Module #3 - Functions Module #10: **Proof Strategies** Rosen 5th ed., §3.1 ~28 slides, ~1 lecture (c)2001-2002, Michael P. Frank 8/9/2008

Overview of Section 3.1

- Methods of mathematical argument (proof methods) can be formalized in terms of *rules of logical inference*.
- Mathematical *proofs* can themselves be represented formally as discrete structures.
- We will review both correct & fallacious inference rules, & several proof methods.

Applications of Proofs

- An exercise in clear communication of logical arguments in any area.
- The fundamental activity of mathematics is the discovery and elucidation of proofs of interesting new theorems.
- Theorem-proving has applications in program verification, computer security, automated reasoning systems, *etc*.

Proof Terminology

- *Theorem* A statement that has been proven to be true.
- Axioms, postulates, hypotheses, premises Assumptions (often unproven) defining the structures about which we are reasoning.
- Rules of inference Patterns of logically valid deductions from hypotheses to conclusions.

More Proof Terminology

- *Lemma* A minor theorem used as a stepping-stone to proving a major theorem.
- Corollary A minor theorem proved as an easy consequence of a major theorem.
- *Conjecture* A statement whose truth value has not been proven. (A conjecture may be widely believed to be true, regardless.)

Inference Rules - General Form

- Inference Rule Pattern establishing that if we know that a set of antecedent statements of certain forms are all true, then a certain related consequent statement is true.
- antecedent 1 antecedent 2 ...

:. consequent

"∴" means "therefore"

Inference Rules & Implications

- Each logical inference rule corresponds to an implication that is a tautology.
- antecedent 1 Inference rule antecedent 2 ...
 - :. consequent
- Corresponding tautology: ((antecedent 1) ∧ (antecedent 2) ∧ ...) → consequent

Module #3 - Functions

Some Inference Rules

•
$$\frac{p}{\therefore p \lor q}$$

Rule of Addition

• $\frac{p \land q}{\therefore p}$

Rule of Simplification

 $\begin{array}{c}
\bullet & p \\
q \\
\therefore p \land q
\end{array}$

Rule of Conjunction

Modus Ponens & Tollens

• p

$$\frac{p \rightarrow q}{\therefore q}$$

• ¬q

$$p \rightarrow q$$

Rule of modus tollens

Module #3 - Functions

Syllogism Inference Rules

$$\begin{array}{ccc}
 & p \rightarrow q \\
 & q \rightarrow r \\
\hline
 & \vdots & p \rightarrow r
\end{array}$$

Rule of hypothetical syllogism

$$\begin{array}{c}
\bullet \quad p \lor q \\
\hline
\neg p \\
\hline
\therefore q
\end{array}$$

Rule of disjunctive syllogism

Formal Proofs

- A formal proof of a conclusion C, given premises $p_1, p_2, ..., p_n$ consists of a sequence of *steps*, each of which applies some inference to premises or previously-proven statements (as antecedents) to yield a new true statement (the consequent).
- A proof demonstrates that if the premises are true, then the conclusion is true.

Formal Proof Example

- Premises:
 - "It is not sunny and it is cold."
 - "We will swim only if it is sunny."
 - "If we do not swim, then we will canoe."
 - "If we canoe, then we will be home early."
- Given these premises, prove "We will be home early" using inference rules.

Proof Example cont.

- Let *sunny*="It is sunny"; *cold*="It is cold;" *swim*="We will swim;" *canoe*="We will canoe;" *early*="We will be home early."
- Premises:
 - (1) $\neg sunny \land cold$ (2) $swim \rightarrow sunny$
 - $(3) \neg swim \rightarrow canoe (4) canoe \rightarrow early$

Proof Example cont.

Step

1. $\neg sunny \land cold$

 $2. \neg sunny$

3. $swim \rightarrow sunny$

 $4. \neg swim$

 $5. \neg swim \rightarrow canoe$

6. canoe

7. $canoe \rightarrow early$

8. early

Proved by

Premise #1.

Simplification of 1.

Premise #2.

Modus tollens on 2,3.

Premise #3.

Modus ponens on 4,5.

Premise #4.

Modus ponens on 6,7.

Common Fallacies

- A *fallacy* is an inference rule or other proof method that is not logically valid.
- Fallacy of affirming the conclusion: " $p \rightarrow q$ is true, and q is true, so p must be true." (Consider $F \rightarrow T$.)
- Fallacy of denying the hypothesis: " $p \rightarrow q$ is true, and p is false, so q must be false." (Consider $F \rightarrow T$.)

Circular Reasoning

- The fallacy of (explicitly or implicitly) assuming the very statement you are trying to prove in the course of its proof.
- Prove that an integer n is even if n^2 is even.
- Attempted proof: "Assume n^2 is even. Then $n^2=2k$ for some integer k. Dividing both sides by n gives n=(2k)/n=2(k/n). So there is an integer j (namely k/n) such that n=2j. Therefore n is even."

Begs the question: How do you show that j=k/n=n/2 is an integer, without assuming n is even?

Removing the Circularity

Suppose n^2 is even $\therefore 2|n^2 \therefore n^2 \mod 2 = 0$. Of course $n \mod 2$ is either 0 or 1. If it's 1, then $n \equiv 1 \pmod 2$, so $n^2 \equiv 1 \pmod{2}$, using the theorem that if $a \equiv b \pmod{2}$ m) and $c \equiv d \pmod{m}$ then $ac \equiv bd \pmod{m}$, with a=c=n and b=d=1. Now $n^2\equiv 1 \pmod{2}$ implies that $n^2 \mod 2 = 1$. So by the hypothetical syllogism rule, $(n \mod 2 = 1)$ implies $(n^2 \mod 2 = 1)$. Since we know $n^2 \mod 2 = 0 \neq 1$, by modus tollens we know that $n \mod 2 \neq 1$. So by disjunctive syllogism we have that $n \mod 2 = 0 \therefore 2 \mid n \therefore n$ is even.

Inference Rules for Quantifiers

- $\forall x P(x)$ Universal instantiation $\therefore P(o)$ (substitute any object o)
- P(g) (for g a general element of u.d.) $\therefore \forall x P(x)$ Universal generalization
- $\exists x P(x)$ Existential instantiation (substitute a *new constant c*)
- $\frac{P(o)}{::\exists x \; P(x)}$ (substitute any extant object o) Existential generalization

Proof Methods

For proving implications $p \rightarrow q$, we have:

- *Direct* proof: Assume *p* is true, and prove *q*.
- *Indirect* proof: Assume $\neg q$, and prove $\neg p$.
- *Vacuous* proof: Prove $\neg p$ by itself.
- *Trivial* proof: Prove q by itself.
- Proof by cases: Show $p \rightarrow (a \lor b)$ and $(a \rightarrow q)$ and $(b \rightarrow q)$.

Proof by Contradiction

- A method for proving *p*.
- Assume $\neg p$, and prove both q and $\neg q$ for some proposition q.
- Thus $\neg p \rightarrow (q \land \neg q)$
- $(q \land \neg q)$ is a trivial contradition, equal to **F**
- Thus $\neg p \rightarrow \mathbf{F}$, which is only true if $\neg p = \mathbf{F}$
- Thus *p* is true.

Review: Proof Methods So Far

- *Direct, indirect, vacuous,* and *trivial* proofs of statements of the form $p \rightarrow q$.
- Proof by contradiction of any statements.
- Constructive and nonconstructive existence proofs.

Proving Existentials

- A proof of a statement of the form $\exists x P(x)$ is called an *existence proof*.
- If the proof demonstrates how to actually find or construct a specific element a such that P(a) is true, then it is a *constructive* proof.
- Otherwise, it is *nonconstructive*.

A Constructive Existence Proof

(Example 23, p.179)

- Show that for any *n*>0 there exists a sequence of *n* consecutive composite integers.
- Same statement in predicate logic: $\forall n>0 \ \exists x \ \forall i \ (1 \le i \le n) \rightarrow (x+i \ \text{is composite})$

The proof...

- Given n>0, let x = (n+1)! + 1.
- Let $i \ge 1$ and $i \le n$, and consider x+i.
- Note x+i = (n+1)! + (i+1).
- Note (i+1)|(n+1)!, since $2 \le i+1 \le n+1$.
- Also (i+1)|(i+1). So, (i+1)|(x+i).
- $\therefore x+i$ is composite.
- $\therefore \forall n \exists x \forall 1 \le i \le n : x+i \text{ is composite. Q.E.D.}$

Nonconstructive Existence Proof

(Example 24, p. 180)

- Show that there are infinitely many primes.
- Show there is no largest prime.
- Show that for any prime number, there is a larger number that is also prime.
- Show that for any number, \exists a larger prime.
- Show that $\forall n \; \exists p > n : p \text{ is prime.}$

Da proof...

- Given n>0, prove there is a prime p>n.
- Consider x=n!+1. Since x>1, we have $(x \text{ is prime}) \lor (x \text{ is composite})$.
- Case 1: x is prime. Obviously x>n, so let p=x and we're done.
- Case 2: x has a prime factor p. But if $p \le n$, then $p \mod x = 1$. So p > n, and we're done.

The Halting Problem (Turing'36)

- Involves a *non*-existence proof.
- The first mathematical function proven to have *no* algorithm that computes it!
- The desired function is Halts(P,I) = the truth value of the statement 'Program P, given input I, eventually halts'.
- Implies general impossibility of predictive analysis of arbitrary computer programs.

The Proof

- Given any *arbitrary* program H(P,I),
- Consider algorithm Breaker, defined as:
 procedure Breaker(P: a program)

halts := H(P,P)

if halts then while T begin end

- Note that Breaker(Breaker) halts iff $H(Breaker, Breaker) = \mathbf{F}$.
- So H does **not** compute the function Halts!

Limits on Proofs

- Some very simple statements of number theory haven't been proved or disproved!
 - − E.g. Goldbach's conjecture: Every integer n>2
 is exactly the average of some two primes.
 - $\forall n > 2 \exists \text{ primes } p,q : n = (p+q)/2.$
- There are true statements of number theory (or any sufficiently powerful system) that can *never* be proved (or disproved) (Gödel).