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§2.7 Matrices

•• A A matrixmatrix (say MAY(say MAY--trix) is a rectantrix) is a rectan--( y( y ))
gular array of objects (usually numbers).gular array of objects (usually numbers).

•• AnAn mm××nn (“(“mm byby nn”) matrix has exactly”) matrix has exactly mm
Not
our

meaning!•• An An mm××nn (( mm by by nn ) matrix has exactly ) matrix has exactly mm
horizontal rows, and horizontal rows, and nn vertical columns.vertical columns.
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whose whose orderorder is is nn.. Note: The singular form
of “matrices” is “matrix,”
not “MAY-trih-see”!
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Applications of Matrices

Tons of applications, including:Tons of applications, including:
•• Solving systems of linear equationsSolving systems of linear equations
•• Computer Graphics Image ProcessingComputer Graphics Image Processing•• Computer Graphics, Image ProcessingComputer Graphics, Image Processing
•• Models within Computational Science & Models within Computational Science & 

EngineeringEngineering
•• Quantum Mechanics Quantum ComputingQuantum Mechanics Quantum Computing•• Quantum Mechanics, Quantum ComputingQuantum Mechanics, Quantum Computing
•• Many, many more…Many, many more…
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Matrix Equality

•• Two matrices Two matrices AA and and BB are equal iff they are equal iff they 
have the same number of rows, the same have the same number of rows, the same 
number of columns, and all corresponding number of columns, and all corresponding , p g, p g
elements are equal.elements are equal.
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Row and Column Order

•• The rows in a matrix are usually indexed 1 The rows in a matrix are usually indexed 1 
to to mm from top to bottom.  The columns are from top to bottom.  The columns are 
usually indexed 1 to usually indexed 1 to nn from left to right.  from left to right.  yy gg
Elements are indexed by row, then column.Elements are indexed by row, then column.
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Matrices as Functions

•• An An mm××nn matrix matrix AA = [= [aaii,,jj] of members of a ] of members of a jj
set set SS can be encoded as a partial function can be encoded as a partial function 

ffAA: : ℕℕ××ℕℕ→→SS, , ffAA ,,
such that for such that for ii<<mm, , jj<<nn,, ffAA((ii, , jj) = ) = aaii,,jj..

•• By extending the domain over whichBy extending the domain over which ff isis•• By extending the domain over which By extending the domain over which ffAA is is 
defined, various types of infinite and/or defined, various types of infinite and/or 
multidimensional matrices can be obtained.multidimensional matrices can be obtained.
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Matrix Sums

•• The The sumsum AA++BB of two matrices of two matrices AA, , BB (which (which 
mustmust have the same number of rows, and have the same number of rows, and 
the same number of columns) is the matrix the same number of columns) is the matrix ))
(also with the same shape) given by adding (also with the same shape) given by adding 
corresponding elementscorresponding elementscorresponding elements.corresponding elements.

•• AA++BB = [= [aaii,,jj++bbii,,jj]]
⎤⎡⎤⎡⎤⎡
⎥
⎦

⎤
⎢
⎣

⎡
−−

=⎥
⎦

⎤
⎢
⎣

⎡
−

+⎥
⎦

⎤
⎢
⎣

⎡
− 511

911
311
39

80
62

8/9/2008 (c)2001-2003, Michael P. Frank 7



Module #9 - Matrices

Matrix Products

•• For an For an mm××kk matrix matrix AA and a and a kk××nn matrix matrix BB, the , the 
dd ABAB i hi h iiproductproduct ABAB is the is the mm××nn matrix:matrix:
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•• I.e.I.e., element (, element (ii,,jj) of ) of ABAB is given by the vector is given by the vector dot dot 
productproduct of theof the iith row ofth row of AA and theand the jjth column ofth column of

⎦⎣ 1l

productproduct of the of the iith row of th row of AA and the and the jjth column of th column of 
BB (considered as vectors).(considered as vectors).
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•• Note: Matrix multiplication is Note: Matrix multiplication is notnot commutative!commutative!



Module #9 - Matrices

Matrix Product Example

•• An example matrix multiplication to An example matrix multiplication to 
practice in class:practice in class:
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Identity Matrices

•• The The identity matrix of order n, identity matrix of order n, IInn,, is the is the 
orderorder--nn matrix with 1’s along the uppermatrix with 1’s along the upper--left left 
to lowerto lower--right diagonal and 0’s everywhere right diagonal and 0’s everywhere g g yg g y
else.  else.  
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Review: §2.6 Matrices, so far

Matrix sums and products:Matrix sums and products:
AA++BB = [= [aaii,,jj++bbii,,jj]]
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Identity matrix of order Identity matrix of order nn::
II = [= [δδ ] where] where δδ =1 if=1 if ii==jj andand δδ =0 if=0 if ii≠≠jjIInn = [= [δδijij], where ], where δδijij=1 if =1 if ii==jj and and δδijij=0 if =0 if ii≠≠jj..
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Matrix Inverses

•• For some (but not all) square matrices For some (but not all) square matrices AA, , 
there exists a unique multiplicative there exists a unique multiplicative inverseinverse
AA--11 of of AA, a matrix such that , a matrix such that AA--11AA = = IInn..,, nn

•• If the inverse exists, it is unique, and If the inverse exists, it is unique, and 
AA--11AA AAAA--11AA--11AA = = AAAA--11..

•• We won’t go into the algorithms for matrix We won’t go into the algorithms for matrix 
inversion...inversion...
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Matrix Multiplication Algorithm

procedureprocedure matmulmatmul(matrices (matrices AA: : mm××kk, , BB: : kk××nn))
forfor ii := 1 := 1 toto mm

forfor jj := 1:= 1 toto nn beginbegin
What’s the Θ of its
time complexity?

Θ(m)·

forfor jj := 1 := 1 toto nn beginbegin
ccijij := 0:= 0

p y
Θ(n)·(

Θ(1)+ Answer:
Θ(mnk)jj

forfor qq := 1 := 1 toto kk
++ bb

Θ(k) ·

Θ(1))

Θ(mnk)

ccijij := := ccijij + a+ aiqiqbbqjqj

endend {{CC=[=[ccijij] is the product of ] is the product of AA and and BB}}
Θ(1))
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Powers of Matrices

If If AA is an is an nn××nn square matrix and square matrix and pp≥≥0, then:0, then:
•• AApp ≡≡ AAA···A    AAA···A    ((AA00 ≡≡ IInn))
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Matrix Transposition

•• If If AA=[=[aaijij] is an ] is an mm××nn matrix, the matrix, the transposetranspose of of jj
AA (often written (often written AAtt or or AATT) is the ) is the nn××mm matrix matrix 
given by given by AAt t = = BB = [= [bbijij] = [] = [aajiji] (1] (1≤≤ii≤≤nn,1,1≤≤jj≤≤mm))g yg y [[ ijij] [] [ jiji] (] ( ,, jj ))
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Symmetric Matrices

•• A square matrix A square matrix AA is is symmetricsymmetric iff iff AA==AAtt. . 
I.e.I.e., , ∀∀ii,,jj≤≤nn: : aaijij = a= aji ji ..

•• Which is symmetric?Which is symmetric?Which is symmetric?Which is symmetric?
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Zero-One Matrices

•• Useful for representing other structures.Useful for representing other structures.
–– E.g.E.g., relations, directed graphs (later in course), relations, directed graphs (later in course)

•• All elements of a All elements of a zerozero--oneone matrix are 0 or 1matrix are 0 or 1
–– Representing Representing False False & & True True respectively.respectively.

•• The The meetmeet of of AA, , B B (both (both mm××nn zerozero--one matrices):one matrices):,, (( ))
–– AA∧∧B B ::≡≡ [[aaijij∧∧bbijij] = [] = [aaij ij bbijij]]

•• TheThe joinjoin ofof AA BB::•• The The joinjoin of of AA, , BB::
–– AA∨∨B B ::≡≡ [[aaijij∨∨bbijij]]
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Boolean Products

•• Let Let AA=[=[aaijij] be an ] be an mm××kk zerozero--one matrix,one matrix,jj
& let & let BB=[=[bbijij] be a ] be a kk××nn zerozero--one matrix,one matrix,

•• TheThe boolean productboolean product ofof AA andand BB is likeis likeThe The boolean productboolean product of of AA and and BB is like is like 
normal matrix normal matrix ××, but using , but using ∨∨ instead + in instead + in 
the rowthe row column “vector dot product ”column “vector dot product ”the rowthe row--column “vector dot product.”column “vector dot product.”
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Boolean Powers

•• For a square zeroFor a square zero--one matrix one matrix AA, and any , and any 
kk≥≥00,, the the kth Boolean power of kth Boolean power of AA is simply is simply 
the Boolean product of the Boolean product of kk copies of copies of AA..pp pp

•• AA[[kk] ] ≡≡ AA⊙⊙AA⊙⊙……⊙⊙AA

k times
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