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Overview of Section 3.1

* Methods of mathematical argument (proof
methods) can be formalized in terms of
rules of logical inference.

o Mathematical proofs can themselves be
represented formally as discrete structures.

* \We will review both correct & fallacious
Inference rules, & several proof methods.
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Applications of Proofs

e An exercise in clear communication of
logical arguments in any area.

e The fundamental activity of mathematics is
the discovery and elucidation of proofs of
Interesting new theorems.

* Theorem-proving has applications in
program verification, computer security,
automated reasoning systems, etc.
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Proof Terminology

e Theorem - A statement that has been proven
to be true.

o Axioms, postulates, hypotheses, premises -
Assumptions (often unproven) defining the
structures about which we are reasoning.

* Rules of inference - Patterns of logically
valid deductions from hypotheses to
conclusions.
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More Proof Terminology

e Lemma - A minor theorem used as a
stepping-stone to proving a major theorem.

e Corollary - A minor theorem proved as an
easy consequence of a major theorem.

e Conjecture - A statement whose truth value
has not been proven. (A conjecture may be
widely believed to be true, regardless.)
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Inference Rules - General Form

 Inference Rule - Pattern establishing that if
we know that a set of antecedent statements
of certain forms are all true, then a certain
related consequent statement is true.

e antecedent 1
antecedent 2 ...

.. consequent “..” means “therefore”
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Inference Rules & Implications

« Each logical inference rule corresponds to
an implication that is a tautology.

e antecedent 1 Inference rule
antecedent 2 ...

. consequent

o Corresponding tautology: ((antecedent 1) A
antecedent 2) A ...) — consequent
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Some Inference Rules

Rule of Addition

Rule of Simplification

Rule of Conjunction
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Modus Ponens & Tollens

Rule of modus ponens

Rule of modus tollens
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Syllogism Inference Rules

Rule of hypothetical
syllogism

Rule of disjunctive
syllogism
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Formal Proofs

A formal proof of a conclusion C, given
premises p4, pP,,...,p, consists of a sequence
of steps, each of which applies some
Inference to premises or previously-proven

statements /:\Q :mfnr*nrlnnfc\ to ymlrl a new
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true statement (the consequent).

» A proof demonstrates that if the premises
are true, then the conclusion is true.
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Formal Proof Example

e Premises:
“It 1s not sunny and it Is cold.”
“We will swim only if it is sunny.”
“If we do not swim, then we will canoe.”

(44
If we canoe, t fhnn we \I\II!! hn hgme n:\r!y

Given these premises, prove “We will be
home early” using inference rules.
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Proof Example cont.

o Let sunny="Itis sunny”; cold="It is cold;”
swim="We will swim;” canoe="“We will
canoe;” early="We will be home early.”

* Premises:
(1) —=sunny A cold (2) swim—sunny
(3) —swim—canoe (4) canoe—early
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Proof Example cont.

Proved by

. =sunny A cold Premise #1.

. =sunny Simplification of 1.

. Swim—sunny Premise #2.

. =SWIm Modus tollens on 2,3.
. =SWim—canoe Premise #3.

. canoe Modus ponens on 4,5.
. canoe—early Premise #4.

.early Modus ponens on 6,7.
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Common Fallacies

« A fallacy is an inference rule or other proof
method that is not logically valid.

 Fallacy of affirming the conclusion:

“p—(q IS true, and q Is true, so p must be
true.” (Consider F—T.)

 Fallacy of denying the hypothesis:

“p—(q IS true, and p Is false, so g must be
false.” (Consider F>T.
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Circular Reasoning

« The fallacy of (explicitly or implicitly) assuming
the very statement you are trying to prove in the
course of its proof.

* Prove that an integer n is even if n? is even.

o Attempted proof: “Assume n?is even. Then
n?=2k for some integer k. Dividing both sides by n
gives n=(2k)/n=2(k/n). So there is an integer |

(namely k/n) such that n=2j. Therefore n is even.”

Begs the question: How do
you show that j=k/n=n/2 Is an integer,
8/9/2008 _ - _ without assuming n is even?
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Removing the Circularity

Suppose nZis even ..2|n% ... n°mod 2 = 0. Of course
nmod 2 is either 0 or 1. If it’s 1, then n=1 (mod 2),
so n’=1 (mod 2), using the theorem that if a=b (mod
m) and c=d (mod m) then ac=bd (mod m), with
a=c=n and b=d=1. Now n%=1 (mod 2) implies that
n2mod 2 = 1. So by the hypothetical syliogism rule,
(n mod 2 = 1) implies (N> mod 2 = 1). Since we
know n2mod 2 =0 = 1, by modus tollens we know
that n mod 2 # 1. So by disjunctive syllogism we
havethatnmod 2 =0 ..2|n .. nIs even.
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8/9/2008

Inference Rules for Quantifiers

vxP(x) Universal instantiation

-.P(0)  (substitute any object 0)
P(9) (for g a general element of u.d.)

~vxP(x) Universal generalization

=X P(x)  Existential instantiation
-.P(c)  (substitute a new constant c)

P(0) (substitute any extant object o)

~IxP(x) Existential generalization
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Proof Methods

For proving implications p—q, we have:

* Direct proof. Assume p is true, and prove (.
* Indirect proof. Assume —q, and prove —p.
 Vacuous proof: Prove —p by itself.
 Trivial proof: Prove g by itself.

e Proof by cases: Show p—(a v b) and (a—q)
and (b—0Q).
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Proof by Contradiction

A method for proving p.

Assume —p, and prove both g and —q for
some proposition g.

Thus —p— (g A —Q)

(g A —Q) Is a trivial contradition, equal to F
Thus —p—F, which is only true If —p=F
Thus p iIs true.
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Review: Proof Methods So Far

 Direct, indirect, vacuous, and trivial proofs
of statements of the form p—q.

* Proof by contradiction of any statements.

e Constructive and nonconstructive existence
proofs.
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Proving Existentials

A proof of a statement of the form 3Ix P(x)
IS called an existence proof.

o |f the proof demonstrates how to actually
find or construct a specific element a such
that P(a) Is true, then it Is a constructive
proof.

e Otherwise, It IS nonconstructive.
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A Constructive Existence Proof

(Example 23, p.179)

o Show that for any n>0 there exists a
seguence of n consecutive composite
Integers.

e Same statement in predicate logic:
vn>0 3x VI (1<i£n)—(x+1 IS composite)
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The proof...

Given n>0, letx=(n + 1)! + 1.
Let1>1andI<n,and consider x+I.

Note xti=(n+ 1)+ (i +1).

Note (i+1)|(n+1)!, since 2 < 1+1 < n+1.
Also (I+1)|(1+1). So, (i+1)|(x+1).

. X+1 IS composite.

-, Vn 3Ax V1<i<n @ x+1 1s composite. Q.E.D.
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Nonconstructive Existence Proof

(Example 24, p. 180)
S

S
S

oW 1
oW 1

oW 1

nat there are infinitely many primes.
nere i1s no largest prime.

nat for any prime number, there iIs a

larger number that is also prime.
Show that for any number, 3 a larger prime.
Show that Vn 3p>n : p Is prime.
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Da proof...

* Given n>0, prove there Is a prime p>n.

e Consider x=n!+1. Since x>1, we have
(X Is prime)v(x Is composite).

e Case 1: xIs prime. Obviously x>n, so let
p=x and we’re done.

e Case 2: x has a prime factor p. But If p<n,
then p mod x =1. So p>n, and we’re done.
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The Halting Problem (Turing‘36)

Involves a non-existence proof.

The first mathematical function proven to
have no algorithm that computes it!

The desired function is Halts(P,l) = the
truth value of the statement ‘Program P,
given input |, eventually halts’.

Implies general impossibility of predictive
analysis of arbitrary computer programs.
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The Proof

e Given any arbitrary program H(P,I),

o Consider algorithm Breaker, defined as:
procedure Breaker(P: a program)
halts := H(P,P)
If halts then while T begin end

* Note that Breaker(Breaker) halts iff
H(Breaker,Breaker) = F.

e So H does not compute the function Halts!
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Limits on Proofs

e Some very simple statements of number
theory haven’t been proved or disproved!

— E.g. Goldbach’s conjecture: Every integer n>2
IS exactly the average of some two primes.

_ ‘v’nsz Nnrimac N - _/ -l-n\l’)
- PI 1mHiiuvyY P \.1 \P

e There are true statements of number theory
(or any sufficiently powerful system) that
can never be proved (or disproved) (Godel).
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