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 In general, the physical quantities estimated by the Monte Carlo method can be 
expressed with the collision density Y as follows:

P=(r,E,W,t) is the set of coordinates (position, energy, angle, and time) in the phase 
space and VT is the region of interest in the phase space. 

 g(P) is the function to represent the contribution from the collision at P to the 
reaction of interest.

• Macroscopic capture rate:

• Flux:

• Microscopic reaction rate:

Collision Estimator
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 The physical quantity Q can be estimated by scoring this contribution in the 
collisions:

Qi,j denotes the contribution of the j-th collision of history i.

Pi,j denotes the phase space point of the j-th collision of history i.

Wi,j is the particle weight for the j-th collision of history i.

is defined as

 Then the estimate of the mean,       can be calculated by

where N is the total number of histories.

Collision Estimator (Contd.)
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 The statistical uncertainty of      can be estimated by its variance.

Statistical Uncertainty

Q

 Q> Why is the normal distribution commonly encountered in practice?

A> By the central limit theorem, under certain conditions the sum of a number of 
random variables with finite means and variances approaches a normal 
distribution as the number of variables increases.

 Central Limit Theorem

• Let X1, X2, X3, ... Xn be a sequence of n independent and identically 
distributed (i.i.d) random variables each having finite values of expectation 
µ and variance σ2 > 0. 

• The central limit theorem states that as the sample size n increases, the 
distribution of the sample average of these random variables approaches the 
normal distribution with a mean µ and variance σ2 / n irrespective of the 
shape of the original distribution.
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 In a vacuum region, physical quantities cannot be estimated by the collision 
estimator. In addition, the estimation with the collision estimator is less accurate in a 
region where the number of collisions is small.

 The track length estimator overcomes these drawbacks of the collision estimator.

 By the track length estimator, the reaction rate from the j-th track of history i is 
scored as follows:

Li,j is the j-th track (path) length of history i.

(Li,j) means that the reaction cross sections are assumed to be constant in space and 
time along the path Li,j.

Track Length Estimator
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 The surface crossing estimator estimates physical quantities when particles pass 
through a surface in space.

• The particle current is defined by the number of particles that pass through a 
surface per unit area.

• The particle flux is defined by the number of particles that pass through a 
surface along the normal direction per unit area.

 The surface flux is a surface estimator but can be thought of as the limiting case of 
the cell flux or track length estimator when the cell becomes infinitely thin.

 In MCNP or McCARD, |m| is set to 0.05 when |m|<0.1.

Surface Crossing Estimator
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 When a particle grazes the surface, the cosine of the surface-crossing angle is small, 
and the particle’s score can be huge, leading to infinite variances.

 To circumvent this problem, Clark [3] recommended “excluding grazing fluxes 
from the stochastic estimate.”

• The standard estimate of the contribution from grazing angles, which can be 
inferred from Clark’s theoretical analysis, is as follows.

• Let m represent the cosine of the surface-crossing angle and e where |m|<e the 
“grazing band.”

• When |m|>e score 1/|m| as normal, but |m|<e score 2/e.

• For example in MCNP, whenever |m| is less than 0.1, 2/e=20 is scored instead.

• In Ref [4], e=0.01 is suggested.

[3] F. H. Clark, “Variance of Certain Flux Estimators Used in Monte Carlo 
Calculations,” Nucl. Sci. Eng., 27, 235 (1967).

[4] S. A. Dupree and S. K. Fraley, A Monte Carlo Primer: A Practical Approach to 
Radiation Transport, Chapter 7, Kluwer Academic/Plenum Publishers, NY (2002).

Standard Approach for the Surface Flux Tallies
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 For years, the standard estimate has been considered accurate if the angular flux on 
the surface is isotropic or linearly anisotropic. This assumption is due to Clark [3], 
who expanded the surface flux as f(m)=g0+g1m.

 Recently [5,6], however, the accuracy of the standard estimate was found to require 
a very isotropic flux on external surfaces, not a linearly anisotropic flux.

[5] J. A. Favorite, A. D. Thomas, and T. E. Booth, “On the Accuracy of a Common 
Monte Carlo Surface Flux Grazing Approximation,” Nucl. Sci. Eng., 168, (2011).

[6] J. A. Favorite, “Monte Carlo Surface Flux Tallies,” M&C 2011, Rio de Janeiro, 
Brazil, May 8-12 (2011).

Recent Works on the Surface Flux Tallies
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 In a fixed source problem, the net multiplication factor M is defined to be unity plus 
the gain Gf in neutrons from fission plus the gain Gx from nonfission multiplicative 
reactions.

Net Multiplication Factor

1 f xM G G  


