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Objectives of This Study

 Recently, the Monte Carlo (MC) Wielandt method for the eigenvalue calculations 
was proposed to accelerate fission source convergence.[1]
( [1] T. Yamamoto and Y. Miyoshi, “Reliable Method for Fission Source Convergence of 
Monte Carlo Criticality Calculation with Wielandt’s Method,” J. Nucl. Sci. Technol. 41, No. 2, 
pp. 99~107 (2004). )

 And it was reported that this method has the potential to eliminate most of the 
underprediction bias in confidence intervals for MC eigenvalue calculations.[2]
( [2] F. Brown, “Wielandt Acceleration for MCNP5 Monte Carlo Eigenvalue Calculations,” 
Joint International Topical Meeting on Mathematics & Computation and Supercomputing in 
Nuclear Applications (M&C+SNA 2007), Monterey, CA, April 15-19 (2007). )

 However, the variance bias or the calculation efficiency using the real variance 
was not quantitatively evaluated for the MC Wielandt calculations.

 The objectives of this paper are 
- to develop a real variance estimation method for the MC Wielandt 
calculations and 
- to analyze the efficiency of the MC Wielandt method by the FOM based on 
the real variance.
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Approaches

 We have ever developed a real variance estimation method by using the inter-cycle 
correlations of the fission source distribution (FSD) for the conventional MC 
eigenvalue calculations. [3]

([3] Hyung Jin Shim and Chang Hyo Kim, “Real Variance Estimation Using an Inter-Cycle 
Fission Source Correlation for Monte Carlo Eigenvalue Calculations,” Nucl. Sci. Eng., 162, 
98-108 (2009).)

 And we found that this method can be readily applicable to the MC Wielandt 
calculations, even in MC runs with the small number of active cycles.

 The presentation contents are 

1. introduction to the real variance estimation method 

using the FSD’s inter-cycle covariance,

2. derivation of the real variance for the MC Wielandt method,

3. efficiency analysis of the MC Wielandt method 

for a very slow convergence problem.
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Variance Bias

 Let us consider an MC eigenvalue calculation based on N active cycles with M
neutron histories per cycle.

 Suppose that      is the estimate of a tally Q from the j-th neutron history at 
active cycle i.

 Then the sample variance of the tally mean,     , is calculated by

means the MC estimate of Q at active cycle i.

 However,              is quite different from its real variance for slow 
convergence problems or problems with dominance ratios very close to 1.

denotes the real or true variance.
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Derivation of Variance Bias
 The real or true variance of       can be written as

 On the other hand, the apparent variance of Q is defined as the expected value 
of the sample variance.

 As Ueki et al. [4] derived the relation between the real variance and the 
apparent variance of the eigenvalue k, the variance bias of              can be 
quantified as

( [4] T. Ueki et al, “Error Estimations and Their Biases in Monte Carlo Eigenvalue 
Calculations,” Nucl. Sci. Eng., 125, 1 (1997). )
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Relation Betw. FSD and Tally

 The tally Q is calculated by using the corresponding detector response in the MC 
simulation as follows:

where

 RQ(P) means a Q contribution from the unit fission source generated at P.
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How to Quantify Tally’s Inter-cycle Covariance 

 Because a finite number of histories is simulated,  RQ(P) and S(P) in Eq. (8) cannot 
be measured in a continuous form. Therefore, one may divide the whole region into 
small nonoverlapping cells with a spatial volume,                                , and define 
their cell-wise discrete functions.

 Then Eq. (7) can be described in a discrete from: 

 From the definition of covariance, tally’s inter-cycle covariance can be written as
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How to Quantify FSD’s Inter-cycle Covariance 
 By the cycle-by-cycle error propagation model [5] and the direct posterior 

estimation method for the stochastic error’s covariance [6],                        of 
Eq. (11) can be expressed as 

is m-th row and n-th column element of the matrix Aj and the matrix A is 
defined by

( [5] E. M. Gelbard and R. E. Prael, “Monte Carlo Work at Argonne National Laboratory, 
ANL-75-2(NEACRP-L-118) (1974).

( [6] H. J. Shim and C. H. Kim, “Stopping Criteria of Inactive Cycle Monte Carlo 
Calculations,” Nucl. Sci. Eng., 157, pp.132-141 (2007). )
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Transport Equation
 The time-independent Boltzmann transport equation for neutrons can be 

written in operator notation as

where
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Conventional MC Power Method
 By inverting T and operating with F on both sides of Eq. (15), we obtain the 

following form

 And the FSD, S and fission operator, H are defined as follows

 The fission operator                                       denotes the number of first-
generation fission neutrons born per unit volume about               , due to a 
parent neutron born per unit volume at                  .

 Inserting Eqs. (19) and (20) into Eq. (18) leads the following eigenvalue 
equation
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as
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MC Wielandt Method

 The Wielandt method is characterized by rewriting Eq. (15) as

ke is an estimated eigenvalue.

 By inverting                   and operating with F on both sides of Eq. (23), we obtain 
the following equation

 Inserting Eq. (19) into Eq. (24) leads the following eigenvalue equation

 Applying the power method to Eq. (25), the FSD is updated iteratively in the 
Wielandt method as 
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Algorithm for MC Wielandt Method (1/2)

 Using Eq. (20), the fission operator      in the Wielandt’s method can be expressed as

 By the Taylor’s series expansion,                       in Eq. (28) can be written as

 Inserting Eq. (29) into Eq. (28) leads to
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Algorithm for MC Wielandt Method (2/2)

 Substitution of Eq. (30) into Eq. (27) leads

 The first term in the RHS of Eq. (31) means the number of first next-cycle fission 
sites generated from        . From comparing this term with the RHS of Eq. (22), one 
can see that it is less by as much as                . And these fission sources of     
generate the second next-cycle fission sites as much as the second term in the RHS 
of Eq. (31).

 In the same way, the next-cycle fission sites from all the generations are sampled. 
This process is exactly the same as the algorithm described in Ref. [1].

( [1] T. Yamamoto and Y. Miyoshi, “Reliable Method for Fission Source Convergence of 
Monte Carlo Criticality Calculation with Wielandt’s Method,” J. Nucl. Sci. Technol., v. 41, n. 
2, pp. 99~107 (2004). )

(31)

1 1
1 1

2

1
1

1 1 1 1

1 1

i i i
i i

e e e

i i
i

e e

S S S
k k k k k

S
k k k



 
 




      
                 

    
            

H
H H

H
H 

1i
eS kH

1iS 

1i
eS kH



14 SNU Monte Carlo Lab.

McCARD

Real Variance Estimation In MC Wielandt 
Calculations

 The sample variance of a tallied nuclear parameter or a tally in the MC Wielandt 
calculations must be biased because of inter-cycle correlations of FSD by Eq. (27).

 From comparing Eq. (27) with Eq. (22), we can see that the only difference is the 
change from the operator H into H'. 

 Therefore the real variance estimation method using FSD’s inter-cycle correlation 
can be directly applied to the MC Wielandt calculations by changing H into H'.
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Results of Source Convergence
 Cycle number of the fission source convergence were diagonized by the Ueki’s 

posterior method.
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Application Results of the IAEA Source Conv. Problem #1
( 10,000 histories X 1,000 active cycles )

ke
CPU Time

(min.)
power

sample variance estimated real variance

R FOM R FOM

(1,3) Assembly

∞ 128 5.38E-04 0.00080 12204.17 0.10200 0.75

10.0 142 6.42E-04 0.00073 13186.95 0.05566 2.27

2.0 279 6.36E-04 0.00070 7318.43 0.04230 2.00

1.5 421 6.41E-04 0.00073 4456.24 0.03673 1.76

1.4 484 6.34E-04 0.00075 3676.01 0.03411 1.78

1.3 581 6.54E-04 0.00076 2979.90 0.02930 2.01

1.2 734 6.54E-04 0.00081 2075.54 0.02801 1.74

1.1 1046 6.46E-04 0.00094 1081.90 0.02160 2.05

(3,3) Assembly

∞ 128 1.55E-04 0.00158 3128.77 0.08420 1.10

10.0 142 1.85E-04 0.00144 3388.95 0.07174 1.37

2.0 279 1.65E-04 0.00145 1705.60 0.05005 1.43

1.5 421 1.66E-04 0.00150 1055.44 0.03806 1.64

1.4 484 1.70E-04 0.00151 906.87 0.03629 1.57

1.3 581 1.56E-04 0.00162 655.84 0.03281 1.60

1.2 734 1.52E-04 0.00171 465.70 0.02878 1.64

1.1 1046 1.64E-04 0.00183 285.46 0.02301 1.81
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ke
CPU Time

(min.)
power

sample variance estimated real variance

R FOM R FOM

(1,3) Assembly

∞ 1253 6.41E-04 0.00023 15082.05 0.02034 1.93 

10.0 1395 6.56E-04 0.00023 13548.18 0.01803 2.20 

2.0 2774 6.65E-04 0.00021 8174.50 0.01251 2.30 

1.5 4215 6.62E-04 0.00023 4484.60 0.01055 2.13 

1.4 4859 6.61E-04 0.00023 3890.80 0.00963 2.22 

1.3 5824 6.57E-04 0.00024 2981.21 0.00900 2.12 

1.2 7430 6.50E-04 0.00026 1991.06 0.00815 2.03 

1.1 10591 6.55E-04 0.00029 1122.66 0.00680 2.04 

(3,3) Assembly

∞ 1253 1.59E-04 0.00049 3322.95 0.02374 1.42 

10.0 1395 1.62E-04 0.00049 2985.00 0.02194 1.49 

2.0 2774 1.61E-04 0.00047 1631.94 0.01523 1.55 

1.5 4215 1.61E-04 0.00048 1029.67 0.01231 1.57 

1.4 4859 1.59E-04 0.00049 857.24 0.01139 1.59 

1.3 5824 1.60E-04 0.00050 686.87 0.01030 1.62 

1.2 7430 1.61E-04 0.00053 479.16 0.00902 1.65 

1.1 10591 1.62E-04 0.00058 280.67 0.00741 1.72 

Application Results of the IAEA Source Conv. Problem #1
( 100,000 histories X 1,000 active cycles )
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Conclusion

 A variance-bias estimation method using an inter-cycle FSD’s correlation in the 
conventional MC eigenvalue calculations is applied to the MC Wielandt 
calculations.

 From the FOM’s based on the estimated real variance for the slow-convergence 
benchmark problem, it was shown that the tally efficiency is enhanced by the 
MC Wielandt calculations.


