Module #5 - Algorithms

2008-08-09 =

Module #5:
Algorithms

Rosen 5t ed., §2.1
~31 slides, ~1 lecture

(€)2001-2002;, Michael P. Frank &




Module #5 - Algorithms

Chapter 2: More Fundamentals

e §2.1: Algorithms (Formal procedures)

o §2.2: Complexity of algorithms
— Analysis using order-of-growth notation.

e §2.3: The Integers & Division
— Some basic number theory.

e §2.6: Matrices
— Some basic linear algebra.

2008-08-09 = : (€)2001-2002;, Michael P. Frank &




Module #5 - Algorithms

§2.1: Algorithms

The foundation of computer programming.

Most generally, an algorithm just means a definite
procedure for performing some sort of task.

A computer program is simply a description of an
algorithm in a language precise enough for a
computer to understand, requiring only operations
the computer already knows how to do.

We say that a program implements (or “is an
Implementation of”) its algorithm.

2008-08-09 = : (€)2001-2002;, Michael P. Frank &



Module #5 - Algorithms

Algorithms You Already Know

 Grade school arithmetic algorithms:

— How to add any two natural numbers written in
decimal on paper using carries.

— Similar: Subtraction using borrowing.
— Multiplication & long division.

e Your favorite cooking recipe.
* How to register for classes at UF.

2008-08-09 = : (€)2001-2002;, Michael P. Frank &



Module #5 - Algorithms

Programming Languages

e Some common programming languages:

— Newer: Java, C, C++, Visual Basic, JavaScript,
Perl, Tcl, Pascal

— Older: Fortran, Cobol, Lisp, Basic
— Assembly languages, for low-level coding.

e |n this class we will use an informal, Pascal-
like “pseudo-code” language.

e You should know at least 1 real language!

2008-08-09 = : (€)2001-2002;, Michael P. Frank &



Module #5 - Algorithms

Algorithm Example (English)

Task: Given a sequence {a;}=a,,...,a,,
a;eN, say what its largest element is.

Set the value of a temporary variable v
(largest element seen so far) to a,’s value.

Look at the next element a, in the sequence.
If a,>v, then re-assign v to the number a..

Repeat previous 2 steps until there are no
more elements in the sequence, & return v.

2008-08-09 = : (€)2001-2002;, Michael P. Frank &




Module #5 - Algorithms

Executing an Algorithm

* \When you start up a piece of software, we
say the program or its algorithm are being
run or executed by the computer.

* Glven a description of an algorithm, you
can also execute It by hand, by working
through all of its steps on paper.

e Before ~WWII, “computer” meant a person
whose job was to run algorithms!

2008-08-09 = : (€)2001-2002;, Michael P. Frank &



Module #5 - Algorithms

2008-08-09 =

Executing the Max algorithm

Let {a;}=7,12,3,15,8. Find its maximum...
Setv=a,="1.

Look at next element: a, = 12.
Is a,>v? Yes, so change v to 12.
Look at next element: a, = 3.

Is 3>12? No, leave v alone....
Is 15>127 Yes, v=15...

(€)2001-2002;, Michael P. Frank &



Module #5 - Algorithms

Algorithm Characteristics

Some important features of algorithms:
Input. Information or data that comes in.
Output. Information or data that goes out.
Definiteness Precisely defined.

Finiteness. Won’t take forever to descrlbe or run.
Effectiveness. Individual steps are all do-able.
Generality. Works for many possible inputs.
Efficiency. Takes little time & memory to run.




Module #5 - Algorithms

Our Pseudocode Language: §A?2
1R T s

| —
rocedure

1le condition
statement

/1 —
Agrochame(argumen
ondition then N '
statement [else L feturn expression

\statement]

2008-08-09 = : (¢)2001-2002; Michael P. Frank



Module #5 - Algorithms

procedure procname(arg: type)

* Declares that the following text defines a
procedure named procname that takes
Inputs (arguments) named arg which are
data objects of the type type.

— Example:
procedure maximum(L: list of integers)
[statements defining maximum...]

2008-08-09 = : (€)2001-2002;, Michael P. Frank &



Module #5 - Algorithms

variable - = expression

« An assignment statement evaluates the
expression expression, then reassigns the
variable variable to the value that results.

— Example:
V I= 3X+7 (If x1s 2, changes v to 13.)

 |In pseudocode (but not real code), the
expression might be informal:

— X -=the largest integer in the list L

2008-08-09 = : (€)2001-2002;, Michael P. Frank &



Module #5 - Algorithms

Informal statement

e Sometimes we may write a statement as an
Informal English imperative, if the meaning
IS still clear and precise: “swap x and y”

o Keep in mind that real programming
languages never allow this.

* \When we ask for an algorithm to do so-and-
so, writing “Do so-and-so” isn’t enough!
— Break down algorithm into detailed steps.

2008-08-09 = : (€)2001-2002;, Michael P. Frank &



Module #5 - Algorithms

begin statements end

e Groups asequence of Je Allows sequence to be
statements together: used like a single

DEQIN statement.

statement 1  Might be used:

statement 2 — After a procedure

e declaration.
statement n — In an if statement after
end then or else.

— In the body of a for or
while loop.

2008-08-09 = : (€)2001-2002;, Michael P. Frank &



Module #5 - Algorithms

{comment}

Not executed (does nothing).

Natural-language text explaining some
aspect of the procedure to human readers.

Also called a remark in some real
programming languages.

Example:
— {Note that v iIs the largest integer seen so far.}

2008-08-09 = : (€)2001-2002;, Michael P. Frank &



Module #5 - Algorithms

If condition then statement

 Evaluate the propositional expression
condition.

o |If the resulting truth value is true, then

execute the statement statement: otherwise,
just skip on ahead to the next statement.

e Variant: if cond then stmtl else stmt2
Like before, but iff truth value is false,

executes stmt2.

2008-08-09 = : (€)2001-2002;, Michael P. Frank &



Module #5 - Algorithms

while condition statement

 Evaluate the propositional expression
condition.

* |If the resulting value is true, then execute
statement.

o Continue repeating the above two actions
over and over until finally the condition
evaluates to false; then go on to the next
statement.

2008-08-09 = : (€)2001-2002;, Michael P. Frank &



Module #5 - Algorithms

while condition statement

 Also equivalent to infinite nested ifs, like so:

begin
statement
If condition
begin
statement
...(continue Infinite nested If’s)
end

end

2008-08-09 = : (€)2001-2002;, Michael P. Frank &



Module #5 - Algorithms

for var = Initial to final stmt

Initial is an integer expression.

Final is another integer expression.
Repeatedly execute stmt, first with variable
var - = initial, then with var - = initial+1,
then with var == Initial+2, etc., then finally
with var == final.

What happens if stmt changes the value that
Initial or final evaluates t0?

2008-08-09 = : (€)2001-2002;, Michael P. Frank &



Module #5 - Algorithms

for var = Initial to final stmt

e For can be exactly defined in terms of

while, like so: :
begin

var :=initial
while var < final
begin
stmt
var =var+1
end

end

2008-08-09 = : (€)2uu1-2uyg; Ivncnael#, Frank s




Module #5 - Algorithms

procedure(argument)

» A procedure call statement invokes the
named procedure, giving it as Its input the
value of the argument expression.

 Various real programming languages refer
to procedures as functions (since the
procedure call notation works similarly to
function application f(x)), or as subroutines,
subprograms, or methods.

2008-08-09 = : (€)2001-2002;, Michael P. Frank &



Module #5 - Algorithms

Max procedure In pseudocode

procedure max(a,, a,, ..., &,: Integers)
v:i=a, {largestelement so far}
fori1 :=2ton {go thru rest of elems}
If a, >vthenv :=a, {found bigger?}

{at this point v’s value Is the same as
the largest integer in the list}

return v

2008-08-09 = : (€)2001-2002;, Michael P. Frank &




Module #5 - Algorithms

Another example task

e Problem of se

arching an ordered list.

— Given a list L of n elements that are sorted into

a definite orc
— And given a

er (e.g., numeric, alphabetical),
particular element x,

— Determine w

nether x appears in the list,

— and If so, return its index (position) in the list.

 Problem occu

rs often in many contexts.

o Let’s find an efficient algorithm!

2008-08-09

(€)2001-2002;, Michael P. Frank &



Module #5 - Algorithms

Search alg. #1: Linear Search

procedure linear search
(X: Integer, a,, a,, ..., a,: distinct integers)

| - =
while (I<n A X#a)
| 2=1+1
If 1 <nthen location =1
else location =0
return location {index or O if not found}

2008-08-09 = : (€)2001-2002;, Michael P. Frank &



Module #5 - Algorithms

Search alg. #2: Binary Search

e Basic idea: On each step, look at the middle
element of the remaining list to eliminate
half of it, and quickly zero in on the desired

element.

2008-08-09 = : (€)2001-2002;, Michael P. Frank &




Module #5 - Algorithms

Search alg. #2: Binary Search

procedure binary search

(X:integer, a,, a,, ..., a,: distinct integers)

| =1 {left endpoint of search interval}

J -=n {right endpoint of search interval}

while i<j begin {while interval has >1 item}
m ==L (i+j)/2] {midpoint}
If x>a_ theni z=m+lelsej z=m

end

If X = a, then location =1 else location =0

return location

2008-08-09 = : (€)2001-2002;, Michael P. Frank &



Module #5 - Algorithms

Practice exercises

e 2.1.3: Devise an algorithm that finds the
sum of all the integers in a list. [2 min]

e procedure sum(a,, a,, ..., a,: integers)
s:=0 {sum of elems so far}
fori :=1ton {go thru all elems}
s o= s+a, {addcurrentitem}
{at this point s is the sum of all items}
return s

2008-08-09 = : (€)2001-2002;, Michael P. Frank &



Module #5 - Algorithms

2008-08-09

Review §2.1: Algorithms

Characteristics of algorithms.

Pseudocode.

Examples: Max algorithm, linear search & binary
search algorithms.
Intuitively we see that binary search is much faster

than linear search, but how do we analyze the
efficiency of algorithms formally?

Use methods of algorithmic complexity, which
utilize the order-of-growth concepts from §1.8.

(€)2001-2002;, Michael P. Frank &



Module #5 - Algorithms

Review: max algorithm

procedure max(a,, a,, ..., &,: Integers)
v:i=a, {largestelement so far}
fori1 :=2ton {go thru rest of elems}
If a, >vthenv :=a, {found bigger?}

{at this point v’s value Is the same as
the largest integer in the list}

return v

2008-08-09 = : (€)2001-2002;, Michael P. Frank &



Module #5 - Algorithms

Review: Linear Search

procedure linear search
(X: Integer, a,, a,, ..., a,: distinct integers)

| - =
while (I<n A X#a)
| 2=1+1
If 1 <nthen location =1
else location =0
return location {index or O if not found}

2008-08-09 = : (€)2001-2002;, Michael P. Frank &



Module #5 - Algorithms

Review: Binary Search

e Basic idea: On each step, look at the middle
element of the remaining list to eliminate
half of it, and quickly zero in on the desired

element.

2008-08-09 = : (€)2001-2002;, Michael P. Frank &



Module #5 - Algorithms

Review: Binary Search

procedure binary search

(X:integer, a,, a,, ..., a,: distinct integers)

| =1 {left endpoint of search interval}

J -=n {right endpoint of search interval}

while i<j begin {while interval has >1 item}
m ==L (i+j)/2] {midpoint}
If x>a_ theni z=m+lelsej z=m

end

If X = a, then location =1 else location =0

return location

2008-08-09 = : (€)2001-2002;, Michael P. Frank &



