Module \#9: Matrices

Rosen $5^{\text {th }}$ ed., $\S 2.7$
~18 slides, ~ 1 lecture

§2.7 Matrices

- A matrix (say MAY-trix) is a rectangular array of objects (usually numbers).

Not our meaning!

- An $m \times n$ (" m by n ") matrix has exactly m horizontal rows, and n vertical columns.
- Plural of matrix $=$ matrices $\left[\begin{array}{cc}2 & 3 \\ 5 & -1\end{array}\right] \times 2$ (say MAY-trih-sees)

| 5 | -1 |
| :--- | :--- | matrix

- An $n \times n$ matrix is called a square matrix, whose order is n.

Note: The singular form of "matrices" is "matrix," not "MAY-trih-see"!

Applications of Matrices

Tons of applications, including:

- Solving systems of linear equations
- Computer Graphics, Image Processing
- Models within Computational Science \& Engineering
- Quantum Mechanics, Quantum Computing
- Many, many more...

Matrix Equality

- Two matrices A and B are equal iff they have the same number of rows, the same number of columns, and all corresponding elements are equal.

$$
\left[\begin{array}{cc}
3 & 2 \\
-1 & 6
\end{array}\right] \neq\left[\begin{array}{ccc}
3 & 2 & 0 \\
-1 & 6 & 0
\end{array}\right]
$$

Row and Column Order

- The rows in a matrix are usually indexed 1 to m from top to bottom. The columns are usually indexed 1 to n from left to right. Elements are indexed by row, then column.

$$
\mathbf{A}=\left[a_{i, j}\right]=\left[\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m, 1} & a_{m, 2} & \cdots & a_{m, n}
\end{array}\right]
$$

Matrices as Functions

- An $m \times n$ matrix $\mathbf{A}=\left[a_{i, j}\right]$ of members of a set S can be encoded as a partial function

$$
f_{\mathrm{A}}: \mathbb{N} \times \mathbb{N} \rightarrow S,
$$

such that for $i<m, j<n, f_{\mathbf{A}}(i, j)=a_{i, j}$.

- By extending the domain over which f_{A} is defined, various types of infinite and/or multidimensional matrices can be obtained.

Matrix Sums

- The sum $\mathbf{A}+\mathbf{B}$ of two matrices \mathbf{A}, \mathbf{B} (which must have the same number of rows, and the same number of columns) is the matrix (also with the same shape) given by adding corresponding elements.
- $\mathbf{A}+\mathbf{B}=\left[a_{i, j}+b_{i, j}\right]$

$$
\left[\begin{array}{cc}
2 & 6 \\
0 & -8
\end{array}\right]+\left[\begin{array}{cc}
9 & 3 \\
-11 & 3
\end{array}\right]=\left[\begin{array}{cc}
11 & 9 \\
-11 & -5
\end{array}\right]
$$

Matrix Products

- For an $m \times k$ matrix \mathbf{A} and a $k \times n$ matrix \mathbf{B}, the product $\mathbf{A B}$ is the $m \times n$ matrix:

$$
\mathbf{A B}=\mathbf{C}=\left[c_{i, j}\right] \equiv\left[\sum_{\ell=1}^{k} a_{i, \ell} b_{\ell, j}\right]
$$

- I.e., element (i, j) of $\mathbf{A B}$ is given by the vector dot product of the i th row of \mathbf{A} and the j th column of \underline{B} (considered as vectors).
- Note: Matrix multiplication is not commutative!

Matrix Product Example

- An example matrix multiplication to practice in class:
$\left[\begin{array}{ccc}0 & 1 & -1 \\ 2 & 0 & 3\end{array}\right] \cdot\left[\begin{array}{cccc}0 & -1 & 1 & 0 \\ 2 & 0 & -2 & 0 \\ 1 & 0 & 3 & 1\end{array}\right]=\left[\begin{array}{cccc}1 & 0 & -5 & -1 \\ 3 & -2 & 11 & 3\end{array}\right]$

Identity Matrices

- The identity matrix of order n, \mathbf{I}_{n}, is the order-n matrix with 1's along the upper-left to lower-right diagonal and 0's everywhere else.

$$
\boldsymbol{I}_{n}=\left[\left\{\begin{array}{l}
1 \text { if } i=j \\
0 \text { if } i \neq j
\end{array}\right]=\left[\begin{array}{cccc}
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right]\right.
$$

Review: §2.6 Matrices, so far

Matrix sums and products:

$$
\begin{aligned}
& \mathbf{A}+\mathbf{B}=\left[a_{i, j}+b_{i, j}\right] \\
& \mathbf{A B}=\mathbf{C}=\left[c_{i, j}\right] \equiv\left[\sum_{\ell=1}^{k} a_{i, \ell} b_{\ell, j}\right]
\end{aligned}
$$

Identity matrix of order n :

$$
\mathbf{I}_{n}=\left[\delta_{i j}\right] \text {, where } \delta_{i j}=1 \text { if } i=j \text { and } \delta_{i j}=0 \text { if } i \neq j .
$$

Matrix Inverses

- For some (but not all) square matrices A, there exists a unique multiplicative inverse \mathbf{A}^{-1} of \mathbf{A}, a matrix such that $\mathbf{A}^{-1} \mathbf{A}=\mathbf{I}_{n}$.
- If the inverse exists, it is unique, and $\mathbf{A}^{-1} \mathbf{A}=\mathbf{A} \mathbf{A}^{-1}$.
- We won't go into the algorithms for matrix inversion...

Matrix Multiplication Algorithm

procedure matmul(matrices A: $m \times k, \mathbf{B}: k \times n$)

for $i:=1$ to $m \quad\} \Theta(m) \quad$ What's the Θ of its for $j:=1$ to n begin $\Theta \Theta(n) \cdot($ time complexity?

$$
c_{i j}:=0
$$

for $q:=1$ to k
$\} \Theta(1)+$
$\Theta(m n k)$

Powers of Matrices

If \mathbf{A} is an $n \times n$ square matrix and $p \geq 0$, then:

- $\mathbf{A}^{p} \equiv \underbrace{\mathbf{A A A A} \cdots \mathbf{A}}_{p \text { times }}$

$$
\begin{aligned}
& \left(\mathbf{A}^{0} \equiv \mathbf{I}_{n}\right) \\
& \begin{array}{cc}
{\left[\begin{array}{cc}
2 & 1 \\
-1 & 0
\end{array}\right]} & =\left[\begin{array}{cc}
2 & 1 \\
-1 & 0
\end{array}\right] \cdot\left[\begin{array}{cc}
2 & 1 \\
-1 & 0
\end{array}\right] \cdot\left[\begin{array}{cc}
2 & 1 \\
-1 & 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
2 & 1 \\
-1 & 0
\end{array}\right] \cdot\left[\begin{array}{cc}
3 & 2 \\
-2 & -1
\end{array}\right] \\
& =\left[\begin{array}{cc}
4 & 3 \\
-3 & -2
\end{array}\right]
\end{array}
\end{aligned}
$$

Module \#9 - Matrices

Matrix Transposition

- If $\mathbf{A}=\left[a_{i j}\right]$ is an $m \times n$ matrix, the transpose of \mathbf{A} (often written \mathbf{A}^{t} or \mathbf{A}^{T}) is the $n \times m$ matrix given by $\mathbf{A}^{\mathbf{t}}=\mathbf{B}=\left[b_{i j}\right]=\left[a_{j i}\right](1 \leq i \leq n, 1 \leq j \leq m)$

Module \#9 - Matrices

Symmetric Matrices

- A square matrix \mathbf{A} is symmetric iff $\mathbf{A}=\mathbf{A}^{\mathrm{t}}$.

$$
\text { I.e., } \forall i, j \leq n: a_{i j}=a_{j i} .
$$

- Which is symmetric?

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 1 \\
1 & 1
\end{array}\right]\left(\left[\begin{array}{ccc}
-2 & 1 & 3 \\
1 & 0 & -1 \\
3 & -1 & 2
\end{array}\right]\left[\begin{array}{ccc}
3 & 0 & 1 \\
0 & 2 & -1 \\
1 & 1 & -2
\end{array}\right]\right.
$$

Zero-One Matrices

- Useful for representing other structures.
- E.g., relations, directed graphs (later in course)
- All elements of a zero-one matrix are 0 or 1
- Representing False \& True respectively.
- The meet of \mathbf{A}, \mathbf{B} (both $m \times n$ zero-one matrices):
$-\mathbf{A} \wedge \mathbf{B}: \equiv\left[a_{i j} \wedge b_{i j}\right]=\left[a_{i j} b_{i j}\right]$
- The join of \mathbf{A}, \mathbf{B} :
$-\mathbf{A} \vee \mathbf{B}: \equiv\left[a_{i j} \vee b_{i j}\right]$

Boolean Products

- Let $\mathbf{A}=\left[a_{i j}\right]$ be an $m \times k$ zero-one matrix, $\&$ let $\mathbf{B}=\left[b_{i j}\right]$ be a $k \times n$ zero-one matrix,
- The boolean product of \mathbf{A} and \mathbf{B} is like normal matrix \times, but using \vee instead + in the row-column "vector dot product."

$$
\mathbf{A} \odot \mathbf{B}=\mathbf{C}=\left[c_{i j}\right]=\left[\bigvee_{\ell=1}^{k} a_{i \ell} \wedge b_{\ell j}\right]
$$

Boolean Powers

- For a square zero-one matrix \mathbf{A}, and any $k \geq 0$, the $k t h$ Boolean power of \mathbf{A} is simply the Boolean product of k copies of \mathbf{A}.
- $\mathbf{A}^{[k]} \equiv \mathbf{A} \odot \mathbf{A} \odot \ldots \odot \mathbf{A}$
k times

