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 In general, the physical quantities estimated by the Monte Carlo method can be 
expressed with the collision density Y as follows:

P=(r,E,W,t) is the set of coordinates (position, energy, angle, and time) in the phase 
space and VT is the region of interest in the phase space. 

 g(P) is the function to represent the contribution from the collision at P to the 
reaction of interest.

• Macroscopic capture rate:

• Flux:

• Microscopic reaction rate:
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 The physical quantity Q can be estimated by scoring this contribution in the 
collisions:

Qi,j denotes the contribution of the j-th collision of history i.

Pi,j denotes the phase space point of the j-th collision of history i.

Wi,j is the particle weight for the j-th collision of history i.

is defined as

 Then the estimate of the mean,       can be calculated by

where N is the total number of histories.

Collision Estimator (Contd.)
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 The statistical uncertainty of      can be estimated by its variance.

Statistical Uncertainty

Q

 Q> Why is the normal distribution commonly encountered in practice?

A> By the central limit theorem, under certain conditions the sum of a number of 
random variables with finite means and variances approaches a normal 
distribution as the number of variables increases.

 Central Limit Theorem

• Let X1, X2, X3, ... Xn be a sequence of n independent and identically 
distributed (i.i.d) random variables each having finite values of expectation 
µ and variance σ2 > 0. 

• The central limit theorem states that as the sample size n increases, the 
distribution of the sample average of these random variables approaches the 
normal distribution with a mean µ and variance σ2 / n irrespective of the 
shape of the original distribution.
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 In a vacuum region, physical quantities cannot be estimated by the collision 
estimator. In addition, the estimation with the collision estimator is less accurate in a 
region where the number of collisions is small.

 The track length estimator overcomes these drawbacks of the collision estimator.

 By the track length estimator, the reaction rate from the j-th track of history i is 
scored as follows:

Li,j is the j-th track (path) length of history i.

(Li,j) means that the reaction cross sections are assumed to be constant in space and 
time along the path Li,j.

Track Length Estimator
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 The surface crossing estimator estimates physical quantities when particles pass 
through a surface in space.

• The particle current is defined by the number of particles that pass through a 
surface per unit area.

• The particle flux is defined by the number of particles that pass through a 
surface along the normal direction per unit area.

 The surface flux is a surface estimator but can be thought of as the limiting case of 
the cell flux or track length estimator when the cell becomes infinitely thin.

 In MCNP or McCARD, |m| is set to 0.05 when |m|<0.1.

Surface Crossing Estimator
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 When a particle grazes the surface, the cosine of the surface-crossing angle is small, 
and the particle’s score can be huge, leading to infinite variances.

 To circumvent this problem, Clark [3] recommended “excluding grazing fluxes 
from the stochastic estimate.”

• The standard estimate of the contribution from grazing angles, which can be 
inferred from Clark’s theoretical analysis, is as follows.

• Let m represent the cosine of the surface-crossing angle and e where |m|<e the 
“grazing band.”

• When |m|>e score 1/|m| as normal, but |m|<e score 2/e.

• For example in MCNP, whenever |m| is less than 0.1, 2/e=20 is scored instead.

• In Ref [4], e=0.01 is suggested.

[3] F. H. Clark, “Variance of Certain Flux Estimators Used in Monte Carlo 
Calculations,” Nucl. Sci. Eng., 27, 235 (1967).

[4] S. A. Dupree and S. K. Fraley, A Monte Carlo Primer: A Practical Approach to 
Radiation Transport, Chapter 7, Kluwer Academic/Plenum Publishers, NY (2002).

Standard Approach for the Surface Flux Tallies
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 For years, the standard estimate has been considered accurate if the angular flux on 
the surface is isotropic or linearly anisotropic. This assumption is due to Clark [3], 
who expanded the surface flux as f(m)=g0+g1m.

 Recently [5,6], however, the accuracy of the standard estimate was found to require 
a very isotropic flux on external surfaces, not a linearly anisotropic flux.

[5] J. A. Favorite, A. D. Thomas, and T. E. Booth, “On the Accuracy of a Common 
Monte Carlo Surface Flux Grazing Approximation,” Nucl. Sci. Eng., 168, (2011).

[6] J. A. Favorite, “Monte Carlo Surface Flux Tallies,” M&C 2011, Rio de Janeiro, 
Brazil, May 8-12 (2011).

Recent Works on the Surface Flux Tallies
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 In a fixed source problem, the net multiplication factor M is defined to be unity plus 
the gain Gf in neutrons from fission plus the gain Gx from nonfission multiplicative 
reactions.

Net Multiplication Factor

1 f xM G G  


