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= Recently, the Monte Carlo (MC) Wielandt method for the eigenvalue calculations
was proposed to accelerate fission source convergence.[1]

([1] T. Yamamoto and Y. Miyoshi, “Reliable Method for Fission Source Convergence of
Monte Carlo Criticality Calculation with Wielandt’s Method,” J. Nucl. Sci. Technol. 41, No. 2,
pp. 99~107 (2004). )

= And it was reported that this method has the potential to eliminate most of the
underprediction bias in confidence intervals for MC eigenvalue calculations.[2]

( [2] F. Brown, “Wielandt Acceleration for MCNPS5 Monte Carlo Eigenvalue Calculations,”
Joint International Topical Meeting on Mathematics & Computation and Supercomputing in
Nuclear Applications (M&C+SNA 2007), Monterey, CA, April 15-19 (2007). )

= However, the variance bias or the calculation efficiency using the real variance
was not quantitatively evaluated for the MC Wielandt calculations.

= The objectives of this paper are

- to develop a real variance estimation method for the MC Wielandt
calculations and

- to analyze the efficiency of the MC Wielandt method by the FOM based on
the real variance.
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= We have ever developed a real variance estimation method by using the inter-cycle
correlations of the fission source distribution (FSD) for the conventional MC
eigenvalue calculations. [3]

([3] Hyung Jin Shim and Chang Hyo Kim, “Real Variance Estimation Using an Inter-Cycle
Fission Source Correlation for Monte Carlo Eigenvalue Calculations,” Nucl. Sci. Eng., 162,
98-108 (2009).)

= And we found that this method can be readily applicable to the MC Wielandt
calculations, even in MC runs with the small number of active cycles.

= The presentation contents are
1. introduction to the real variance estimation method
using the FSD’s inter-cycle covariance,
. derivation of the real variance for the MC Wielandt method,
3. efficiency analysis of the MC Wielandt method
for a very slow convergence problem.
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= Letus consider an MC eigenvalue calculation based on N active cycles with M
neutron histories per cycle.

= Suppose that Q;— is the estimate of a tally O from the j-th neutron history at
active cycle i.

= Then the sample variance of the tally mean, Q, is calculated by

2| 1 SRy i =\

S[Q] M (I — I)EE(Q]—Q), .................... (1)

LSS0 or0=L%0. 0130
Q_—MZZQJ or Q_ N;Q > Q _MZQJ‘ (2)

i=l j=1

O’ means the MC estimate of Q at active cycle i.

= However, 0; [Q] is quite different from its real variance for slow
convergence problems or problems with dominance ratios very close to 1.

o’ [@] _ E[O-; [@ﬂ 'Bias'l 3)

o’ [Q] denotes the real or true variance.
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= The real or true variance of O can be written as

#[0]-+[0'|-+[o]

= On the other hand, the apparent variance of Q is defined as the expected value
of the sample variance.

o [é] _ E[a§ [éﬂ ____________________ (5)

= As Ueki et al. [4] derived the relation between the real variance and the
apparent variance of the eigenvalue £, the variance bias of & [Q} can be

quantified as
1 N-1

2oy 2V -helee] (©)

=1

( [4] T. Ueki et al, “Error Estimations and Their Biases in Monte Carlo Eigenvalue
Calculations,” Nucl. Sci. Eng., 125, 1 (1997).)
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= The tally Q is calculated by using the corresponding detector response in the MC
simulation as follows:

O=R%S (7)

where
ROS=[dPRO(PS(P) ®)
R(P)=Y | dPgPH|dPK (P —>PYT(PP) ©)

P= (ra Ea Q)a
g(P) =response function for the tally Q at P,
K,(P'—> P)=06(P' - P),
K,(P'—>P)= jd}q ---J‘de_lK(Pj_l — P)---K(P' = P),
K(P'—>P)=C(";E',Q — E,Q)T(E,Q;r' — r) = transport kernel

S(P) = fission source distribution.

=  R2(P) means a Q contribution from the unit fission source generated at P.
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= Because a finite number of histories is simulated, R2(P) and S(P) in Eq. (8) cannot
be measured in a continuous form. Therefore, one may divide the whole region into
small nonoverlapping cells with a spatial volume, ¥, (m=L2,---,N, ) and define
their cell-wise discrete functions.

= Then Eq. (7) can be described in a discrete from:

Nm
Q _ ZRQS .................... (10)
S = ij jE jﬂ S(r, E,Q)drdEdQ = ij S(P)dP
0 _ 0
RO = ij R2(P)S(P)dP / ij S(P)dP
= From the definition of covariance, tally’s inter-cycle covariance can be written as

cov| 0,0 |= EHNZMRmS; —NZmRmE[Sm]j[NZmRm,S;Tl - NZmRm,E[Sm,]ﬂ

Nz mR R, COV[S’ S’”} """""""""" (11)

m:
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By the cycle-by-cycle error propagation model [5] and the direct posterior
estimation method for the stochastic error’s covariance [6], cov[S; ,S,jj,’] of
Eq. (11) can be expressed as

eovla, e, = E[(., - E[ss ) (50, -£[stls7])] a3y

a,fm is m-th row and n-th column element of the matrix AJ and the matrix A is
defined by

Asz(H—SO-TT-H), .................... (14)

0
7 = N, dimensional row vector (1,1,---,1), H = fission matrix,

S, = main mode fission source distribution, &, = main mode eigenvalue.
([5] E. M. Gelbard and R. E. Prael, “Monte Carlo Work at Argonne National Laboratory,
ANL-75-2(NEACRP-L-118) (1974).

( [6] H. J. Shim and C. H. Kim, “Stopping Criteria of Inactive Cycle Monte Carlo

Calculations,” Nucl. Sci. Eng., 157, pp.13%—141 (2007).) T e



* The time-independent Boltzmann transport equation for neutrons can be
written in operator notation as

Ty = %F 772 (15)

where Ty =[Q-V+3,(r,E)|y(r,E,Q)
~[dE'[dQz (v, B, Q' —> E,.Qu(r,E,Q) (16)
Fy = %f)jdE'J. dQ'V(E')Zf r,Ew(r,E Q) — (17)

2. (r, E) = total cross section
2 (r; E", Q" — E,Q) = scattering cross section from E', Q' to £, Q
v (E) =fission spectrum
v(E") = mean number of fission neutrons produced in a fission

T ,(r, E") =fission cross section

k = mutiplication factor
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= By inverting T and operating with F on both sides of Eq. (15), we obtain the

following form |

Fy=—|FT" |Fy —— (18)
v = [ FT" |Fy
= And the FSD, S and fission operator, H are defined as follows
S=F v e (19)
H=FT' e (2())

* The fission operator H(r', E', Q' — r, E,Q) denotes the number of first-
generation fission neutrons born per unit volume about (r, £, Q), due to a
parent neutron born per unit volume at (r', E',Q").

= Inserting Egs. (19) and (20) into Eq. (18) leads the following eigenvalue

equation |
s—~@ms 21)
k
= In the conventional MC eigenvalue calculations, the FSD is iteratively updated
as i
— p= HS'+¢ (22)
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= The Wielandt method is characterized by rewriting Eq. (15) as

1 11
Ty -——Fw=|——— |Fv e 23
Wklﬂ[k ke]w (23)

e

k, 1s an estimated eigenvalue.

= By inverting (T ~-F/k, )and operating with F on both sides of Eq. (23), we obtain
the following equation

= [Inserting Eq. (19) into Eq. (24) leads the following eigenvalue equation

-1

1 1 1
S L T (25) H=F M-—F| (26)

k k, k.

= Applying the power method to Eq. (25), the FSD is updated iteratively in the
Wielandt method as
S — 1_1 . L HrSi—l L e (27)
k' k,
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= Using Eq. (20), the fission operator H' in the Wielandt’s method can be expressed as

-1 -1 -1 -1
H' =F M—LF =F M—LHM =F I—E M| =FM"' I—E
k, k, k, k,

-1
H
= H(I - k_] ____________________ (28)
= By the Taylor’s series expansion, (I - H/ k, )_1 in Eq. (28) can be written as
-1 2
H H H
1__ :1+_+ _ deee (29)
ke ke ke
= Inserting Eq. (29) into Eq. (28) leads to
H ay, (.
H' =H 1+—+(k—J + (30)
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= Substitution of Eq. (30) into Eq. (27) leads

go( LDy [ L1 )gf(H)s
Kok, Kk, k.

2
+ 1_1 _i H E Si—l +—|-gl .................... (31)
k' k k

e e

= The first term in the RHS of Eq. (31) means the number of first next-cycle fission
sites generated from $§°”\ From comparing this term with the RHS of Eq. (22), one
can see that it is less by as much as HS"™ / k,. And these fission sources of HS"'/k,
generate the second next-cycle fission sites as much as the second term in the RHS
of Eq. (31).

= In the same way, the next-cycle fission sites from all the generations are sampled.
This process is exactly the same as the algorithm described in Ref. [1].

([1] T. Yamamoto and Y. Miyoshi, “Reliable Method for Fission Source Convergence of
Monte Carlo Criticality Calculation with Wielandt’s Method,” J. Nucl. Sci. Technol., v. 41, n.
2, pp- 99~107 (2004). )
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= The sample variance of a tallied nuclear parameter or a tally in the MC Wielandt
calculations must be biased because of inter-cycle correlations of FSD by Eq. (27).

= From comparing Eq. (27) with Eq. (22), we can see that the only difference is the
change from the operator H into H'.

= Therefore the real variance estimation method using FSD’s inter-cycle correlation
can be directly applied to the MC Wielandt calculations by changing H into H'.
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= (Cycle number of the fission source convergence were diagonized by the Ueki’s
posterior method.

K convergence required
¢ cycle time (min.)
0 944 57.4
25
10 907 61.8
2.0 810 109.9
2.0
1.5 695 142.9
a‘ | 1.4 538 127.5
>
g O \ \f 13 293 83.7
S 1.2 373 1354
= 1.0 H 1.1 277 143.2
e
0.5 1
00 _ AT .A,;WA%.@\},‘_ ot
! | ! | ! 1
0 500 1000 1500
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CPU Time sample variance estimated real variance

ke (min.) POWST R FOM R FOM

(1,3) Assembly

%0 128 5.38E-04 0.00080 12204.17 0.10200 0.75
10.0 142 6.42E-04 0.00073 13186.95 0.05566 2.27
2.0 279 6.36E-04 0.00070 7318.43 0.04230 2.00

1.5 421 6.41E-04 0.00073 4456.24 0.03673 1.76

1.4 484 6.34E-04 0.00075 3676.01 0.03411 1.78

1.3 581 6.54E-04 0.00076 2979.90 0.02930 2.01

1.2 734 6.54E-04 0.00081 2075.54 0.02801 1.74

1.1 1046 6.46E-04 0.00094 1081.90 0.02160 2.05

(3,3) Assembly

%0 128 1.55E-04 0.00158 3128.77 0.08420 1.10
10.0 142 1.85E-04 0.00144 3388.95 0.07174 1.37
2.0 279 1.65E-04 0.00145 1705.60 0.05005 1.43

1.5 421 1.66E-04 0.00150 1055.44 0.03806 1.64

1.4 484 1.70E-04 0.00151 906.87 0.03629 1.57

1.3 581 1.56E-04 0.00162 655.84 0.03281 1.60

1.2 734 1.52E-04 0.00171 465.70 0.02878 1.64

1.1 1046 1.64E-04 0.00183 285.46 0.02301 1.81
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K, CPU.Time sower sample variance estimated real variance
(min.) R FOM R FOM
(1,3) Assembly

0 1253 6.41E-04 0.00023 15082.05 0.02034 1.93

10.0 1395 6.56E-04 0.00023 13548.18 0.01803 2.20
2.0 2774 6.65E-04 0.00021 8174.50 0.01251 2.30

1.5 4215 6.62E-04 0.00023 4484.60 0.01055 213
1.4 4859 6.61E-04 0.00023 3890.80 0.00963 2.22

1.3 5824 6.57E-04 0.00024 2981.21 0.00900 2.12

1.2 7430 6.50E-04 0.00026 1991.06 0.00815 2.03

1.1 10591 6.55E-04 0.00029 1122.66 0.00680 2.04

(3,3) Assembly

o0 1253 1.59E-04 0.00049 3322.95 0.02374 1.42
10.0 1395 1.62E-04 0.00049 2985.00 0.02194 1.49
2.0 2774 1.61E-04 0.00047 1631.94 0.01523 1.55

1.5 4215 1.61E-04 0.00048 1029.67 0.01231 1.57

1.4 4859 1.59E-04 0.00049 857.24 0.01139 1.59

1.3 5824 1.60E-04 0.00050 686.87 0.01030 1.62

1.2 7430 1.61E-04 0.00053 479.16 0.00902 1.65

1.1 10591 1.62E-04 0.00058 280.67 0.00741 1.72
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A variance-bias estimation method using an inter-cycle FSD’s correlation in the

conventional MC eigenvalue calculations is applied to the MC Wielandt
calculations.

From the FOM’s based on the estimated real variance for the slow-convergence

benchmark problem, it was shown that the tally efficiency is enhanced by the
MC Wielandt calculations.
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