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Structural Dynamics Overview

% Modeling
% Continuous and Discrete Systems
% Modal Methods

. Eigenmodes
. Rayleigh-Ritz
. Galerkin
% Discrete Point Methods
. Finite Difference
. Finite Element
% Solution of Dynamic Problems

. Mass Condensation — Guyan Reduction

. Component Mode Synthesis




Modeling Levels

% Real structural dynamics system (structures)

i Real structures, in 3-D space,
| comprised of different material, and
e 2 subject to external excitation
Assumption : - material (linear elastic)
Rotor shaft - geometry

- loads

% Continuous representation of the structure

l More assumptions

% Discrete representation of the structure




Modeling Levels

% Continuous representation of the structure

« Idealized model (infinite d.o.f)

J 1-D (continuous beam)
representation of the blade

l More assumptions, for example: low frequency behavior

% Discrete representation of the structure

« Idealized model (finite d.o.f.)

Y

1-D finite element
\O\O\O\Q\O\O\O representation of the blade




Structural System Representation

% Methods for describing structural systems

« Continuous system : infinite D.O.F. > exact solution only
available for special cases

(e.qg., vibration of uniform linear beams)

« Approximate solution : finite D.O.F. - two basic approaches
1) Modal methods

2) Discrete point methods




Discrete System

Systems represented by finite number of degrees of freedom from

the outset

Properties described at certain locations can be obtained from (mass,

stiffness) influence coefficient functions, or simply lumping techniques

General mass-spring system represented by

Mt} + [K]{us = {F}
/ f N

Mass matrix  Stiffness matrix  Forcing vector




Discrete System

[Example] Lumped parameter formulation for a beam

m(x) : mass/unit length

A© sz(t) O /O
4

myw; mMyWy MaWs myWy

Total force : Fjroe = f; —myw; (D’Alembert’s principle)
t N

Applied force Inertial force

(M, 1 (W)
_qm | ™2 w2
{Fi}tot — {fl} ms S WS >




Discrete System

ion w; |
Deflection w; is flexibility influence coefficient, Deflection @ i due to a unit load @ j

/

() = {ci,-}{zrj}wt %
— {Clj}[{fj} {Wl}] deflection load

Repose IM[{w} + [K[{w} = {f}

This can also be extended to a full 2-D, 3-D structures

(1) (U (E,
MY b+ kI{ Y b=

W w F,

\: \i ) .

Note : Generally both [M] and [K] have coupled structures (off-

diagonal components), but still symmetric
7




Discrete System

IMlw + [K]lw = F

Set of simultaneous, coupled DE subject to IC's @ t=0
w; = wy

Wi =Wi0

for-o

- First solve homogeneous equations for the lowest (few) eigenvalues (w)

and eigenvectors ([@]: mode shape matrix)

IM]w + [K]w =0
Set w = we'®t

[—w[M] + [K]]Wel®t =0 - (%)

— \

characteristic eqn. eigenvector




Discrete System

: Wi
4 eigenvalues 3. = wg, natural frequency f; = =
T

Eigenvectors are obtained by placing any root into (*)
[k11 —my107 Kip — M0 ] ¢(i) =0

Need to set at least one value of CIJ(i)

¢(1) ¢(2)
ﬁ // W1 2 \_// W2

Mode 1

Mode 2

A N-D.O.F system has N natural frequencies and N mode shapes

associated to these natural frequencies.




Discrete System

- Orthogonality Relations

wj, c,bi(j) set of free vibration mode shapes
Each satisfies —w?[M]¢p + [K]¢p =0

—w2[M]p™ = [K]p™ - (1)
—wE:Micb(S)— 1p® - (2)

Multiply (1) by ¢T and (2) by ¢™T

Wi [M]p) = pOT[K]M
wipMT[M]pE = pTT[K]pE - (3)

Take transpose
of both sides

[M], [K]

symmetric

wi¢IT[M]T¢) = T [K]T )
(4) )

w2pMTIM]pS) = pMT[K]pS ...




Discrete System

Subtract (4) from (3)

(wi-w?) oM =0

If r#s— ¢MT[M]pE =0
r=s — ¢(T)T[M]¢(5) = M} (some value : modal stiffness)

T [ M) = 6T\SM:

0O:r+#s

Kronecker delta &5 = {1 D=

Also note that

d)(r)T [K](,b(s) = (072~M::5r5 (modal stiffness)




Discrete System

- Complete solution
IM]Jw + [K]lw = F

4
let w;(t) = z ¢i(r)77i(t)
=1 N Generalized coordinate
[M]g7j + [K]¢pn = F
Pre-multiply by ¢7
¢"[M]opij + ¢ [K]pn = ¢pTF
Orthogonality — Decoupled equations
M+ Miwin = Q, Q1 =¢WF
: : /Generalized or normalized coordinate
M;;nn + M:Lw%nn = Qn
X — X

Generalized mass Generalized  Generalized force
stiffness

12




Discrete System

- Initial conditions

@ t=0, given w(0),w(0)

(wy (0))
w,(0)
w3(0)

W, (0)J

$n(0) = < > and  ¢n1(0) = w(0)

n
If all the modes are retained in solution, that is,w = zd)(i)ni(t)
i=1

n(0) = ¢~ w(0)
/ /XN

nxi1 MmXn nxl1




Discrete System

- Truncation

Problem can be truncated by using only a few selected number of modes

m

w(x ) = ) $O0mi()

=1
where m<<n

But now calculation of initial condition on n is not straightforward.

n(0) = ¢~ w(0)

mx1 mxn nx1

™~ not invertible!

¢n(0) = w(0)

nXxm mx1 nx1




Discrete System

Premultiply by ¢T[M],
¢" [M]pn(0) = ¢" [M]w(0)

mxXn nxn nxm mx1 mxn nxm nxl1
\—Y—I
My m * diagonal

M*1(0) = ¢" [M]w(0)

, (w1 (0)Y
10 = [ - g v {2 (O
l \w,,(0)/

- Solve for n(t) subject to n(O)YEnd 1(0)
and find w from w(x,t) = ch(i)(x)ni(t)
=1

[Note] The normal equations of motion are uncoupled on the left-hand side due

to the modal matrix composed of eigenvectors.

Coupling, however, may come from motion-dependent forces, including damping.




Discrete System

- Motion Dependent Forces

Forces F; may be dependent on position, velocity, acceleration after

structure @ its nodes i, as well as time

‘ Fi — Fi(W1'W2' "'Wl;Wz; "'W1;W2 "',t)

Consider a general case
N

F; = Z(aikwk + Cip Wy + e W) + Fi(t)
k=1

Consider an N degree of freedom system

IMtw} + [K]w = [a]iw} + [c[iw} + [e[tw] + {F;(¢)}




Discrete System

n=3
Let w; = Z ¢i(j)77j(t)
J
[M*]ij + [W?M*]n = ¢ []¢77+¢T[ 11 + @' [elpij + Q
[4] [C] [E]

\ J
T

fully populated (in general)

Can also write it as

Mii, + wiMin, = z(Arsns + CrsTis + Erstis) + Qr

s=1 not necessarily positive definite

The terms on the summation on the right-hand side couple (in general)

the equations of motion. This is typical in aeroelastic problem.




Discrete System

- For proportional damping,

[C] = o’c\[K] + B[M] --- damping matrix is proportional to a linear
/

any value, constants combination of the mass and stiffness matrices

Then, due to orthogonality on [K] and [M]
m=) (C.=0 whenr#s
m=) No coupling == Set C,, = 2¢,w, M

Critical damping ratio: obtained from
experiments or guess

m set of {M;f(nr + 2¢,w, M, + a),%nr) = Q,(t)

uncoupled
equations




Continuous System

« At this point, a distinction between two main classes of approaches for

approximating the solution of structural systems needs to be made.

 The two basic approaches are
1) modal methods: represent displacements by overall motion of the
structure

2) discrete point methods: represent displacement by motion at

many discrete points distributed along the structures




Continuous System

« Consider a basic high-aspect ratio wing modeled as a cantilever beam
for symmetric response
Partial differential equation for continuous beam

mw — (Tw') + (EIw")" = f,

w=20

M =EIw" =0

x Pinned end A

m(x) : mass/unit length (kg/m) w
w(x, t): vertical deflection (m) + Fixed end | w' =0

T : axial force (N)

EI(x): bending stif fness (N - m?) M=EIw" =0
e Free end S = (EI II)I _
f, + vertical applied force (N/m) = w —
fx ¢ horizontal applied force (N/m)
M=EIw" =0

« Vertical spring%

S=(EIw") =k,w




—> geometric B.C.

M=EIw" =0
=1 — natural B.C.
©x {5 = Elw" =0

w=20

Rest I.C.'
=0 (Rest I.C.'s)

I.C. @t=0{

Same solution procedure as before
i) find solution to homogeneous equation

ii) then determine complete solution as expansion of homogeneous solution




EIw'"" +mw=0 --(1)

let w(xt) = w(x)e'®t

— (EIVT/”” —mw?w)e®t =0 --(2)
2
mo
—_ WIIII _ M_/ — O Ve 3
7 (3)
To solve, let w = eP* (- sin,cos, sinh, cosh)
— p4epx _ me? ePX —
El
. . mamw?
nontrivial solution p4 —
El

m
4 roots p = A —A A, —iA where A% = w /E




w(x) = Cie™ + Cre™ + Cze™ + C e N

or w(x) = AsinhAx + BcoshAx + CsinAx + DcosAx

Determine A, B, C, D from B.C.’s in matrix form

0 1 0 1 (A

1 0 1 0 B _ 0. < Transcendental
sinhAl coshAl —sinAl —cosAl || C equation
. coshAl sinhAl — cosAl sinAll LD

For a nontrivial solution, [A| =0

|A| = 2coshMcosAl + (sin?Al + cos?Al) + (cosh?Al — sinh?Al) = 0

cosAl = coshAl




.5¢

(.5

0

0.5¢

-1.5

\WAWA

cosAl

VYA

coshAl

0

¥

4 6 B8

10 12 14 16 18

many solutions possible

5 7
?\1—05971114911 — T, —TC

, 2772
3
0.5m En
El
= (Al 2
= @) |—3

For eigenvectors (mode shapes), place Al into first three equations

wy(x) = (coshA,.x — cosA,.x) — (

0
1
sinhAl

1
0
coshAl

coshA,.l + cosA,l

0
0

1 A
0 } [B] “o
—sinAl — cosAll\C

Ref.

sinhA,.l + sinA,.l

)(sinhA,.x — SiTl?\,JC)

: Blevins “Formulas for Natural Frequency and Mode Shapes”




L

b3

First natural mode shape

Second natural mode shape

Third namral mode shape




Orthogonality

Since each solution satisfies w(x,t) = ¢, (x)e'“rt

mw + (EIw'")" =0
—mwi¢, + (Elp/)" =0 - (1)
—mwids + (Elps)" =0 - (2)

Multiply (1) by ¢, and integrate
l l
o [ dsmardx = [ d(E19 dx 3
0 0

and (2) by ¢, and integrate

l l
o2 j by mpsdx = f b, (EIY) dx - (4)
0 0




Orthogonality

Subtract (4) from (3), and integrate by parts

! l
(002 — w?) j prmsdx = b (EINY | — boEIBL]} + W
0 0
l
— b, (EIQYY' | + ¢, EIL |, — W
' b ' ' b ' 0

defection shear slope moment

Note that all the constant terms on RHS=0 because of BC's

for example : + pinned > w=0=> ¢ =0
WII:O = (I)”:O

 fixed > w=0>=¢=0
w=0=¢ =0

 free » ¢'" =0 and (EIp'") =0




Orthogonality

For r # s, we have

l
f ¢ (x)m(x)ps(x)dx = 0
0

—

rl

0

¢ (x)m(x)Pps(x)dx = 8,.sMy

—

l
Also, j ds(EIp)) " dx = 5, Miw/?
0

= can transform to normal coordinates




Complete solution

mw + (EIw'")" = f(x,t) - (5)

let w(x,t) = 2r=q (M- () - (6)

Place (6) into (5) and integrate after multiplying with ¢
l l l
> i [ mpatrdx+ Y n, [ G101y dx = [ duf 0
r=1 0 r=1 0 0

because of orthogonality
[Mrnr + M wrnr Qr]

M. f dZ2(x)m(x)dx

=j@uvmww
0

Note : can also show orthogonality conditions hold if —(Tw")’ term is present




Complete solution

To find I.C.'s on n,., .
@t=0,  wx0) = ) ¢ (0) = wy(x)
r=1

and

(x,0) = D (N1 (0) = vo(x)
r=1
Multiply by m¢,(x) and integrate

jolm PsWodx = inrm) J My = 1, (OM;

1 (!
= | oy




Rayleigh-Ritz Method

% Energy-based method

Form of the solutions is assumed to be as :

N
UCOEPRIOLHG
r=1

assumed modes need to satisfy at
least geometrical boundary conditions

fx,t)

!

N
assume w(x, t) = z y; (t) q;(t)
i=1

- X
2

X
2
V1 /l

x3 [ satisfy

w
w' =0
V2 .-// [3




Rayleigh-Ritz Method

l

— Ej m(x)z:)’iciiz:)’jcij dx = EzzJ my; (x)y;(x)dxq;q;
0 i=1 j=1 s '

i=1j=1.

x
mij

V=r jo lEI(W”)Z dx = %ii j EI(x)y;"(x)y;" (x)dxq;q;

T
*

l Mo
8W=jf5wdx =ZJf(x)yidx5qi
0 — /o

Plug into Lagrange’s equations,

d (0T oTr adV
E<5_Ch> ~ dg; * 0q; v
which gives M

l]q] + 2 kl]CI] Q; coupled set of equations!




Rayleigh-Ritz Method

For a quick and “dirty” way to find the first natural frequency,
assume only one mode shape,
mi Gy + ki1q1 = Q1
Rayleigh quotient with q = ge'®?

[y EI(yy)?dx
f my; dx

2 — . upper bound for the

actual frequency

w

Clearly we can obtain higher modes by assuming more than one mode

, _ W Kly}

o T WIMIG ),




Galerkin’s Method

Galerkin’s method applies to P.D.E. directly — residual method

jyj[P.D.E.]dx =0 forj=12,..,N

Domain

Assumed modes must satisfy all the boundary conditions
(geometric and natural ones)

N
w(x ) = D 70 g0
i=1
Look at general beams
mw + (EIw")" — (Tw") = f(x,t)
for a pinned-pinned beam,

. jnx)
Yj = sin( 7

If y; is on exact mode shape, P.D.E. would be satisfied exactly
But if not - error




Galerkin’s Method

— o 17 I / /
E= MWy ppr0x T [EIWapprox — [TWapprox] —f

Now set

L : Average error in PDE with respect to some
hi(x)E(x)dx = 0 weighting function h;(x) that minimize the
0 error in the interval, usually take h;(x) = y;(x)

M I M ] l
ZQ}'[_[ yi(x)m(x)yj(x)dx] +2U vi(Ely;") dx—fyi(Ty]f) dx]
=1 0 j=1 0 X S

Different f

e = [ e oas




Galerkin’s Method

For M different weighting function yy, v, --.Yum,

we have M equations to find M unknowns q4, g5, ...qy

To find M unknowns q4, q,, ...qy in matrix form

s ‘1. _ . - coupled set of DE’s
[l + [kijla; = @ (except when y;is natural mode shape)

Used standard technique, let q = ge'®t

m—) llw? — [m][k]|g =0

=) Figenvalues — approximate natural frequencies

Eigenvectors — approximate natural mode shapes




Galerkin’s Method

Note :

i) more assumed modes — better approximation
¢1(x) = AcosAx + BsinAyx + CcoshA,;x + DsinhA,x
= a9+ a;x + a;x% + azx3 + -
ii) more accurate assumed shapes — better approximation

iii) If y;(x) is natural mode shapes, system will be uncoupled

iv) The closer y;(x) is to ¢(x), the less the coupling

Galerkin : very powerful, turn PDE’s into ODE's
very general, can also be used in nonlinear problem !!

mi + (EIw")" + F(w™) = f

v) If Rayleigh-Ritz assumed mode shapes satisfy both geometric
and natural B.C.’s, two methods are identical

(can be shown by integration by parts)




