Aeroelasticity

2020

Prof. SangJoon Shin

Active Aeroelasticity and Rotorcraft Lab.

Structural Dynamics Overview

* Modeling
* Continuous and Discrete Systems
* Modal Methods
- Eigenmodes
- Rayleigh-Ritz
- Galerkin
* Discrete Point Methods
- Finite Difference
- Finite Element
* Solution of Dynamic Problems
- Mass Condensation - Guyan Reduction
- Component Mode Synthesis

Modeling Levels

* Real structural dynamics system (structures)

* Continuous representation of the structure More assumptions
* Discrete representation of the structure

Modeling Levels

* Continuous representation of the structure
- Idealized model (infinite d.o.f)

1-D (continuous beam) representation of the blade

More assumptions, for example: low frequency behavior

* Discrete representation of the structure
- Idealized model (finite d.o.f.)

1-D finite element
representation of the blade

Structural System Representation

* Methods for describing structural systems
- Continuous system : infinite D.O.F. \rightarrow exact solution only available for special cases
(e.g., vibration of uniform linear beams)
- Approximate solution : finite D.O.F. \rightarrow two basic approaches

1) Modal methods
2) Discrete point methods

Discrete System

- Systems represented by finite number of degrees of freedom from the outset
- Properties described at certain locations can be obtained from (mass, stiffness) influence coefficient functions, or simply lumping techniques
- General mass-spring system represented by

Discrete System

[Example] Lumped parameter formulation for a beam

Total force : $F_{i, T o t}=f_{i}-m_{i} \ddot{w}_{i}$
(D'Alembert's principle)

Applied force Inertial force

$$
\left\{F_{i}\right\}_{t o t}=\left\{f_{i}\right\}-\left[\begin{array}{ccc}
m_{1} & & \\
& m_{2} & \\
& & m_{3} \\
& & \\
& & m_{4}
\end{array}\right]\left\{\begin{array}{c}
{[\mathrm{M}]}
\end{array}\right]\left\{\begin{array}{c}
\ddot{w}_{1} \\
\ddot{W}_{2} \\
\ddot{W}_{3} \\
\ddot{w}_{4}
\end{array}\right\}
$$

Discrete System

Deflection w_{i} is

$$
\begin{aligned}
\left\{w_{i}\right\} & =\left\{c_{i j}\right\}\left\{F_{j}\right\}_{t o t} \\
& =\left\{c_{i j}\right\}\left[\left\{f_{j}\right\}-[M]\left\{\ddot{w}_{i}\right\}\right]
\end{aligned}
$$

deflection load

Repose

$$
[\mathrm{M}]\{\ddot{w}\}+[K]\{w\}=\{f\}
$$

This can also be extended to a full 2-D, 3-D structures

$$
[\mathrm{M}]\left\{\begin{array}{c}
\ddot{u} \\
\vdots \\
\ddot{v} \\
\vdots \\
\ddot{w} \\
\vdots
\end{array}\right\}+[K]\left\{\begin{array}{l}
u \\
\vdots \\
v \\
\vdots \\
w \\
\vdots
\end{array}\right\}=\left\{\begin{array}{l}
F_{u} \\
\vdots \\
F_{v} \\
\vdots \\
F_{w} \\
\vdots
\end{array}\right\}
$$

Note : Generally both [M] and [K] have coupled structures (offdiagonal components), but still symmetric

Discrete System

$$
[\mathrm{M}] \ddot{w}+[K] w=F
$$

Set of simultaneous, coupled DE subject to IC's @ t=0

$$
\left.\begin{array}{l}
w_{i}=w_{i}^{o} \\
\dot{\dot{w}_{i}}=\dot{w_{i}^{o}}
\end{array}\right\} @ \mathrm{t}=0
$$

- First solve homogeneous equations for the lowest (few) eigenvalues (ω) and eigenvectors ([ø]: mode shape matrix)

$$
[\mathrm{M}] \ddot{w}+[K] w=0
$$

Set $\mathrm{w}=\bar{w} e^{i \omega t}$

$$
\underbrace{-\omega[\mathrm{M}]+[\mathrm{K}]]}_{\text {characteristic eqn. }} \widetilde{W} \underbrace{i \omega t}_{\text {eigenvector }}=0 \quad \cdots(*)
$$

Discrete System

4 eigenvalues $\lambda_{i}=\omega_{i}^{2}$, natural frequency $f_{i}=\frac{\omega_{i}}{2 \pi}$

Eigenvectors are obtained by placing any root into (*)

$$
\left[\begin{array}{cl}
k_{11}-m_{11} \omega_{1}^{2} & k_{12}-m_{12} \omega_{2}^{2} \\
\ddots
\end{array}\right] \phi^{(i)}=0
$$

Need to set at least one value of $\phi^{(i)}$
$\phi^{(1)}$
λ
λ

Mode 2
Mode 1

A N-D.O.F system has N natural frequencies and N mode shapes associated to these natural frequencies.

Discrete System

- Orthogonality Relations $\omega_{j}, \phi_{i}^{(j)}$ set of free vibration mode shapes

Each satisfies $\quad-\omega^{2}[M] \phi+[K] \phi=0$

$$
\begin{aligned}
-\omega_{r}^{2}[M] \phi^{(r)} & =[K] \phi^{(r)} \cdots(1) \\
-\omega_{s}^{2}[M] \phi^{(s)} & =[K] \phi^{(s)} \cdots(2)
\end{aligned}
$$

Multiply (1) by $\phi^{(s) T}$ and (2) by $\phi^{(r) T}$

$\begin{aligned} & \substack{\text { Take transpose } \\ \text { of both sides }} \end{aligned}\left\{\begin{array}{c} \omega_{S}^{2} \phi^{(r) T}[M] \phi^{(s)}=\phi^{(r) T}[K] \phi^{(s)} \cdots(3) \\ \omega_{r}^{2} \phi^{(r) T}[M]^{T} \phi^{(s)}=\phi^{(r) T}[K]^{T} \phi^{(s)} \\ \omega_{r}^{2} \phi^{(r) T}[M] \phi^{(s)}=\phi^{(r) T}[K] \phi^{(s)} \cdots(4) \end{array}\right.$	

Discrete System

Subtract (4) from (3)

$$
\left(\omega_{s}^{2}-\omega_{r}^{2}\right) \phi^{(r) T}[M]^{T} \phi^{(s)}=0
$$

$$
\begin{aligned}
& \text { If } \mathrm{r} \neq \mathrm{s} \rightarrow \phi^{(r) T}[M] \phi^{(s)}=0 \\
& \mathrm{r}=\mathrm{s} \rightarrow \phi^{(r) T}[M] \phi^{(s)}=M_{r}^{*} \quad \text { (some value : modal stiffness) } \\
& \phi^{(r) T}[M] \phi^{(s)}=\delta_{r s} M_{r}^{*} \\
& \downarrow_{\text {Kronecker delta }} \delta_{r s}= \begin{cases}0 & : r \neq s \\
1 & : r=s\end{cases}
\end{aligned}
$$

Also note that

$$
\phi^{(r) T}[K] \phi^{(s)}=\omega_{r}^{2} M_{r}^{*} \delta_{r s} \quad \text { (modal stiffness) }
$$

Discrete System

- Complete solution

$$
\begin{gathered}
{[\mathrm{M}] \ddot{w}+[K] w=F} \\
\text { let } w_{i}(t)=\sum_{i=1}^{4} \phi_{i}^{(r)} \eta_{i}(t) \\
\text { Generalized coordinate }
\end{gathered}
$$

$$
[\mathrm{M}] \phi \ddot{\eta}+[K] \phi \eta=F
$$

Pre-multiply by ϕ^{T}

$$
\phi^{T}[\mathrm{M}] \phi \ddot{\eta}+\phi^{T}[K] \phi \eta=\phi^{T} F
$$

Orthogonality \longrightarrow Decoupled equations

$$
M_{1}^{*} \ddot{\eta}+M_{1}^{*} \omega_{1}^{2} \eta_{1}=Q_{1}, \quad Q_{1}=\phi^{(1)} F
$$

Discrete System

- Initial conditions

$$
\text { @ t=0, given } w(0), \dot{w}(0)
$$

$$
\phi \eta(0)=\left\{\begin{array}{l}
w_{1}(0) \\
w_{2}(0) \\
w_{3}(0) \\
w_{4}(0)
\end{array}\right\} \text { and } \phi \dot{\eta}(0)=\dot{w}(0)
$$

If all the modes are retained in solution, that is, $\mathrm{w}=\sum_{i=1}^{n} \phi^{(i)} \eta_{i}(t)$

Discrete System

- Truncation

Problem can be truncated by using only a few selected number of modes

$$
\begin{gathered}
\mathrm{w}(\mathrm{x}, \mathrm{t})=\sum_{i=1}^{m} \phi^{(i)}(x) \eta_{i}(t) \\
\text { where } \mathrm{m} \ll \mathrm{n}
\end{gathered}
$$

But now calculation of initial condition on η is not straightforward.

$$
\begin{aligned}
& \eta(0)=\phi^{-1} w(0) \\
& \mathrm{mx1} \quad \mathrm{mxn} \quad \mathrm{nx1} \\
& \text { not invertible! } \\
& \phi \eta(0)=w(0) \\
& \text { nxm mx1 nx1 }
\end{aligned}
$$

Discrete System

Premultiply by $\phi^{T}[M]$,

$$
\begin{aligned}
& \phi^{T}[M] \phi \eta(0)=\phi^{T}[M] w(0) \\
& m \times n \quad n \times n \times m m \times 1 \quad \text { mxn nxm nx1 } \\
& M_{m \times m}^{*} \text { : diagonal } \\
& M^{*} \eta(0)=\phi^{T}[M] w(0) \\
& \eta_{i}(0)=\frac{1}{M_{i}^{*}}\left[\phi_{1}^{i} \cdots \phi_{n}^{i}\right][M]\left\{\begin{array}{c}
w_{1}(0) \\
w_{2}(0) \\
\vdots \\
w_{n}(0)
\end{array}\right\}
\end{aligned}
$$

\rightarrow Solve for $\eta(t)$ subject to $\eta(0)$ and $\dot{\eta}(0)$

$$
\text { and find } \mathrm{w} \text { from } \mathrm{w}(\mathrm{x}, \mathrm{t})=\sum_{i=1}^{m} \phi^{(i)}(x) \eta_{i}(t)
$$

[Note] The normal equations of motion are uncoupled on the left-hand side due to the modal matrix composed of eigenvectors.

Coupling, however, may come from motion-dependent forces, including damping.

Discrete System

- Motion Dependent Forces

Forces F_{i} may be dependent on position, velocity, acceleration after structure @ its nodes i, as well as time

$$
\Longrightarrow F_{i}=F_{i}\left(w_{1}, w_{2}, \cdots \dot{w}_{1}, \dot{w}_{2}, \cdots \ddot{w}_{1}, \ddot{w}_{2} \cdots, t\right)
$$

Consider a general case

$$
F_{i}=\sum_{k=1}^{N}\left(a_{i k} w_{k}+c_{i k} \dot{w_{k}}+e_{i k} \ddot{w_{k}}\right)+F_{i}(t)
$$

Consider an N degree of freedom system

$$
[\mathrm{M}]\{\ddot{w}\}+[K] w=[a]\{w\}+[c]\{\dot{w}\}+[e]\{\ddot{w}\}+\left\{F_{i}(t)\right\}
$$

Discrete System

$$
\begin{aligned}
& \text { Let } w_{i}=\sum_{j}^{n=3} \phi_{i}^{(j)} \eta_{j}(t) \\
& \qquad\left[M^{*}\right] \ddot{\eta}+\left[w^{2} M^{*}\right] \eta=\underbrace{[A]}_{\underbrace{\phi^{T}[a]}_{\text {fully populated (in general) }}}+\underbrace{\phi^{T}[c] \phi \dot{\eta}}_{[C]}+\underbrace{\phi^{T}[e] \phi}_{[E]} \ddot{\eta}+Q
\end{aligned}
$$

Can also write it as

$$
M_{r}^{*} \ddot{\eta}_{r}+w_{r}^{2} M_{r}^{*} \eta_{r}=\sum_{s=1}^{m}\left(A_{r s} \eta_{s}+C_{r s} \dot{\eta}_{s}+E_{r s} \ddot{\eta}_{s}\right)+Q_{r}
$$

The terms on the summation on the right-hand side couple (in general) the equations of motion. This is typical in aeroelastic problem.

Discrete System

- For proportional damping,

$$
\begin{aligned}
{[\mathrm{C}]=\alpha[\mathrm{K}]+\underset{\sim}{\beta}[\mathrm{M}] } & \cdots \text { damping matrix is proportional to a linear } \\
\text { any value, constants } & \text { combination of the mass and stiffness matrices }
\end{aligned}
$$

Then, due to orthogonality on [K] and [M]
$\Longrightarrow \quad C_{r s}=0$ when $\mathrm{r} \neq s$
\Longrightarrow No coupling \Longrightarrow Set $C_{r r}=2 \varsigma_{r} \omega_{r} M_{r}^{*}$
Critical damping ratio: obtained from experiments or guess

$$
\begin{array}{r}
\text { m set of } \\
\text { uncoupled } \\
\text { equations }
\end{array}\left\{\begin{array}{l}
M_{r}^{*}\left(\ddot{\eta}_{r}+2 \varsigma_{r} \omega_{r} \eta_{r}+\omega_{r}^{2} \eta_{r}\right)=Q_{r}(t) \\
\vdots
\end{array}\right.
$$

Continuous System

- At this point, a distinction between two main classes of approaches for approximating the solution of structural systems needs to be made.
- The two basic approaches are

1) modal methods: represent displacements by overall motion of the structure
2) discrete point methods: represent displacement by motion at many discrete points distributed along the structures

Continuous System

- Consider a basic high-aspect ratio wing modeled as a cantilever beam for symmetric response

Partial differential equation for continuous beam

$$
\mathrm{m} \ddot{w}-\left(T w^{\prime}\right)^{\prime}+\left(E I w^{\prime \prime}\right)^{\prime \prime}=f_{z}
$$

x Pinned end

$$
w=0
$$

x Pinned end

$$
M=E I w^{\prime \prime}=0
$$

$m(x)$: mass/unit length $(\mathrm{kg} / \mathrm{m})$
$w(x, t)$: vertical deflection (m)

- Fixed end

$$
w=0
$$

T : axial force (N)
EI(x): bending stiffness $\left(N \cdot m^{2}\right)$
$f_{z}:$ vertical applied force (N / m)
$f_{x}:$ horizontal applied force (N / m)

- Vertical spring

$$
\begin{gathered}
M=E I w^{\prime \prime}=0 \\
S=\left(E I w^{\prime \prime}\right)^{\prime}=k_{v} w
\end{gathered}
$$

$$
M=E I w^{\prime \prime}=0
$$

- Free end

$$
S=\left(E I w^{\prime \prime}\right)^{\prime}=0
$$

Response of a Uniform Cantilevered Beam

Same solution procedure as before
i) find solution to homogeneous equation
ii) then determine complete solution as expansion of homogeneous solution

Response of a Uniform Cantilevered Beam

$$
E I w^{\prime \prime \prime \prime}+m \ddot{w}=0 \quad \cdots(1)
$$

let $\mathrm{w}(\mathrm{x}, \mathrm{t})=\bar{w}(x) e^{i \omega t}$

$$
\begin{align*}
& \longrightarrow \quad\left(E I \bar{w}^{\prime \prime \prime}-\mathrm{m} \omega^{2} \bar{w}\right) e^{i \omega t}=0 \tag{2}\\
& \longrightarrow \quad \bar{w}^{\prime \prime \prime \prime}-\frac{\mathrm{m} \omega^{2}}{E I} \bar{w}=0 \quad \cdots(
\end{align*}
$$

To solve, let $\bar{w}=e^{p x}(\rightarrow \sin , \cos , \sinh , \cosh)$

$$
\longrightarrow \quad p^{4} e^{p x}-\frac{m \omega^{2}}{E I} e^{p x}=0
$$

nontrivial solution $\quad p^{4}=\frac{m \omega^{2}}{E I}$

$$
4 \text { roots } \quad \mathrm{p}=\lambda,-\lambda, \mathrm{i} \lambda,-\mathrm{i} \lambda \quad \text { where } \lambda^{2}=\omega \sqrt{\frac{m}{E I}}
$$

Response of a Unfiform Cantilevered Beam

$$
\begin{aligned}
\bar{w}(x) & =C_{1} e^{\lambda \mathrm{x}}+C_{2} e^{-\lambda \mathrm{x}}+C_{3} e^{\mathrm{i} \lambda \mathrm{x}}+C_{4} e^{-\mathrm{i} \lambda \mathrm{x}} \\
\text { or } \bar{w}(x) & =A \sinh \lambda \mathrm{x}+\mathrm{B} \cosh \lambda \mathrm{x}+C \sin \lambda \mathrm{x}+\mathrm{D} \cos \lambda \mathrm{x}
\end{aligned}
$$

Determine A, B, C, D from B.C.'s in matrix form

$$
\left[\begin{array}{cccc}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
\sinh \lambda l & \cosh \lambda l & -\sin \lambda l & -\cos \lambda l \\
\cosh \lambda l & \sinh \lambda l & -\cos \lambda l & \sin \lambda l
\end{array}\right]\left[\begin{array}{l}
A \\
B \\
C \\
D
\end{array}\right]=0 . \quad \longleftarrow \begin{gathered}
\text { Transcendental } \\
\text { equation }
\end{gathered}
$$

For a nontrivial solution, $\quad|\Delta|=0$

$$
\left.\begin{array}{rl}
|\Delta|=2 \cosh \lambda l \cos \lambda l & +\left(\frac{\sin ^{2} \lambda l+\cos ^{2} \lambda l}{=1}\right)+\left(\cosh ^{2} \lambda l-\sinh ^{2} \lambda l\right. \\
=1
\end{array}\right)=0
$$

23

Response of a Uniform Cantilevered Beam

many solutions possible

$$
\begin{gathered}
\lambda \mathrm{l}=\underset{2}{0.597 \pi, 1.49 \pi,} \frac{5}{2} \pi, \frac{7}{2} \pi \\
0.5 \pi \quad \frac{3}{2} \pi \\
\begin{array}{c}
\frac{3}{2} \\
\omega_{r}=(\lambda \mathrm{l})^{2} \sqrt{\frac{E I}{m l^{4}}}
\end{array}
\end{gathered}
$$

For eigenvectors (mode shapes), place λl into first three equations

$$
\begin{gathered}
{\left[\begin{array}{cccc}
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 \\
\sinh \lambda l & \cosh \lambda l & -\sin \lambda l & -\cos \lambda \mathrm{l}
\end{array}\right]\left\{\begin{array}{l}
A \\
B \\
C
\end{array}\right\}=0} \\
\bar{w}_{r}(x)=\left(\cosh \lambda_{r} x-\cos \lambda_{r} x\right)-\left(\frac{\cosh \lambda_{r} l+\cos \lambda_{r} l}{\sinh \lambda_{r} l+\sin \lambda_{r} l}\right)\left(\sinh \lambda_{r} x-\sin \lambda_{r} x\right)
\end{gathered}
$$

Response of a Uniform Cantilevered Beam

$$
\mathrm{w}(\mathrm{x}, \mathrm{t})=\sum_{r=1}^{\infty} \phi_{r}(x) e^{i \omega_{r} t}
$$

Orthogonality

Since each solution satisfies $\mathrm{w}(\mathrm{x}, \mathrm{t})=\phi_{r}(x) e^{i \omega_{r} t}$

$$
\begin{align*}
\mathrm{m} \ddot{w}+\left(E I w^{\prime \prime}\right)^{\prime \prime} & =0 \\
-\mathrm{m} \omega_{r}^{2} \phi_{r}+\left(E I \phi_{r}^{\prime \prime}\right)^{\prime \prime} & =0 \tag{1}\\
-\mathrm{m} \omega_{s}^{2} \phi_{s}+\left(E I \phi_{s}^{\prime \prime}\right)^{\prime \prime} & =0 \tag{2}
\end{align*}
$$

Multiply (1) by ϕ_{s} and integrate

$$
\begin{equation*}
\omega_{r}^{2} \int_{0}^{l} \phi_{s} m \phi_{r} d x=\int_{0}^{l} \phi_{s}\left(E I \phi_{r}^{\prime \prime}\right)^{\prime \prime} d x \tag{3}
\end{equation*}
$$

and (2) by ϕ_{r} and integrate

$$
\begin{equation*}
\omega_{s}^{2} \int_{0}^{l} \phi_{r} m \phi_{s} d x=\int_{0}^{l} \phi_{r}\left(E I \phi_{s}^{\prime \prime}\right)^{\prime \prime} d x \tag{4}
\end{equation*}
$$

Orthogonality

Subtract (4) from (3), and integrate by parts

$$
\begin{array}{r}
\left(\omega_{r}^{2}-\omega_{s}^{2}\right) \int_{0}^{l} \phi_{r} m \phi_{s} d x=\left.\phi_{s}\left(E I \phi_{r}^{\prime \prime}\right)^{\prime}\right|_{0} ^{l}-\left.\phi_{s}{ }^{\prime} E I \phi_{r}^{\prime \prime}\right|_{0} ^{l}+\int_{0}^{l} \phi_{s} E I \phi_{r}^{\prime \prime} d x \\
\underbrace{-\phi_{r}}_{\text {defection }} \underbrace{\left.E I \phi_{s}^{\prime \prime}\right)\left.^{\prime}\right|_{0} ^{l}}_{\text {shear }}+\underbrace{\phi_{r}^{\prime}}_{\text {slope }} \underbrace{\left.E I \phi_{s}^{\prime \prime}\right|_{0} ^{l}}_{\text {moment }}-\int_{0}^{\int_{0}^{l} \phi_{r}^{\prime \prime} E I \phi_{s}^{\prime \prime} d x}
\end{array}
$$

Note that all the constant terms on RHS $=0$ because of BC 's
for example: - pinned $\rightarrow \mathrm{w}=0 \Rightarrow \phi=0$

$$
\mathrm{w}^{\prime \prime}=0 \Rightarrow \phi^{\prime \prime}=0
$$

- fixed $\rightarrow \mathrm{w}=0 \Rightarrow \phi=0$

$$
\mathrm{w}^{\prime}=0 \Rightarrow \phi^{\prime}=0
$$

- free $\rightarrow \phi^{\prime \prime}=0$ and $\left(E I \phi^{\prime \prime}\right)^{\prime}=0$

$$
{ }_{27} M=0 \quad S=0
$$

Orthogonality

For $r \neq s$, we have

$$
\begin{gathered}
\int_{0}^{l} \phi_{r}(x) m(x) \phi_{s}(x) d x=0 \\
\int_{0}^{l} \phi_{r}(x) m(x) \phi_{s}(x) d x=\delta_{r s} M_{r}^{*} \\
\text { Also, } \quad \int_{0}^{l} \phi_{s}\left(E I \phi_{r}^{\prime \prime}\right)^{\prime \prime} d x=\delta_{r s} M_{r}^{*} w_{r}^{2}
\end{gathered}
$$

\Rightarrow can transform to normal coordinates

Complete solution

$$
\begin{gathered}
\mathrm{m} \ddot{w}+\left(E I w^{\prime \prime}\right)^{\prime \prime}=f(x, t) \quad \cdots(5) \\
\text { let } \mathrm{w}(\mathrm{x}, \mathrm{t})=\sum_{r=1}^{\infty} \phi_{r}(x) \eta_{r}(t) \quad \cdots(6)
\end{gathered}
$$

Place (6) into (5) and integrate after multiplying with ϕ_{s}

$$
\sum_{r=1}^{\infty} \ddot{\eta} \int_{0}^{l} m \phi_{s} \phi_{r} d x+\sum_{r=1}^{\infty} \eta_{r} \int_{0}^{l} \phi_{s}\left(E I \phi_{r}^{\prime \prime}\right)^{\prime \prime} d x=\int_{0}^{l} \phi_{s} f(x, t) d x
$$

because of orthogonality

$$
\begin{gathered}
{\left[\begin{array}{c}
M_{r} \ddot{\eta}_{r}+M_{r} \omega_{r}^{2} \eta_{r}=Q_{r} \\
\vdots
\end{array}\right]} \\
M_{r}=\int_{0}^{l} \phi_{r}^{2}(x) m(x) d x \\
Q_{r}=\int_{0}^{l} \phi_{r}(x) f(x, t) d x
\end{gathered}
$$

Note : can also show orthogonality conditions hold if $-\left(T w^{\prime}\right)^{\prime}$ term is present

Complete solution

To find I.C.'s on η_{r},

$$
\begin{aligned}
& @ \mathrm{t}=0, \quad \mathrm{w}(\mathrm{x}, 0)=\sum_{r=1}^{\infty} \phi_{r}(x) \eta_{r}(0)=w_{0}(x) \\
& \text { and } \\
& \dot{w}(\mathrm{x}, 0)=\sum_{r=1}^{\infty} \phi_{r}(x) \dot{\eta_{r}}(0)=\dot{w}_{0}(x)
\end{aligned}
$$

Multiply by $m \phi_{s}(x)$ and integrate

$$
\begin{gathered}
\int_{0}^{l} m \phi_{s} w_{0} d x=\sum_{r=1}^{\infty} \eta_{r}(0) \int_{0}^{l} m \phi_{s} \phi_{r} d x=\eta_{s}(0) M_{s}^{*} \\
\quad \Longleftrightarrow\left\{\begin{array}{l}
\eta_{r}(0)=\frac{1}{M_{r}^{*}} \int_{0}^{l} m \phi_{r} w_{0}(x) d x \\
\eta_{r}(0)=\frac{1}{M_{r}^{*}} \int_{0}^{l} m \phi_{r} \dot{w}_{0}(x) d x
\end{array}\right.
\end{gathered}
$$

Rayleigh-Ritz Method

* Energy-based method
- Form of the solutions is assumed to be as :

$$
\mathrm{w}(\mathrm{x}, \mathrm{t}) \approx \sum_{r=1}^{N} \gamma(t) q_{r}(t)
$$

least geometrical boundary condi

Rayleigh-Ritz Method

$$
\begin{aligned}
& \mathrm{T}=\frac{1}{2} \int_{0}^{l} m(x) \sum_{i=1}^{M} \gamma_{i} \dot{q}_{i} \sum_{j=1}^{M} \gamma_{j} \dot{q}_{j} d x=\frac{1}{2} \sum_{i=1}^{M} \sum_{j=1}^{M} \underbrace{\int_{0}^{l} m \gamma_{i}(x) \gamma_{j}(x)}_{m_{i j}^{*}} d x \dot{q}_{i} \dot{q}_{j} \\
& \mathrm{~V}=\frac{1}{2} \int_{0}^{l} E I\left(w^{\prime \prime}\right)^{2} d x=\frac{1}{2} \sum_{i=1}^{M} \sum_{j=1}^{M} \underbrace{\int_{0}^{l} E I(x) \gamma_{i}^{\prime \prime}(x) \gamma_{j}^{\prime \prime}(x) d x q_{i} q_{j}}_{k_{i j}^{*}} \\
& \delta \mathrm{~W}=\int_{0}^{l} f \delta w d x=\sum_{i=1}^{M} \int_{0}^{l} f(x) \gamma_{i} d x \delta q_{i}
\end{aligned}
$$

Plug into Lagrange's equations,

$$
\frac{d}{d t}\left(\frac{\partial T}{\partial q_{i}}\right)-\frac{\partial T}{\partial q_{i}}+\frac{\partial V}{\partial q_{i}}=Q_{i}
$$

which gives

$$
\sum_{i=1}^{M} m_{i j}^{*} \ddot{q}_{j}+\sum_{i=1}^{M} k_{i j}^{*} \ddot{q}_{j}=Q_{i} \quad \text { coupled set of equations! }
$$

Rayleigh-Ritz Method

For a quick and "dirty" way to find the first natural frequency, assume only one mode shape,

$$
m_{11}^{*} \ddot{q}_{1}+k_{11}^{*} q_{1}=Q_{1}
$$

Rayleigh quotient with $\mathrm{q}=\bar{q} e^{i \omega t}$

$$
\omega^{2}=\frac{\int_{0}^{l} E I\left(\gamma_{1}^{\prime \prime}\right)^{2} d x}{\int_{0}^{l} m \gamma_{1}^{2} d x} \quad \ldots \text { upper bound for the }
$$

Clearly we can obtain higher modes by assuming more than one mode

$$
\omega_{r}^{2}=\frac{\{\gamma\}_{r}^{T}[K]\{\gamma\}_{r}}{\{\gamma\}_{r}^{T}[M]\{\gamma\}_{r}}
$$

Galerkin's Method

- Galerkin's method applies to P.D.E. directly - residual method

$$
\int_{\text {Domain }} \gamma_{j}[\text { P.D.E. }] d x=0 \quad \text { for } j=1,2, \ldots, N
$$

- Assumed modes must satisfy all the boundary conditions (geometric and natural ones)

$$
\mathrm{w}(\mathrm{x}, \mathrm{t})=\sum_{i=1}^{N} \gamma_{i}(t) q_{i}(t)
$$

Look at general beams

$$
\mathrm{m} \ddot{w}+\left(E I w^{\prime \prime}\right)^{\prime \prime}-\left(T w^{\prime}\right)^{\prime}=f(x, t)
$$

for a pinned-pinned beam,

$$
\gamma_{j}=\sin \left(\frac{j \pi x}{L}\right)
$$

If γ_{j} is on exact mode shape, P.D.E. would be satisfied exactly But if not \rightarrow error

Galerkin's Method

$$
\mathrm{E}=\mathrm{m} \ddot{w}_{\mathrm{approx}}+\left[E I w_{a p p r o x}^{\prime \prime}\right]^{\prime \prime}-\left[T w_{a p p r o x}^{\prime}\right]^{\prime}-\mathrm{f}
$$

Now set

$$
\int_{0}^{l} h_{i}(x) E(x) d x=0
$$

: Average error in PDE with respect to some weighting function $h_{i}(x)$ that minimize the error in the interval, usually take $h_{i}(x)=\gamma_{i}(x)$

$$
\begin{array}{r}
\sum_{j=1}^{M} \ddot{q}_{j}\left[\int_{0}^{l} \gamma_{i}(x) m(x) \gamma_{j}(x) d x\right]+\sum_{j=1}^{M}\left[\int_{0}^{l} \gamma_{i}\left(E I \gamma_{j}^{\prime \prime}\right)^{\prime \prime} d x-\int_{0}^{l} \gamma_{i}\left(T \gamma_{j}^{\prime}\right)^{\prime} d x\right] \\
\begin{array}{l}
\text { Different from } \\
\text { Rayleigh-Ritz }
\end{array} \quad=\int_{0}^{l} \gamma_{i} f(x, t)
\end{array}
$$

Galerkin's Method

For M different weighting function $\gamma_{1}, \gamma_{2}, \ldots \gamma_{M}$, we have M equations to find M unknowns $q_{1}, q_{2}, \ldots q_{M}$

To find M unknowns $q_{1}, q_{2}, \ldots q_{M}$ in matrix form

$$
\left[m_{i j}\right] \ddot{q}_{j}+\left[k_{i j}\right] q_{j}=Q_{j} \quad \begin{aligned}
& \cdots \text { coupled set of DE's } \\
& \text { (except when } \gamma_{j} \text { is natural mode shape) }
\end{aligned}
$$

Used standard technique, let $\mathrm{q}=\bar{q} e^{i \omega t}$

$$
\left[I \omega^{2}-[m]^{-1}[k]\right] \bar{q}=0
$$

Eigenvalues \rightarrow approximate natural frequencies
Eigenvectors \rightarrow approximate natural mode shapes

Galerkin's Method

Note :
i) more assumed modes \rightarrow better approximation

$$
\begin{aligned}
\phi_{1}(x) & =A \cos \lambda_{1} x+B \sin \lambda_{1} x+C \cosh \lambda_{1} x+D \sinh \lambda_{1} x \\
& =a_{0}+a_{1} x+a_{1} x^{2}+a_{3} x^{3}+\cdots
\end{aligned}
$$

ii) more accurate assumed shapes \rightarrow better approximation
iii) If $\gamma_{j}(x)$ is natural mode shapes, system will be uncoupled
iv) The closer $\gamma_{j}(x)$ is to $\phi(x)$, the less the coupling

Galerkin : very powerful, turn PDE's into ODE's
very general, can also be used in nonlinear problem !!

$$
m \ddot{w}+\left(E I w^{\prime \prime}\right)^{\prime \prime}+F\left(w^{n}\right)=f
$$

v) If Rayleigh-Ritz assumed mode shapes satisfy both geometric and natural B.C.'s, two methods are identical (can be shown by integration by parts)

