

Orders of Growth (§1.8)

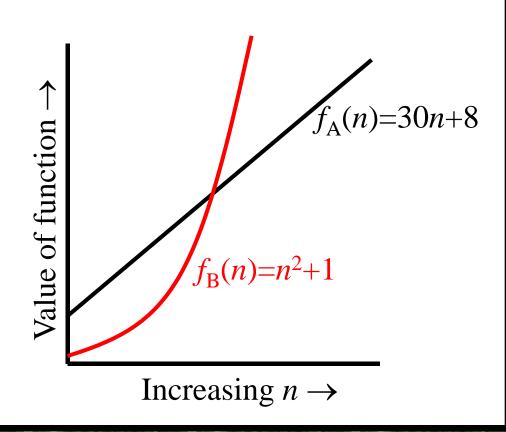
- For functions over numbers, we often need to know a rough measure of *how fast a function grows*.
- If f(x) is faster growing than g(x), then f(x) always eventually becomes larger than g(x) in the limit (for large enough values of x).
- Useful in engineering for showing that one design *scales* better or worse than another.

Orders of Growth - Motivation

- Suppose you are designing a web site to process user data (*e.g.*, financial records).
- Suppose database program A takes $f_A(n)=30n+8$ microseconds to process any n records, while program B takes $f_B(n)=n^2+1$ microseconds to process the n records.
- Which program do you choose, knowing you'll want to support millions of users?

Visualizing Orders of Growth

• On a graph, as you go to the right, a faster growing function eventually becomes larger...



Concept of order of growth

- We say $f_A(n)=30n+8$ is order n, or O(n). It is, at most, roughly proportional to n.
- $f_B(n)-n^2+1$ is order n^2 , or $O(n^2)$. It is roughly proportional to n^2 .
- Any $O(n^2)$ function is faster-growing than any O(n) function.
- For large numbers of user records, the $O(n^2)$ function will always take more time.

Definition: O(g), at most order g

Let g be any function $\mathbf{R} \rightarrow \mathbf{R}$.

- Define "at most order g", written O(g), to be: $\{f: \mathbf{R} \rightarrow \mathbf{R} \mid \exists c, k: \forall x > k: f(x) \le cg(x)\}$.
 - "Beyond some point k, function f is at most a constant c times g (i.e., proportional to g)."
- "f is at most order g", or "f is O(g)", or "f=O(g)" all just mean that $f \in O(g)$.
- Sometimes the phrase "at most" is omitted.

Points about the definition

- Note that f is O(g) so long as any values of c and k exist that satisfy the definition.
- But: The particular c, k, values that make the statement true are not unique: Any larger value of c and/or k will also work.
- You are **not** required to find the smallest *c* and *k* values that work. (Indeed, in some cases, there may be no smallest values!)

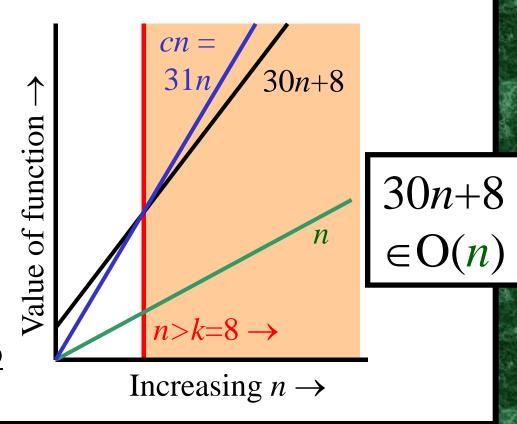
However, you should **prove** that the values you choose do work.

"Big-O" Proof Examples

- Show that 30n+8 is O(n).
 - Show $\exists c,k$: $\forall n>k$: $30n+8 \le cn$.
 - Let c=31, k=8. Assume n>k=8. Then cn=31n=30n+n>30n+8, so 30n+8 < cn.
- Show that n^2+1 is $O(n^2)$.
 - Show $\exists c,k$: $\forall n>k$: $n^2+1 \leq cn^2$.
 - Let c=2, k=1. Assume n>1. Then $cn^2 = 2n^2 = n^2 + n^2 > n^2 + 1$, or $n^2 + 1 < cn^2$.

Big-O example, graphically

- Note 30n+8 isn't less than n anywhere (n>0).
- It isn't even less than 31n everywhere.
- But it *is* less than 31n everywhere to the right of n=8.



Useful Facts about Big O

- Big O, as a relation, is transitive: $f \in O(g) \land g \in O(h) \rightarrow f \in O(h)$
- O with constant multiples, roots, and logs... $\forall f \text{ (in } \omega(1)) \& \text{ constants } a,b \in \mathbb{R}, \text{ with } b \ge 0, af, f^{1-b}, \text{ and } (\log_b f)^a \text{ are all } O(f).$
- Sums of functions: If $g \in O(f)$ and $h \in O(f)$, then $g+h \in O(f)$.

More Big-O facts

- $\forall c > 0$, O(cf) = O(f+c) = O(f-c) = O(f)
- $f_1 \in O(g_1) \land f_2 \in O(g_2) \rightarrow$

$$-f_1f_2 \in \mathcal{O}(g_1g_2)$$

$$-f_1 + f_2 \in O(g_1 + g_2)$$

$$= O(\max(g_1, g_2))$$

$$= O(g_1) \text{ if } g_2 \in O(g_1)$$

(Very useful!)

Orders of Growth (§1.8) - So Far

- For any $g: \mathbf{R} \to \mathbf{R}$, "at most order g", $O(g) \equiv \{f: \mathbf{R} \to \mathbf{R} \mid \exists c, k \ \forall x > k \ |f(x)| \le |cg(x)|\}.$
 - Often, one deals only with positive functions and can ignore absolute value symbols.
- " $f \in O(g)$ " often written "f is O(g)" or "f = O(g)".
 - The latter form is an instance of a more general convention...

Order-of-Growth Expressions

- "O(f)" when used as a term in an arithmetic expression means: "some function f such that $f \in O(f)$ ".
- E.g.: " $x^2+O(x)$ " means " x^2 plus some function that is O(x)".
- Formally, you can think of any such expression as denoting a set of functions: " $x^2+O(x)$ " := $\{g \mid \exists f \in O(x): g(x)=x^2+f(x)\}$

Order of Growth Equations

- Suppose E_1 and E_2 are order-of-growth expressions corresponding to the sets of functions S and T, respectively.
- Then the "equation" $E_1 = E_2$ really means $\forall f \in S, \exists g \in T : f = g$ or simply $S \subseteq T$.
- Example: $x^2 + O(x) = O(x^2)$ means $\forall f \in O(x)$: $\exists g \in O(x^2)$: $x^2 + f(x) = g(x)$

Useful Facts about Big O

• $\forall f,g \& \text{ constants } a,b \in \mathbb{R}, \text{ with } b \ge 0,$

$$-af = O(f);$$
 (e.g. $3x^2 = O(x^2)$)

$$-f+O(f) = O(f);$$
 (e.g. $x^2+x = O(x^2)$)

• Also, if $f=\Omega(1)$ (at least order 1), then:

$$- |f|^{1-b} = O(f);$$
 (e.g. $x^{-1} = O(x)$)

$$-(\log_b |f|)^a = O(f)$$
. (e.g. $\log x = O(x)$)

$$-g = O(fg) \qquad (e.g. x = O(x \log x))$$

$$-fg \neq O(g)$$
 $(e.g. \ x \log x \neq O(x))$

$$-a=O(f)$$
 (e.g. $3 = O(x)$)

Definition: $\Theta(g)$, exactly order g

- If $f \in O(g)$ and $g \in O(f)$ then we say "g and f are of the same order" or "f is (exactly) order g" and write $f \in \Theta(g)$.
- Another equivalent definition:

$$\Theta(g) \equiv \{f: \mathbf{R} \to \mathbf{R} \mid \exists c_1 c_2 k \ \forall x > k: \ |c_1 g(x)| \le |f(x)| \le |c_2 g(x)| \ \}$$

• "Everywhere beyond some point k, f(x) lies in between two multiples of g(x)."

Rules for Θ

- Mostly like rules for O(), except:
- $\forall f,g>0$ & constants $a,b \in \mathbb{R}$, with b>0, $af \in \Theta(f)$, but \leftarrow Same as with O. $f \notin \Theta(fg)$ unless $g=\Theta(1) \leftarrow$ Unlike O. $|f|^{1-b} \notin \Theta(f)$, and \leftarrow Unlike with O. $(\log_b |f|)^c \notin \Theta(f)$. \leftarrow Unlike with O.
- The functions in the latter two cases we say are *strictly of lower order* than $\Theta(f)$.

Module #6 – Orders of Growth

Θ example

• Determine whether:
$$\left(\sum_{i=1}^{n} i\right)^{?} \in \Theta(n^2)$$

• Quick solution:

$$\left(\sum_{i=1}^{n} i\right) = n(n-1)/2$$

$$= n \Theta(n)/2$$

$$= n \Theta(n)$$

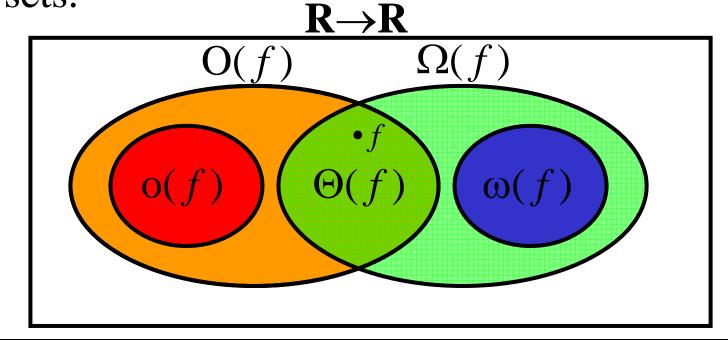
$$= \Theta(n^{2})$$

Other Order-of-Growth Relations

- $\Omega(g) = \{f \mid g \in O(f)\}$ "The functions that are *at least order g*."
- $o(g) \{f \mid \forall c > 0 \ \exists k \ \forall x > k : |f(x)| < |cg(x)|\}$ "The functions that are *strictly lower order* than g." $o(g) \subset O(g) - \Theta(g)$.
- $\omega(g) = \{f \mid \forall c > 0 \; \exists k \; \forall x > k : |cg(x)| < |f(x)| \}$ "The functions that are *strictly higher order* than g." $\omega(g) \subset \Omega(g) \Theta(g)$.

Relations Between the Relations

• Subset relations between order-of-growth sets.

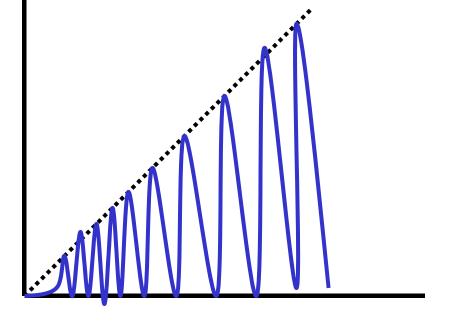


Module #6 – Orders of Growth

Why $o(f) \subset O(x) - \Theta(x)$

• A function that is O(x), but neither o(x) nor

 $\Theta(x)$:



Strict Ordering of Functions

- Temporarily let's write $f \prec g$ to mean $f \in O(g)$, $f \sim g$ to mean $f \in \Theta(g)$
- Note that $f \prec g \Leftrightarrow \lim_{x \to \infty} \frac{f(x)}{g(x)} = 0.$
- Let k>1. Then the following are true: $1 \prec \log \log n \prec \log n \sim \log_k n \prec \log^k n$ $\prec n^{1/k} \prec n \prec n \log n \prec n^k \prec k^n \prec n! \prec n^n \dots$

Review: Orders of Growth (§1.8)

Definitions of order-of-growth sets, $\forall g: \mathbf{R} \rightarrow \mathbf{R}$

•
$$O(g) \equiv \{f \mid \exists c>0 \exists k \forall x>k |f(x)| < |cg(x)|\}$$

•
$$o(g) \equiv \{f \mid \forall c > 0 \exists k \ \forall x > k \ |f(x)| < |cg(x)|\}$$

•
$$\Omega(g) \equiv \{f \mid g \in O(f)\}$$

•
$$\omega(g) \equiv \{f \mid g \in o(f)\}$$

•
$$\Theta(g) \equiv O(g) \cap \Omega(g)$$