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3.1.2.1 RVG - Principles
(Inverse Transform & Rejection Methods)
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= From a probability density function (PDF), f(x) for a<x<b, the corresponding
cumulative probability density function (CDF), F(x) can be defined as

F(x)= [ f(x)dx

=  When a random variable X follows a PDF, f(x) and its corresponding CDF, F(x), it
can be sampled using a random number, &, which is sampled from a uniform
distribution in interval (0,1), as

=F(x) > X=F($)

= Proof:

P(X <x)=P|F (&) <x|= PlE< F(x)]= F(x)
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< Normal Distribution >

£(x)= 12 exp(— (e pt) ];

X=F()
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= A probability that a particle flies as long as ¢ and collides with a atom can be written

as

p(l)=2, exp(-2,/)

P[[] = probability that the particle flies as much as / \

P[] P(l)-P(l+Al) = P(l)-Z,Al

P+ Al
LAl — P'(l)=-2,P(])

= Then, the flight length can be sampled by

E= jo" > exp(-2 1)dl
. B

CIn(1-§)  In&
> X

X =

t t
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= [t 1s common that the CDF and its inverse function for a random variable cannot be
analytically obtained.
= A random variable X, which follows the PDF, f(x) in interval [a,b] can be sampled
by trial and error as
(D Sample Xby X =a+(b—a)-&, using a random number &,.
(2) From another random number &, accept X if &, < f(X) and return to D

elsewhere.

5 > f(X)

S TNE®

6 4 2 0 2 4 6
X=a+(b-a)-&
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In order to enhance the sampling efficiency, the PDF {(Xx) can be represented as

J(x) = Ch(x)g(x)

where C >1, h(x) isalsoaPDF,and 0<g(x)<1 .

Then X can be sampled as

(D Sample X from the PDF of h(x).

(2) Using a random number &, accept X if & < g(X) and reject elsewhere.
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McCARD

= The standard normal distribution can be expressed as

f(x)= —eXp X =Ch(x)g(x), x=0;
T 2
2e (x—1)
C= \/ , h(x)=e ™, g(x)=exp| ————
T 2

= Then X can be sampled by
(D Sample X from h(x).

[[ed=1-e"=¢= X ==-In(1-§) = X =—In¢

(2 If the below condition is satisfies, accept X. The condition is violated, go to step

@.
§£exp{—()(;l)2} — —ln\fﬁ@
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= Method 1
phi=2*PI*RNG->GetRN () ;

sinP=sin(phi); cosP=cos (phi);

=  Method 2
do {
Cl=2.*RNG->GetRN () -
C2=2.*RNG->GetRN () -
C3=Cl*Cl+C2*C2;
}while (C3>1.);
C4=sqgrt (C3); sinP=Cl/C4; cosP=C2/C4;

1.;
1

.
LI 4
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3.1.2.2 Substitution of Variables
in Multiple Integration
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R R

A= Iy gyatetr=?

= By substituting x and y as

uzf, v=% = dx =adu, dy=>bdv

a
the double integrals can be computed by

b

A = .- ..(zjz{yjzsl dxdy

o u2+v2

= 3 abdudv = rab
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= In the double integrations, we are going to change the original set of variables (x,y)
to a set of other variables (u,v).

[[--dxdy =[] dudv

= Then our problem becomes how to convert a small area of AA=AxAy to the
corresponding area of A4A’=AuAv.

= (Consider the two-dimensional linear transformation as
u=a,x+a,y,
v=a,x+a,)
= Then the rectangular area is converted to the area of a parallelogram as

y v

’

X u
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= From the property of the linear transformation, the scaling factor ' in A4 =FAA is
independent of its location and size.

(aiz
A=1

(0,0) (1,0) X (0,

(ar1+aio,a01tas)

az)

(6111,6121)

0) u

= The scaling factor /' becomes the area of the parallelogram:

— ’ — —
F=4= a11a22 a12a21

= Therefore the integration becomes

jj...dxdy :”---F‘ldudv
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= The area of the parallelogram is the absolute value of the determinant of the matrix

formed by the vectors representing the parallelogram's sides.
(a+c.b+d)

(c.d)

(a.b)
(0,0)
= The volume of the parallelepiped is the absolute value of the determinant of the
matrix formed by the rows r1, 2, and 3.

M3 rierars

~ O
Il

e U 8
> Q0 O
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det(A4") = det(A)

det(A™") =1/det(A)

det(AB) = det(A4)det(B)
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=  When the variable x and y are transformed to u and v as
u=u(x,y),

v=v(x,y)
= Then, by the linear approximation Ax and Ay can be written as

Auz=u Ax+u Ay, Av=v Ax+v Ay;
f

f =

JNCEOR

» In the same way to the linear transformation, the small rectangular area in x-y
coordinate becomes a small area of the corresponding parallelogram in u-v

(f Uorv, ¢ =Xx0ry)

coordinate.
Ax,0) = (u Ax,v Ax
( )= ) » Area = Y| AxAy
(0,Ay) = (u Ay, v, Ay) . Y
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In vector calculus, the Jacobian matrix

. . . oF,

is the matrix of all first-order partial —

derivatives of a vector- or scalar-valued ox,

function with respect to another vector. J=| :
oF
Ox,

oF,

ox

n

oF

m

ox,

McCARD

=8(Fl,---,8Fm)
N o(x,,-++,x,)

According to the inverse function theorem, the matrix inverse of the Jacobian matrix
of an invertible function is the Jacobian matrix of the inverse function.

JF ' (p) =[J(F(p)]

If m=n, then F is a function from n-space to n-
space and the Jacobian matrix is a square %
matrix. We can then form its determinant, OX,
known as the Jacobian determinant. The 7 .
Jacobian determinant is sometimes simply

called "the Jacobian." oF,

Oox,

19

oF,

Ox

n

oF

m

Ox

n

=8(Fl,---,8Fm)
N a(x,,-++,x,)
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Sometimes, it 1s often advantageous to evaluate ”f (X, ¥)dxdy in a coordinate

system other than the xy-coordinate system. K

The formula for change of variables is given by

] £ e yyaxdy = [[ f [x(u,v), y(u,v)]

dudv

o(x,y)
0

u,v

where |...| means the absolute value.
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= Let R be the disc of radius 2 centered at the origin. Calculate

” sin(x” + 3 )dxdy = ?
R

= Solution:

cos@ —-rsind
drd 0

j j sin(x? + y*)dxdy = j j sin 7
R f S

x=rcosf, y=rsinf

sin@ rcosd

= 27zjozrsin rdr
*

=t = 2rdr =dt

4
= 7Z'J‘0 sin tdt

= 7Z'(—COSZ‘)|3 =(l—cos4)
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=  Evaluate

H e dxdy
R

where R is the region between the two circles x*+y*=1 and x*+y*=4.

= Solution:

” e dxdy = jozﬂ Ilz e rdrd®
R
2

= Iozﬂ[—%e_rz :| do

1

=(e’' —e™)
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The function exp(-x?) has no elementary anti-derivative. But we can evaluate J' "o dx

—00

by using the theory of double integrals.

(Ji e a’x)2 = (Jj; e dx)(_‘: e dx) = (IZ e dx)(r:o e dy)
= j_i J: &) dxdy

Now transform to polar coordinates x=rcosé, y=rsiné.

(® OO

(J: e a’x)2 =] j_i e ) dxdy
P2 oo 2
=1, IO e’ rdrd@

27T 1 2 ”
= [——e_r } df=rm
2

J0
0

Hence

Iw e dx=r

—00
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3.1.2.3 Generations of
Continuous Random Variables

24 SNU Monte Carlo Lab.



McCARD

= [fZ~N(u,o?), its pdf is given by

_ _(Z—,u)2 —0<Zz<®
f(Z)_a\/ﬂeXp{ 5o } <z<

where £ is the mean and o2 the variance of the distribution.

=  We consider only generation from N(0,1) (standard normal variables), since any
random Z~N(u,0°) can be represented as Z=u+oX, where X is from N(0,1).

= Box and Miiller Algorithm:

* Let Xand Y be two independent standard normal random variables, so (X,Y) is a
random point in the plane.

* Then the pdf of the two random variable, f(x,y) can be expressed as

— L ep 1L vp
/o) (m J(m ]

_ L e—(szry2 )/2
27
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When x=rcosé and y=rsin6, the pdf, f(r,6) becomes

f(x,y)dxdy = f(rcos8,rsinf)

O0(rcosd,rsinf)

— e rdrd®

r,0)=f,(r 0);
= f(r,0) = fr(r) fo(0);

2 1
fr(r)=e /Zr,f®(9) =
2
Then » can be sampled by

F(r)= L)r ey = [—e‘r'm} =1-

- e—r2/2 — é;l

7

0

o(r,0)

= =2

Because € can be generated from the uniform distribution over [0,27], Xand Y

can be sampled by

X = \/Tn.fl cos(27¢,),
y= \/Tn.fl sin(27¢,)

26
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Method 1
phi=2*PI*RNG->GetRN () ;

sinP=sin(phi); cosP=cos (phi);

Method 2
do {
Cl=2.*RNG->GetRN () —
C2=2.*RNG->GetRN () —
C3=Cl*Cl+C2*C2;
}while (C3>1.);

1
1

.
LA 4

.
LI 4

C4=sqgrt (C3); sinP=Cl/C4;

cosP=C2/C4;

27
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McCARD

Let’s consider a uniform distribution in a disc of radius of 1:

1
flx,y)=—; x"+y> <l
v/

Then the corresponding pdf for the polar coordinates becomes

_1o(x,y)
S (x, y)dxdy = o0

m» 0= () fo(0)

1
Jr(r)=2r, fo(0) = Py [0,1)
Therefore the uniform pdf in a disc can be regarded as the multiplication of f4(7) and
Jfo(6) where fo(6) follows the 1sotropic distribution.

Then from the sampled X and Y in the xy-coordinates, the R and ©® can be calculated
by

drd 6 = l rdrd @
T

X =rcoso,

X Y
cosf = ,
y=rsinf - VX 4+Y? VX2 +Y?
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3.1.2.4 Random Variate Generation
from Joint Distribution
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= Letx=(x,, ..., x,) be a column vector in R” and A an m X n matrix. The mapping
x—z, with z=Ax, is called a linear transformation.

=  Now consider a random vector X=(X,, ..., X,)7, and let

7 = AX
Then Z 1s a random vector in R™.

= Let’s see how the expectation vector and covariance matrix of Z are transformed.
n, = E[Z] = E[AX] = AE[X] = Apy

X, =E[(Z-p,)(Z-pn,)"]
= E[(AX - Ap )(AX - Ap,)']
= AE[(X—py)(X—py) JA
—AZ A’
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For a linear transformation z=Ax,

Jx (A™'z)
zZ
12(z) Al
For general transformations
X g,(x)
RN :(X) and z = g(x)
X, g, (X)
, the pdf function for z becomes
og,'
Oz,
f,@) = f (&' @), @) J,ehH=| :
g,
Oz,

31

og,

Oz, p p
. _ a(gl 9'"9agn )

R ey
Oz
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Let X~N(0,1). Then X has density f, given by
1 =

e 2

Sy (x)= \/E

Now consider the transformation Z=x+oX. Then Z has density

£,(2) = exp{— (x‘”)z}

2o 20°

In other words, Z~N(u, ).
If Z~N(,6?), then (Z-u) /o~ N(0,1). This procedure is called standardization.
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McCARD

=  We now generalize this to » dimensions. Let X, ..., X, be independent and standard
normal random variables. The joint pdf of X=(X|, ..., X,)7 is given by

1Y _%xfx
fX(x)_(E] e

= (Consider the affine transformation (that is, a linear transformation plus a constant).
Z=p+BX
= Then the expectation and covariance becomes
n, = E[Z] = E[p+ BX] = E[p]+ BE[X] = p
X, =E[(Z-p, ) Z-p,) ]

= E[(n+BX—p)(p+BX —p)']

= E[(BX)(BX)']

= BE[XX" B’

=BIB’' =BB’
* Any random vector of the form of Z =pn+ BX 1is said to have a jointly normal or

multivariate normal distribution.
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Conversely, given a covariance matrix X, there exists a unique lower triangular
matrix

such that ¥=BB’. This matrix can be obtained efficiently via the Cholesky

decomposition.

34
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Let X be a covariance matrix. Then we wish to find a matrix B such that >=BB.

The Cholesky square root method computes a lower triangular matrix B via a set of
recursive equations as follows:

b, 0 0

b,, b 0
Z=pn+BX; B=| ' %

bnl bn2 e bnn

mp Z=bX+u=>0[Z]=b=b,=\c’[Z]

Z,=b, X, +b,X, + 1, = o’ 1Z,]= bzl2 +b222

cov[Z,,Z,]1= E[(Z, — i )Z, — 1,)]
= E[((b, X, + 1) — ) (byy X, + by X, + 1,) — 11,)]
= E[b11X1 (b21X1 + bszz )]

- b11b21
) ) ¥ 2
= b, = blz = ; , by, = \/222 - 221
11 11 11
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= Generally, the b; can be found by

where by convention,
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