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Overview of Section 3.1

•• Methods of mathematical argument (proof Methods of mathematical argument (proof 
methods) can be formalized in terms of methods) can be formalized in terms of 
rules of logical inferencerules of logical inference..f g ff g f

•• Mathematical Mathematical proofsproofs can themselves be can themselves be 
represented formally as discrete structuresrepresented formally as discrete structuresrepresented formally as discrete structures.represented formally as discrete structures.

•• We will review both correct & fallacious We will review both correct & fallacious 
inference rules, & several proof methods.inference rules, & several proof methods.
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Applications of Proofs

•• An exercise in clear communication of An exercise in clear communication of 
logical arguments in any area.logical arguments in any area.

•• The fundamental activity of mathematics isThe fundamental activity of mathematics isThe fundamental activity of mathematics is The fundamental activity of mathematics is 
the discovery and elucidation of proofs of the discovery and elucidation of proofs of 
interesting new theoremsinteresting new theoremsinteresting new theorems.interesting new theorems.

•• TheoremTheorem--proving has applications in proving has applications in 
program verification, computer security, program verification, computer security, 
automated reasoning systems,automated reasoning systems, etc.etc.
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Proof Terminology

•• TheoremTheorem -- A statement that has been proven A statement that has been proven 
to be true.to be true.

•• AxiomsAxioms postulatespostulates hypotheseshypotheses premisespremises --AxiomsAxioms, , postulatespostulates, , hypotheseshypotheses,, premisespremises
Assumptions (often unproven) defining the Assumptions (often unproven) defining the 
structures about which we are reasoningstructures about which we are reasoningstructures about which we are reasoning.structures about which we are reasoning.

•• Rules of inferenceRules of inference -- Patterns of logically Patterns of logically 
valid deductions from hypotheses to valid deductions from hypotheses to 
conclusions.conclusions.
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More Proof Terminology

•• LemmaLemma -- A minor theorem used as a A minor theorem used as a 
steppingstepping--stone to proving a major theorem.stone to proving a major theorem.

•• CorollaryCorollary -- A minor theorem proved as anA minor theorem proved as anCorollaryCorollary A minor theorem proved as an A minor theorem proved as an 
easy consequence of a major theorem.easy consequence of a major theorem.

h h lh h l•• ConjectureConjecture -- A statement whose truth value A statement whose truth value 
has not been proven.  (A conjecture may be has not been proven.  (A conjecture may be 
widely believed to be true, regardless.)widely believed to be true, regardless.)
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Inference Rules - General Form

•• Inference RuleInference Rule -- Pattern establishing that if Pattern establishing that if 
we know that a set of we know that a set of antecedentantecedent statements statements 
of certain forms are all true, then a certain of certain forms are all true, then a certain ,,
related related consequentconsequent statement is true. statement is true. 

•• t d t 1t d t 1•• antecedent 1antecedent 1
antecedent 2 … antecedent 2 … 
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
∴∴ consequent           consequent           ““∴∴” means “therefore”” means “therefore”
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Inference Rules & Implications

•• Each logical inference rule corresponds to Each logical inference rule corresponds to 
an implication that is a tautology.an implication that is a tautology.

•• antecedent 1antecedent 1 Inference ruleInference ruleantecedent 1               antecedent 1               Inference ruleInference rule
antecedent 2 … antecedent 2 … 
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
∴∴ consequentconsequent

•• Corresponding tautology: ((Corresponding tautology: ((antecedent 1antecedent 1) ) ∧∧
((antecedent 2antecedent 2)) ∧∧ …)…) →→ consequentconsequent
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Some Inference Rules

•• pp Rule of AdditionRule of Addition
∴∴ pp∨∨qq

•• pp∧∧qq Rule of SimplificationRule of Simplificationpp∧∧qq Rule of SimplificationRule of Simplification
∴∴ pp

l f j il f j i•• pp Rule of ConjunctionRule of Conjunction
qq

∴∴ pp∧∧qq
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Modus Ponens & Tollens

•• pp Rule of Rule of modus ponensmodus ponens
pp→→qq
∴∴qqqq

•• ¬¬qq Rule of Rule of modus tollensmodus tollens
→→pp→→qq
∴¬∴¬pp
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Syllogism Inference Rules

•• pp→→qq Rule of hypotheticalRule of hypothetical
qq→→rr syllogismsyllogism

∴∴pp→→rrpp
•• p p ∨∨ qq Rule of disjunctiveRule of disjunctive

s llogisms llogism¬¬pp syllogismsyllogism
∴∴ qq
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Formal Proofs

•• A formal proof of a conclusion A formal proof of a conclusion CC, given , given 
premises premises pp11, , pp22,…,…,,ppnn consists of a sequence consists of a sequence 
of of stepssteps, each of which applies some , each of which applies some pp , pp, pp
inference to premises or previouslyinference to premises or previously--proven proven 
statements (as antecedents) to yield a newstatements (as antecedents) to yield a newstatements (as antecedents) to yield a new statements (as antecedents) to yield a new 
true statement (the consequent).true statement (the consequent).

•• A proof demonstrates that if the premises A proof demonstrates that if the premises 
are true, then the conclusion is true.are true, then the conclusion is true.

8/9/2008 (c)2001-2002, Michael P. Frank 11



Module #3 - Functions

Formal Proof Example

•• Premises:Premises:
“It is not sunny and it is cold.”“It is not sunny and it is cold.”
“We will swim only if it is sunny.”“We will swim only if it is sunny.”y yy y
“If we do not swim, then we will canoe.”“If we do not swim, then we will canoe.”
“If we canoe then we will be home early ”“If we canoe then we will be home early ”If we canoe, then we will be home early.If we canoe, then we will be home early.

•• Given these premises, prove “We will be Given these premises, prove “We will be 
home early” using inference rules.home early” using inference rules.
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Proof Example cont.

•• Let Let sunnysunny=“It is sunny”; =“It is sunny”; coldcold=“It is cold;”  =“It is cold;”  
swimswim=“We will swim;” =“We will swim;” canoecanoe=“We will =“We will 
canoe;” canoe;” earlyearly=“We will be home early.”=“We will be home early.”;; yy yy

•• Premises:Premises:
(1)(1) ldld (2)(2) ii →→(1) (1) ¬¬sunnysunny ∧∧ coldcold (2) (2) swimswim→→sunnysunny
(3) (3) ¬¬swimswim→→canoecanoe (4) (4) canoecanoe→→earlyearly
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Proof Example cont.

StepStep Proved byProved by
11 ldld P i #1P i #11. 1. ¬¬sunnysunny ∧∧ coldcold Premise #1.Premise #1.
2. 2. ¬¬sunnysunny Simplification of 1.Simplification of 1.
33 ii P i #2P i #23. 3. swimswim→→sunnysunny Premise #2.Premise #2.
4. 4. ¬¬swimswim Modus tollens on 2,3.Modus tollens on 2,3.
55 ii P i #3P i #35. 5. ¬¬swimswim→→canoecanoe Premise #3.Premise #3.
6. 6. canoecanoe Modus ponens on 4,5.Modus ponens on 4,5.
77 ll P i #4P i #47. 7. canoecanoe→→earlyearly Premise #4.Premise #4.
8. 8. earlyearly Modus ponens on 6,7.Modus ponens on 6,7.
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Common Fallacies

•• A A fallacyfallacy is an inference rule or other proof is an inference rule or other proof 
method that is not logically valid.method that is not logically valid.

•• Fallacy ofFallacy of affirming the conclusionaffirming the conclusion::Fallacy of Fallacy of affirming the conclusionaffirming the conclusion::
““pp→→qq is true, and is true, and qq is true, so is true, so pp must be must be 
tr e ” (Consider Ftr e ” (Consider F→→T )T )true.” (Consider Ftrue.” (Consider F→→T.)T.)

•• Fallacy of Fallacy of denying the hypothesisdenying the hypothesis::
““pp→→qq is true, and is true, and pp is false, so is false, so qq must be must be 
false.” (Consider Ffalse.” (Consider F→→T.)T.)
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Circular Reasoning

•• The fallacy of (explicitly or implicitly) assuming The fallacy of (explicitly or implicitly) assuming 
h i i hh i i hthe very statement you are trying to prove in the the very statement you are trying to prove in the 

course of its proof.course of its proof.
•• Prove that an integer Prove that an integer nn is even if is even if nn22 is even.is even.
•• Attempted proof:  “Assume Attempted proof:  “Assume nn22 is even.  Then is even.  Then p pp p

nn22=2=2kk for some integer for some integer kk. Dividing both sides by . Dividing both sides by nn
gives gives nn=(2=(2kk)/)/nn=2(=2(kk//nn). So there is an integer ). So there is an integer jjgg (( )) (( ) g) g jj
(namely (namely kk//nn) such that ) such that nn=2=2jj.  Therefore .  Therefore nn is even.”is even.”

Begs the question: How do
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Removing the Circularity

Suppose Suppose nn22 is even is even ∴∴2|2|nn22 ∴∴ nn2 2 mod 2 = 0.  Of course mod 2 = 0.  Of course 
d 2 i i h 0 1 If i ’ 1 hd 2 i i h 0 1 If i ’ 1 h 1 ( d 2)1 ( d 2)nn mod 2 is either 0 or 1. If it’s 1, then mod 2 is either 0 or 1. If it’s 1, then nn≡≡1 (mod 2), 1 (mod 2), 

so so nn22≡≡1 (mod 2), 1 (mod 2), using the theorem that if using the theorem that if aa≡≡b b (mod(mod
) d) d dd ( d( d ) h) h bdbd ( d ) i h( d ) i hmm) and) and cc≡≡d d (mod(mod mm) then) then acac≡≡bd bd (mod m), with (mod m), with 

aa==cc==n n and and bb==dd=1.=1. Now Now nn22≡≡1 (mod 2) implies that 1 (mod 2) implies that 
22 d 2 1 Sd 2 1 S b h h h i l ll i lb h h h i l ll i lnn22 mod 2 = 1.  So mod 2 = 1.  So by the hypothetical syllogism ruleby the hypothetical syllogism rule, , 

((n n mod 2 = 1) implies (mod 2 = 1) implies (nn22 mod 2 = 1).  Since we mod 2 = 1).  Since we 
kk 22 d 2 0d 2 0 11 bb d lld ll kkknow know nn22 mod 2 = 0 mod 2 = 0 ≠≠ 1, 1, by by modus tollensmodus tollens we know we know 
that that nn mod 2 mod 2 ≠≠ 1.  So 1.  So by disjunctive syllogismby disjunctive syllogism we we 
h th th th t d 2 0d 2 0 2|2| ii
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Inference Rules for Quantifiers

•• ∀∀xx PP((xx))
∴∴PP((oo)) (substitute (substitute anyany object object oo))

•• PP((gg)) (for(for gg aa generalgeneral element of u d )element of u d )PP((gg)) (for (for gg a a general general element of u.d.)element of u.d.)
∴∀∴∀xx PP((xx))

(( ))•• ∃∃xx PP((xx))
∴∴PP((cc)) (substitute a (substitute a newnew constantconstant cc))

•• PP((oo) ) (substitute any extant object (substitute any extant object oo) ) 
∴∃∴∃xx PP((xx))

8/9/2008 (c)2001-2002, Michael P. Frank 18

∴∃∴∃xx PP((xx))



Module #3 - Functions

Proof Methods

For proving implications For proving implications pp→→qq, we have:, we have:
•• DirectDirect proof: Assume proof: Assume pp is true, and prove is true, and prove qq..
•• IndirectIndirect proof: Assumeproof: Assume qq and proveand prove pp•• IndirectIndirect proof: Assume proof: Assume ¬¬qq, and prove , and prove ¬¬pp..
•• VacuousVacuous proof: Prove proof: Prove ¬¬pp by itself.by itself.
•• TrivialTrivial proof: Prove proof: Prove qq by itself.by itself.

P f b ShP f b Sh (( bb) d () d ( ))•• Proof by cases: Show Proof by cases: Show pp→→((aa ∨∨ bb) and () and (aa→→qq) ) 
and (and (bb→→qq).).
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Proof by Contradiction

•• A method for proving A method for proving pp..
•• Assume Assume ¬¬pp, and prove both , and prove both qq and and ¬¬qq for for 

some propositionsome proposition qqsome proposition some proposition qq..
•• Thus Thus ¬¬pp→→ ((qq ∧∧ ¬¬qq))
•• ((qq ∧∧ ¬¬qq) is a trivial contradition, equal to ) is a trivial contradition, equal to FF
•• ThusThus ¬¬pp→→FF which is only true ifwhich is only true if ¬¬pp==FF•• Thus Thus ¬¬pp→→FF, which is only true if , which is only true if ¬¬pp==FF
•• Thus Thus pp is true.is true.
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Review: Proof Methods So Far

•• DirectDirect, , indirectindirect, , vacuousvacuous, and , and trivialtrivial proofs proofs 
of statements of the form of statements of the form pp→→qq..

•• Proof by contradictionProof by contradiction of any statementsof any statementsProof by contradictionProof by contradiction of any statements.of any statements.
•• ConstructiveConstructive and and nonconstructivenonconstructive existence existence 

ffproofsproofs..
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Proving Existentials

•• A proof of a statement of the form A proof of a statement of the form ∃∃xx PP((xx) ) 
is called an is called an existence proofexistence proof..

•• If the proof demonstrates how to actuallyIf the proof demonstrates how to actuallyIf the proof demonstrates how to actually If the proof demonstrates how to actually 
find or construct a specific element find or construct a specific element aa such such 
thatthat PP(( ) is true then it is a) is true then it is a t tit tithat that PP((aa) is true, then it is a ) is true, then it is a constructiveconstructive
proof.proof.

•• Otherwise, it is Otherwise, it is nonconstructivenonconstructive..
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A Constructive Existence Proof

(Example 23, p.179)(Example 23, p.179)
•• Show that for any Show that for any nn>0 there exists a >0 there exists a 

sequence ofsequence of nn consecutive compositeconsecutive compositesequence of sequence of nn consecutive composite consecutive composite 
integers.integers.

i di l ii di l i•• Same statement in predicate logic:Same statement in predicate logic:
∀∀nn>0 >0 ∃∃x x ∀∀ii (1(1≤≤ii≤≤nn))→→((xx++ii is composite)is composite)
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The proof...

•• Given Given nn>0, let >0, let xx = (= (nn + 1)! + 1.+ 1)! + 1.
•• Let Let i i ≥≥ 1 and 1 and i i ≤≤ nn, and consider , and consider xx++ii..
•• NoteNote xx++ii = (= (nn + 1)! + (+ 1)! + (ii + 1)+ 1)•• Note Note xx++ii = (= (nn + 1)! + (+ 1)! + (ii + 1).+ 1).
•• Note (Note (ii+1)|(+1)|(nn+1)!, since 2 +1)!, since 2 ≤≤ ii+1 +1 ≤≤ nn+1.+1.
•• Also (Also (ii+1)|(+1)|(ii+1).  So, (+1).  So, (ii+1)|(+1)|(x+ix+i).  ).  

+i+i i iti it•• ∴∴ x+ix+i is composite.  is composite.  
•• ∴∴ ∀∀nn ∃∃x x ∀∀11≤≤ii≤≤n n : : xx++ii is composite. Q.E.D.is composite. Q.E.D.
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Nonconstructive Existence Proof

(Example 24, p. 180)(Example 24, p. 180)
•• Show that there are infinitely many primes.Show that there are infinitely many primes.
•• Show there is no largest primeShow there is no largest prime•• Show there is no largest prime.Show there is no largest prime.
•• Show that for any prime number, there is a Show that for any prime number, there is a 

larger number that is also prime.larger number that is also prime.
•• Show that for any numberShow that for any number ∃∃ a larger primea larger prime•• Show that for any number, Show that for any number, ∃∃ a larger prime.a larger prime.
•• Show that Show that ∀∀nn ∃∃p>n p>n : : pp is prime.is prime.
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Da proof...

•• Given Given nn>0, prove there is a prime >0, prove there is a prime pp>>nn. . 
•• Consider Consider xx==nn!+1.  Since !+1.  Since xx>1, we have >1, we have 

((xx is prime)is prime)∨∨((xx is composite)is composite)((xx is prime)is prime)∨∨((x x is composite).is composite).
•• Case 1: Case 1: xx is prime.  Obviously is prime.  Obviously xx>>nn, so let , so let 

d dd dpp==xx and we’re done.and we’re done.
•• Case 2:Case 2: xx has a prime factorhas a prime factor pp. But if. But if pp≤≤nn,,Case 2: Case 2: xx has a prime factor has a prime factor pp.  But if .  But if pp≤≤nn, , 

then then pp mod mod xx = 1.  So = 1.  So pp>>nn, and we’re done., and we’re done.
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The Halting Problem (Turing‘36)

•• Involves a Involves a nonnon--existence proof.existence proof.
•• The first mathematical function proven to The first mathematical function proven to 

havehave nono algorithm that computes it!algorithm that computes it!have have nono algorithm that computes it!algorithm that computes it!
•• The desired function is The desired function is HaltsHalts((PP,,II) = the ) = the 

h l f hh l f htruth value of the statement ‘Program truth value of the statement ‘Program PP, , 
given input given input II, eventually halts’., eventually halts’.

•• Implies general impossibility of predictive Implies general impossibility of predictive 
analysis of arbitrary computer programsanalysis of arbitrary computer programs
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The Proof

•• Given any Given any arbitrary arbitrary program program HH((P,IP,I),),
•• Consider algorithm Consider algorithm BreakerBreaker, defined as:, defined as:

procedureprocedure BreakerBreaker((PP: a program): a program)procedureprocedure BreakerBreaker((PP: a program): a program)
halts halts :=:= HH((PP,,PP))
ifif h lth lt then whilethen while T begin endT begin endifif haltshalts then whilethen while T begin endT begin end

•• Note that Note that BreakerBreaker((BreakerBreaker) halts iff ) halts iff 
HH((BreakerBreaker,,BreakerBreaker) = ) = FF..

•• SoSo HH doesdoes notnot compute the functioncompute the function HaltsHalts!!
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Limits on Proofs

•• Some very simple statements of number Some very simple statements of number 
theory haven’t been proved or disproved!theory haven’t been proved or disproved!
–– E.g. Goldbach’s conjectureE.g. Goldbach’s conjecture: Every integer: Every integer nn>2>2E.g. Goldbach s conjectureE.g. Goldbach s conjecture: Every integer : Every integer nn 2 2 

is exactly the average of some two primes.is exactly the average of some two primes.
–– ∀∀nn>2>2 ∃∃ primesprimes pp qq :: nn=(=(pp++qq)/2)/2–– ∀∀nn>2 >2 ∃∃ primes primes pp,,q q : : nn=(=(pp++qq)/2.)/2.

•• There are true statements of number theory There are true statements of number theory 
(or any sufficiently powerful system) that (or any sufficiently powerful system) that 
can can nevernever be proved (or disproved) (Gödel).be proved (or disproved) (Gödel).
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