 1. 대표교량 선정 : 200여개
- 2. 하중과 저항변수들에 대한 통계자료 구축 : 활하중, 충격하중, 재료특성, 부재특성
- 3. 하중 및 저항 모형 개발
- 4. 신뢰도 해석 절차 개발 : 신뢰도지수 이용
- $_{5.}$ 목표신뢰도지수 선정 : β_{T} = 3.5
- 6. 하중 및 저항계수 계산

하중계수 결정

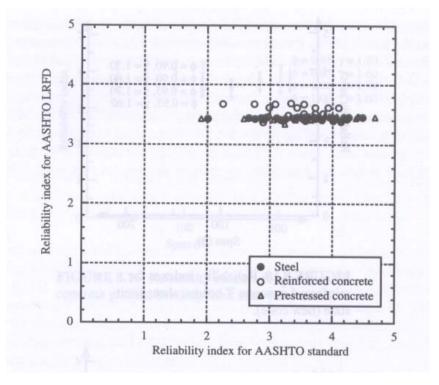
하중	<i>n</i> =1.5	n =2.0	n =2.5
D_1	1.15	1.20	1.24
D_2	1.20	1.25	1.30
D_3	1.375	1.50	1.65
L	1.40~1.50	1.50~1.60	1.60~1.70

여기서, D₁ : 강재나 프리스트레스트 콘크리트와 같은 공장제작 부재의 고정하중(자중)

 D_2 : 현장타설 콘크리트 부재의 고정하중 D_3 : 아스팔트와 같은 포장재의 고정하중

저항의 통계치

구조들	물 형식	편심계수(ℷ)	변동계수(/ /		
ᄓᅕᅛᅥ가ᄗᆝᄀᆝᆮᆝ	모멘트	1.12	0.10		
비합성 강재거더	전단	1.14	0.105		
하셔 카페기디	모멘트	1.12	0.10		
합성 강재거더	전단	1.14	0.105		
	모멘트	1.14	0.13		
철근콘크리트부재	전단(철근있음)	1.20	0.135		
	전단(철근없음)	1.41	0.17		
프리스트레스트	모멘트	1.05	0.075		
콘크리트부재	전단	1.15	0.14		


❖산정된 저항계수

구조남	저항계수			
비하서 가제기디	모멘트	1.0		
비합성 강재거더	전단	1.0		
하서가제기디	모멘트	1.0		
합성강재거더	전단	1.0		
#172776471	모멘트	0.90		
철근콘크리트부재	전단	0.90		
프리스트레스트	모멘트	1.0		
콘크리트부재	전단	0.90		

신뢰도지수의 균일화

 ❖ 이상과 같은 하중 및 저항계수를 사용하여 175 개의 대상교량에 적용하여 신뢰도지수 값을 서로 계산한 결과 약 3.4~3.9 정도의 분포를 보였다.

AASHTO와 LRFD 설계기준의 신뢰도지수 비교

AASHTO LRFD 한계상태 보정의 특징

- ❖ 신뢰도 분석을 통하여 강도한계상태에 대해서만 보정
- ❖ 목표 신뢰도지수 *β* 를 3.5 로 결정
- ❖ 다른 한계상태에 대해서는 기존 기준에 준하여 결정
- ❖ 사용한계상태에 의해 지배되는 설계의 신뢰도는 미정

AASHTO LRFD(2004)설계기준의 하중조합 및 하중계수

하중	DC DD DW	LL.								이하	중들은 가지민	한 번	
한계상태 하중조합	포장의보장	MR BR PLS CF	WA BP WP	ws	WL FR TU TG	TG	GD SD	EQ	IC	СТ	CV		
극한 I	γ_p	1,80	1,00	_	ı	1,00	0.50/ 1.20	γ_{TG}	γ_{SD}	_	_	ı	_
극한॥	γ_p	1,40	1,00	_	ı	1,00	0.50/ 1.20	γ_{TG}	γ_{SD}	_	_	ı	-
극한Ⅲ	γ_p	_	1,00	1,40		1,00	0.50/ 1.20	γ_{TG}	γ_{SD}	_	_	ı	_
극한Ⅳ — EH, EV, ES, DW DC 만 고려	γ_p	_	1,00	_	_	1.00	0,50/ 1,20	-	_	_	_	-	-
극한V	γ_p	1.40	1,00	0.40	1,0	1,00	0.50/ 1.20	γ_{TG}	γ_{SD}	_	_	_	_
극단상황ㅣ	γ_p	γ_{EQ}	1,00	_	_	1.00	_	_	_	1.00	_	_	_
극단상황॥	γ_p	0.50	1,00	_	_	1.00	_	_	_	_	1,00	1,00	1,00
사용 I	1,00	1,00	1,00	0,30	1,0	1.00	1,00/ 1,20	γ_{TG}	γ_{SD}	_	_	ı	_
사용॥	1,00	1,30	1,00	_		1,00	1,00/ 1,20	1	-	_	_	ı	-
사용Ⅲ	1,00	0,80	1,00	_		1,00	1,00/ 1,20	γ_{TG}	$\gamma_{S\!D}$	_	_	ı	-
사용IV	1,00	_	1,00	0.70	_	1.00	1,00/ 1,20		1,0	_	_	1	_
사용V	1,00	_	_	_	-	_	0,50		-	_	_	ı	_
피로 — LL, IM & CF만 고려	_	0.75	_	_	_	_	_	_	_	_	_	_	_

Thank You!