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§2.4: The Integers and Division

* Of course you already know what the
integers are, and what division i1s...

* But: There are some specific notations,
terminology, and theorems associated with
these concepts which you may not know.

* These form the basics of number theory.

— Vital in many important algorithms today (hash
functions, crypto natures).
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Divides, Factor, Multiple

Let a,beZ with a=0.

alb =*“a divides b” :=“dcel.. b=ac”
“There 1s an 1nteger ¢ such that ¢ times a
equals b.”

— Example: 3|-12 < True, but 3|7 < False.

Iff a divides b, then we say a 1s a factor or a
divisor of b, and b 1s a multiple of a.

“bi1seven” :=2|b. Is 0 even? Is —4?
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Facts re: the Divides Relation

e Ya,b,c € Z:
1. al0
2.(alb Analc) > a | (b+ )
3.alb — a|bc
4. (alb A blc) — alc
* Proof of (2): a|b means there is an s such that

b=as, and a|c means that there 1s a ¢ such that
c=at, so b+c = as+at = a(s+t), so a|(b+c) also.l
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More Detailed Version of Proof

Show Va,b,c € Z: (alb ~ a|lc) > a | (b+ ¢).

Let a, b, c be any integers such that a|b and
alc, and show thata | (b + ¢).

By defn. of |, we know ds: b=as, and
dt: c=at. Lets, t, be such integers.

Then b+c = as + at = a(s+t), so
du: b+c=au, namely u=s+t. Thus a|(b+c).
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Prime Numbers

* An integer p>1 is prime 1iff 1t 1s not the
product of any two integers greater than 1:
p>1 A —=da,beN: a>1, b>1, ab=p.
* The only positive factors of a prime p are 1
and p itself. Some primes: 2,3,5,7,11,13...

* Non-prime integers greater than 1 are called
composite, because they can be composed
by multiplying two integers greater than 1.
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Review of §2.4 So Far

* alb & “adivides b” < dcel.:: b=ac
* “p1s prime’ &
p>1 A—daeN: (1 <a<pAalp)

« Terms factor, divisor, multiple, composite.
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Fundamental Theorem of Arithmetic

* Every positivé[integer has a unique
representationlas the product of a non-
decreasing series of zero or more primes.

— 1 = (product of empty series) = 1

— 2 =2 (product of series with one element 2)

— 4 =2-2 (product of series 2,2)

— 2000 =2-2-2:2-5-5-5; 2001 = 3-23-29;
2002 =2-7-11-13; 2003 =2003
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An Application of Primes
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* When you visit a secure web site (https:...
address, indicated by padlock icon in IE, key 1con
in Netscape), the browser and web site may be
using a technology called RSA encryption.

T

is public-key cryptography scheme involves

exchanging public keys containing the product pg
of two random large primes p and g (a private key)
which must be kept secret by a given party.

So, the security of your day-to-day web
transactions depends critically on the fact that all
known factoring algorithms are intractable!

— Note: There is a tractable qguantum algorithm for factoring; so if

we can ever build big quantum computers, RSA will be insecure.
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The Division “Algorithm”

Really just a theorem, not an algorithm. ..

— The name 1s used here for historical reasons.

For any integer dividend a and divisor d#0,
there 1s a unique 1nteger quotient g and
remainder reN>a=dqg+rand 0 <r <|d|.

(such that)

Va, del, d>0: dlg,reZ: 0<r<|d|, a=dqg+r.

We can find g and » by: g=

ald], r=a—qd.
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Greatest Common Divisor

* The greatest common divisor gcd(a,b) of integers
a,b (not both 0) 1s the largest (most positive)
integer d that 1s a divisor both of @ and of b.

d = ged(a,b) = max(d: dla A d|b) <
dandbnVeel, (elanelb) —>d=>e

« Example: gcd(24,36)=?

Positive common divisors: 1,2,3,4,6,12...
Greatest 1s 12.
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GCD shortcut

 If the prime factorizations are written as
a b

a=pips..pi and b=p’pr.. p>,
then the GCD 1s given by:

_ in(a;,by)  min(ay,b,) in(a, b, )
ng(d,b) _ plmln ay b p;nm a, b, 3 .p;nm a
« Example:
— a=84=2237  =2231.7!
— b=96=2-22-2:2:3 =2531.70
— gcd(84,96) =22.31.70=2.2-3 =12,
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Relative Primality

 Integers a and b are called relatively prime
or coprime 1ff their gcd = 1.
— Example: Neither 21 and 10 are prime, but they

are coprime. 21=3-7 and 10=2-5, so they have
no common factors > 1, so their gcd = 1.

* A set of integers {a,,a,,...} 1S (pairwise)
relatively prime 1f all pairs a;, a;, i#j, are
relatively prime.
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Least Common Multiple

* Icm(a,b) of positive integers a, b, 1s the smallest
positive integer that 1s a multiple both of a and of

b. E.g. lcm(6,10)=30
m = lcm(a,b) = min(m: alm A bjm) <
alm A blm A Nnel: (aln A bln) — (m <n)

 If the prime factorizations are written as
b

a asr an _ 1 b2 bn
a=p'py>...p;rand  b=p/'p,...p}
then the LCM 1s given by

max(al 9b1 ) max(a2 9b2 ) max(an 9bn )

lem(a,b) = p, P> .- P,
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The mod operator

An 1mteger “division remainder” operator.

Let a,deZ with d>1. Then a mod d denotes
the remainder » from the division
“algorithm” with dividend a and divisor d;
i.e. the remainder when a 1s divided by d.
(Using e.g. long division.)

We can compute (¢ mod d) by: a — d-La/d]
In C programming language, “%” = mod.
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Modular Congruence

Let Z'={neZ | n>0}, the positive integers.
Leta,beZ, meZ".

Then a is congruent to b modulo m, written
“a=b (mod m)”, ift m | a—b .

Also equivalent to: (a—b) mod m = 0.

(Note: this 1s a different use of “=" than the
meaning “1s defined as” I’ve used before.)
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Spiral Visualization of mod

Example shown:
modulo-5
arithmetic
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Useful Congruence Theorems

e LetabelZ, meZ". Then:
a=b (mod m) < dkeZ a=b+km.
e Leta,b,c.deZ, meZ”. Then if
a=b (mod m) and c=d (mod m), then:
* g+c = b+d (mod m), and
* ac = bd (mod m)
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Rosen §2.5: Integers & Algorithms

» Topics:
— Euclidean algorithm for finding GCD’s.
— Base-b representations of integers.

 Especially: binary, hexadecimal, octal.

4L 21OV PeRAA Y}

numbers.

— Algorithms for computer arithmetic:

 Binary addition, multiplication, division.
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Euclid’s Algorithm for GCD _

* Finding GCDs by comparing prime
factorizations can be difficult if the
prime factors are unknown.

* Euclid discovered: For all integers a, b, Euclid of

Alexandria

gcd(a, b) = gcd((a mod b), b). 325265 B

* Sort a,b so that a>b, and then (given H>1)
(a mod b) < a, so problem 1s simplified.
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Euclid’s Algorithm Example

e gcd(372,164) = gcd(372 mod 164, 164).
— 372 mod 164 = 372-164/372/164 | = 372-164-2 =
372-328 =44,
e gcd(164,44) = gcd(164 mod 44, 44).
— 164 mod 44 = 164—44] 164/44 ] = 164—-44-3 = 164—132
= 32.
e gcd(44,32) = gcd(44 mod 32, 32) = ged(12, 32) =
gcd(32 mod 12, 12) = gcd(8,12) = gcd(12 mod 8,
8) = gcd(4,8) = gcd(8 mod 4, 4) = gcd(0,4) = 4.
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Euclid’s Algorithm Pseudocode

procedure gcd(a, b: positive integers)
while 5 = 0
r-=amodb;, a:=b, b:=r

return a Sorting inputs not needed b/c order
will be reversed each iteration.

Fast! Number of while loop iterations
turns out to be O(log(max(a,b))).
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Base-b number systems

* Ordinarily we write base-10 representations
of numbers (using digits 0-9).
10 1sn’t special; any base b>1 will work.

* For any positive integers n,b there 1s a
unique sequence a, g -+ 1 of digits a.<b

such that k y
S
l

expanszon
29
i=0 of n

See module #12 for summation notation.
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Particular Bases of Interest

Used only because
 Base =10 (decimal): we have 10 fingers

10 digits: 0,1,2,3,4,5,6,7,8,9. Used

internally 1n

 Base b=2 (binary): <« A1l modern
2 digits: 0,1. (“Bits”="binary digits.”)| computers

* Base =38 (OCtal): «— Octal digits correspond to
8 digits: 0,1,2,3,4,5,6,7. groups of 3 bits

* Base b=16 (hexadecimal):

16 digits: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E F
Hex dlglt give groups of 4 bits

8/9/2008 4 _ (€)2001-2008; ) 45
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Converting to Base b

(Algorithm, informally stated)
* To convert any integer n to any base b>1:

e To find the value of the rightmost (lowest-
order) digit, simply compute » mod b.

» Now replace n with the quotient | #/b_.

« Repeat above two steps to find subsequent
digits, until n 1s gone (=0).

Exercise for student: Write this out in pseudocode...
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Addition of Binary Numbers

procedure add(a,_,...ay, b,_,...b,: binary

representations of non-negative integers a,b)

carry =0

for bitIndex .= 0 to n—1 {go through bits}
bitSum = abit]ndex+b bitIndex—i_Car ry {2_blt Sum}
Spindex <= DiItSUm mod 2 {low bit of sum}
carry = bitSum | 2| {high bit of sum}

S =carry

n

return s, ...s,: binary representation of integer s
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Two’s Complement

In binary, negative numbers can be conveniently
represented using two'’s complement notation.

In this scheme, a string of n bits can represent any
integer i such that —271 <j <2771,

The bit 1in the highest-order bit-position (n—1)
represents a coefficient multiplying —27°1;

— The other positions i < n—1 just represent 2/, as before.

The negation of any n-bit two’s complement
numbera =a, ,...a,1s givenby a,_...a, + 1.

The bitwise logical complement of the n-bit string a,_,...q,,.
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Correctness of Negation Algorithm

 Theorem: For an integer a represented 1n
two’s complement notation, —a =a + 1.

* Proof:a=—-qa, 2" +a 2"+ ...+ ay2’,
so—a=a, 2"'—a ,2"2— ... —ay2"
Note a, 2" 1= (1-a,_,)2" 1 =2"m1—qg 271
But 271 =22+ . +2%+ 1. So we have
—a=—a, 2" +(1-a,,)2" 2+ ...+

(1—ay)2°+ 1 =a+ 1.
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Subtraction of Binary Numbers

procedure subtract(a,_,...ay, b, ;...b,: binary
two’s complement representations of
integers a,b)

return add(a, add(b,1)) {a+ (-b)}

This fails if either of the adds causes a carry

1S | Causes a carry
into or out of the n—1 position, since
2n—2_|_2n—2 ;é _2n—1, and _2n—1 + (_2n—1) = —n
1sn’t representable!
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Multiplication of Binary Numbers

procedure multiply(a,_,...ay, b,
representations of a,beN)

_q...by: binary
product =
for i :=0ton—1

if b, =1 then

product :=add(a,_,.. .ao(zi, product)

return product i extra 0-bits
appended after
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Binary Division with Remainder

procedure div-mod(a,d € Z") {Quotient & rem. of a/d.}
n = max(length of a in bits, length of d in bits)
for i == n—1 downto O
if a >d0’then  {Can we subtract at this position?}
q; =1 {This bit of quotient is 1.}
a:=a—d0" {Subtract to get remainder.}
else
q,:=0 {This bit of quotient 1s 0.}
ri=a
return g.r {g = quotient, » = remainder}
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